1
|
Zakrzewska‐Placzek M, Golisz‐Mocydlarz A, Kwasnik A, Krzyszton M, Niedzwiecka K, Kufel J. Defective Processing of Cytoplasmic and Chloroplast Ribosomal RNA in the Absence of Arabidopsis DXO1. PLANT, CELL & ENVIRONMENT 2025; 48:4227-4244. [PMID: 39927756 PMCID: PMC12050399 DOI: 10.1111/pce.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Decapping 5'-3' exoribonucleases from the DXO/Rai1 family are highly conserved among eukaryotes and exhibit diverse enzymatic activities depending on the organism. The biochemical and structural properties of the plant DXO1 differ from the yeast and animal counterparts, which is reflected in the in vivo functions of this enzyme. Here we show that Arabidopsis DXO1 contributes to the efficient processing of rRNA precursors in both nucleolar/cytosolic and chloroplast maturation pathways. However, the processing defects in DXO1-deficient plants do not depend on the catalytic activity of the enzyme but rely on its plant-specific N-terminal extension, which is responsible for the interaction with the mRNA cap methyltransferase RNMT1. Our RNA sequencing analyses show that the dxo1 mutation deregulates the expression of many ribosomal protein genes, most likely leading to inefficient or delayed pre-rRNA maturation. These phenotypes are partially suppressed by RNMT1 overexpression, suggesting that defective cap synthesis may be responsible, at least to some extent, for the observed effects.
Collapse
Affiliation(s)
| | - Anna Golisz‐Mocydlarz
- Institute of Genetics and Biotechnology, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Aleksandra Kwasnik
- Institute of Genetics and Biotechnology, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Katarzyna Niedzwiecka
- Institute of Genetics and Biotechnology, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
2
|
Neto VG, Cepeda LPP, Queiroz BRS, Cantaloube S, Leger-Silvestre I, Mangeat T, Albert B, Gadal O, Oliveira CC. New insights into nuclear import and nucleolar localization of yeast RNA exosome subunits. Mol Biol Cell 2025; 36:ar69. [PMID: 40266794 DOI: 10.1091/mbc.e25-02-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
The RNA exosome is a multiprotein complex essential for RNA maturation and degradation. In budding yeast, a nine-subunit protein core (Exo9) associated with Rrp44 forms a 10-subunit complex (Exo10) in the cytoplasm and, in complex with Rrp6, Exo11 in the nucleus. Depending on its subcellular localization, the exosome interacts with different cofactors and RNA substrates. In the cytoplasm, Exo10 associates with the SKI complex via Ski7, while in the nucleus, Exo11 interacts with the TRAMP complex. Within the nucleolus, the exosome participates in rRNA processing, facilitated by Mtr4-dependent adaptors Utp18 and Nop53. In this article, we have performed a comprehensive study that addresses the targeting mechanism and precise subcellular localization of all members of the Exo11 complex. We observed a high concentration of all Exo11 subunits in the nucleolus and identified the importins Srp1 (α) and Kap95 (β) as responsible for the nuclear import of Exo9 subunits. Notably, Exo9 subunits localization was not significantly disrupted in the simultaneous absence of NLS-containing subunits Rrp6 and Rrp44, suggesting redundant nuclear import pathways for Exo9. Additionally, we show evidence that Ski7 may play a role in the Exo9 retention in the cytoplasm. To explore the exosome subnucleolar localization, we compared Rrp43 with nuclear exosome cofactors and show that it is enriched in the same nucleolar region as Mtr4 and Nop53. In conclusion, our findings provide a detailed characterization of Exo11 distribution, highlight the primary nuclear import mechanisms for Exo9, and reveal the specific localization of the exosome within the granular component of the yeast nucleolus, suggesting a spatial regulation of the RNA-processing pathway.
Collapse
Affiliation(s)
- Valdir Gomes Neto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
- MCD (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Leidy Paola P Cepeda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
| | - Bruno R S Queiroz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
| | - Sylvain Cantaloube
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | | | - Thomas Mangeat
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Benjamin Albert
- MCD (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Olivier Gadal
- MCD (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
3
|
Fischer P, Thoms M, Lau B, Denk T, Kuvshinova M, Berninghausen O, Flemming D, Hurt E, Beckmann R. H/ACA snR30 snoRNP guides independent 18S rRNA subdomain formation. Nat Commun 2025; 16:4720. [PMID: 40399280 DOI: 10.1038/s41467-025-59656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/25/2025] [Indexed: 05/23/2025] Open
Abstract
Ribosome biogenesis follows a cascade of pre-rRNA folding and processing steps, coordinated with ribosomal protein incorporation. Nucleolar 90S pre-ribosomes are well-described stable intermediates, composed of pre-18S rRNA, ribosomal S-proteins, U3 snoRNA, and ~70 assembly factors. However, how numerous snoRNAs control pre-rRNA modification and folding during early maturation events remains unclear. We identify snR30 (human U17), the only essential H/ACA snoRNA in yeast, which binds with Cbf5-Gar1-Nop10-Nhp2 to a pre-18S rRNA subdomain containing platform helices and ES6 of the 40S central domain. Integration into the 90S is blocked by RNA hybridization with snR30. The snoRNP complex coordinates the recruitment of early assembly factors Krr1-Utp23-Kri1 and ribosomal proteins uS11-uS15, enabling isolated subdomain assembly. Krr1-dependent release of snR30 culminates in integration of the platform into the 90S. Our study reveals the essential role of snR30 in chaperoning central domain formation as a discrete assembly unit externalized from the pre-ribosomal core.
Collapse
MESH Headings
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/genetics
- Humans
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- RNA Precursors/metabolism
- RNA Precursors/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Protein Binding
Collapse
Affiliation(s)
- Paulina Fischer
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Matthias Thoms
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Benjamin Lau
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg, Germany
| | - Timo Denk
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | | | - Otto Berninghausen
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Dirk Flemming
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Huang J, Tong L. Molecular insights into the overall architecture of human rixosome. Nat Commun 2025; 16:3288. [PMID: 40195365 PMCID: PMC11976907 DOI: 10.1038/s41467-025-58732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
Rixosome is a conserved, multi-subunit protein complex that has critical roles in ribosome biogenesis and silencing of Polycomb target genes. The subunits of human rixosome include PELP1, WDR18, TEX10, LAS1L and NOL9, with LAS1L providing the endoribonuclease activity and NOL9 the RNA 5' kinase activity. We report here cryo-EM structures of the human PELP1-WDR18-TEX10 and LAS1L-NOL9 complexes and a lower-resolution model of the human PELP1-WDR18-LAS1L complex. The structures reveal the overall organization of the human rixosome core scaffold of PELP1-WDR18-TEX10-LAS1L and indicate how the LAS1L-NOL9 endonuclease/kinase catalytic module is recruited to this core scaffold. Each TEX10 molecule has two regions of contact with WDR18, while the helix at the C terminus of WDR18 interacts with the helical domain of LAS1L. The structural observations are supported by our mutagenesis studies. Mutations in both WDR18-TEX10 contact regions can block the binding of TEX10, while truncation of the C-terminal helix of WDR18 can abolish the binding of LAS1L. The structures also reveal substantial conformational differences for TEX10 between the PELP1-WDR18-TEX10 complex alone and that in complex with pre-ribosome.
Collapse
Affiliation(s)
- Ji Huang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Hurtig JE, Stuart CJ, van Hoof A. Independent neofunctionalization of Dxo1 in Saccharomyces and Candida led to 25S rRNA processing function. RNA (NEW YORK, N.Y.) 2024; 30:1634-1645. [PMID: 39332835 PMCID: PMC11571810 DOI: 10.1261/rna.080210.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Eukaryotic genomes typically encode one member of the DXO/Dxo1/Rai1 family of enzymes, which can hydrolyze the 5' ends of RNAs with a variety of structures that deviate from the canonical 7mGpppN. In contrast, the Saccharomyces genome encodes two family members and the second copy, Dxo1, is a distributive 5' exoribonuclease that is required for the final maturation of the 5' end of 25S rRNA from a 25S' precursor. Here we show that this 25S rRNA maturation function is not conserved across kingdoms, but arose in the budding yeasts. Interestingly, the origin of 25S processing capacity coincides with the duplication of this gene, and this capacity is absent in the nonduplicated genes. Strikingly, two different clades of budding yeasts have undergone parallel evolution: Both duplicated their DXO/Dxo1/Rai1 gene, and in both cases, one copy gained the 25S processing function. This was accompanied by many parallel sequence changes, a remarkable case of reproducible neofunctionalization.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Catherine J Stuart
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Li Y, Yang Y, Sears RC, Dai MS, Sun XX. USP36 SUMOylates Las1L and Promotes Its Function in Pre-Ribosomal RNA ITS2 Processing. CANCER RESEARCH COMMUNICATIONS 2024; 4:2835-2845. [PMID: 39356143 PMCID: PMC11523043 DOI: 10.1158/2767-9764.crc-24-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
Ribosome biogenesis is a highly regulated cellular process requiring a large cohort of accessory factors to ensure the accurate production of ribosomes. Dysregulation of ribosome biogenesis is associated with the development of various human diseases, including cancer. The Las1L-Nol9 endonuclease-kinase complex is essential for the cleavage of the rRNA internal transcribed spacer 2 (ITS2), the phosphorylation of the 5'-hydroxyl end of the resulting precursor, and, thus, the maturation of the 60S ribosome. However, how the Las1L-Nol9 complex is regulated in cells is unclear. In this study, we report that the nucleolar ubiquitin-specific protease USP36 is a novel regulator of the Las1L-Nol9 complex. USP36 interacts with both Las1L and Nol9 and regulates their stability via deubiquitination. Intriguingly, USP36 also mediates the SUMOylation of Las1L, mainly at lysine (K) 565. Mutating K565 to arginine (R) does not affect the levels of Las1L and the formation of the Las1L-Nol9 complex, but abolishes its function in ITS2 processing, as unlike wild-type Las1L, the K565R mutant failed to rescue the defects in the ITS2 processing induced by the knockdown of endogenous Las1L. These results suggest that USP36-mediated Las1L SUMOylation is critical for ITS2 processing and that USP36 plays a critical role in ribosome biogenesis by regulating the Las1L-Nol9 complex. SIGNIFICANCE This study identifies USP36 as a deubiquitinating and small ubiquitin-like modifier ligase dual-function enzyme to mediate Las1L deubiquitination and SUMOylation. Las1L SUMOylation at K565 plays a critical role in pre-rRNA ITS2 processing. Thus, our study reveals a novel downstream pathway for USP36-regulated ribosome biogenesis.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Yunhan Yang
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
7
|
Noguchi K, Suzuki H, Abe R, Horiuchi K, Onoguchi-Mizutani R, Akimitsu N, Ogawa S, Akiyama T, Ike Y, Ino Y, Kimura Y, Ryo A, Doi H, Tanaka F, Suzuki Y, Toyoda A, Yamaguchi Y, Takahashi H. Multi-omics analysis using antibody-based in situ biotinylation technique suggests the mechanism of Cajal body formation. Cell Rep 2024; 43:114734. [PMID: 39283744 DOI: 10.1016/j.celrep.2024.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/30/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Membrane-less subcellular compartments play important roles in various cellular functions. Although techniques exist to identify components of cellular bodies, a comprehensive method for analyzing both static and dynamic states has not been established. Here, we apply an antibody-based in situ biotinylation proximity-labeling technique to identify components of static and dynamic nuclear bodies. Using this approach, we comprehensively identify DNA, RNA, and protein components of Cajal bodies (CBs) and then clarify their interactome. By inhibiting transcription, we capture dynamic changes in CBs. Our analysis reveals that nascent small nuclear RNAs (snRNAs) transcribed in CBs contribute to CB formation by assembling RNA-binding proteins, including frontotemporal dementia-related proteins, RNA-binding motif proteins, and heterogeneous nuclear ribonucleoproteins.
Collapse
Affiliation(s)
- Keisuke Noguchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Keiko Horiuchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Rena Onoguchi-Mizutani
- R&D Department, Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nobuyoshi Akimitsu
- R&D Department, Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shintaro Ogawa
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tomohiko Akiyama
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yoko Ike
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yoko Ino
- Advance Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan
| | - Yayoi Kimura
- Advance Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan; Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8501, Japan.
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
8
|
An W, Yan Y, Ye K. High resolution landscape of ribosomal RNA processing and surveillance. Nucleic Acids Res 2024; 52:10630-10644. [PMID: 38994562 PMCID: PMC11417381 DOI: 10.1093/nar/gkae606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Ribosomal RNAs are processed in a complex pathway. We profiled rRNA processing intermediates in yeast at single-molecule and single-nucleotide levels with circularization, targeted amplification and deep sequencing (CircTA-seq), gaining significant mechanistic insights into rRNA processing and surveillance. The long form of the 5' end of 5.8S rRNA is converted to the short form and represents an intermediate of a unified processing pathway. The initial 3' end processing of 5.8S rRNA involves trimming by Rex1 and Rex2 and Trf4-mediated polyadenylation. The 3' end of 25S rRNA is formed by sequential digestion by four Rex proteins. Intermediates with an extended A1 site are generated during 5' degradation of aberrant 18S rRNA precursors. We determined precise polyadenylation profiles for pre-rRNAs and show that the degradation efficiency of polyadenylated 20S pre-rRNA critically depends on poly(A) lengths and degradation intermediates released from the exosome are often extensively re-polyadenylated.
Collapse
MESH Headings
- RNA Processing, Post-Transcriptional
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- RNA Precursors/metabolism
- RNA Precursors/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 18S/genetics
- Polyadenylation
- RNA, Fungal/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- Exosome Multienzyme Ribonuclease Complex/metabolism
- Exosome Multienzyme Ribonuclease Complex/genetics
- High-Throughput Nucleotide Sequencing
- RNA Stability
Collapse
Affiliation(s)
- Weidong An
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxiao Yan
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Bohl V, Hollmann NM, Melzer T, Katikaridis P, Meins L, Simon B, Flemming D, Sinning I, Hennig J, Mogk A. The Listeria monocytogenes persistence factor ClpL is a potent stand-alone disaggregase. eLife 2024; 12:RP92746. [PMID: 38598269 PMCID: PMC11006417 DOI: 10.7554/elife.92746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.
Collapse
Affiliation(s)
- Valentin Bohl
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Nele Merret Hollmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Tobias Melzer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Lena Meins
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
- Chair of Biochemistry IV, Biophysical Chemistry, University of BayreuthBayreuthGermany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| |
Collapse
|
10
|
Mitterer V, Hamze H, Kunowska N, Stelzl U, Henras A, Hurt E. The RNA helicase Dbp10 coordinates assembly factor association with PTC maturation during ribosome biogenesis. Nucleic Acids Res 2024; 52:1975-1987. [PMID: 38113283 PMCID: PMC10899779 DOI: 10.1093/nar/gkad1206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
During ribosome biogenesis a plethora of assembly factors and essential enzymes drive the unidirectional maturation of nascent pre-ribosomal subunits. The DEAD-box RNA helicase Dbp10 is suggested to restructure pre-ribosomal rRNA of the evolving peptidyl-transferase center (PTC) on nucleolar ribosomal 60S assembly intermediates. Here, we show that point mutations within conserved catalytic helicase-core motifs of Dbp10 yield a dominant-lethal growth phenotype. Such dbp10 mutants, which stably associate with pre-60S intermediates, impair pre-60S biogenesis at a nucleolar stage prior to the release of assembly factor Rrp14 and stable integration of late nucleolar factors such as Noc3. Furthermore, the binding of the GTPase Nug1 to particles isolated directly via mutant Dbp10 bait proteins is specifically inhibited. The N-terminal domain of Nug1 interacts with Dbp10 and the methyltransferase Spb1, whose pre-60S incorporation is also reduced in absence of functional Dbp10 resulting in decreased methylation of 25S rRNA nucleotide G2922. Our data suggest that Dbp10's helicase activity generates the necessary framework for assembly factor docking thereby permitting PTC rRNA methylation and the progression of pre-60S maturation.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Hussein Hamze
- Molecular, Cellular and Developmental Biology Unit (MCD), Center for Integrative Biology (CBI), CNRS, University of Toulouse, 31062 Toulouse, France
| | - Natalia Kunowska
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Center for Integrative Biology (CBI), CNRS, University of Toulouse, 31062 Toulouse, France
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Ma B, Liu H, Xiu ZH, Yang HH, Wang H, Wang Y, Tan BC. Defective kernel 58 encodes an Rrp15p domain-containing protein essential to ribosome biogenesis and seed development in maize. THE NEW PHYTOLOGIST 2024; 241:1662-1675. [PMID: 38058237 DOI: 10.1111/nph.19460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Ribosome biogenesis is a highly dynamic and orchestrated process facilitated by hundreds of ribosomal biogenesis factors and small nucleolar RNAs. While many of the advances are derived from studies in yeast, ribosome biogenesis remains largely unknown in plants despite its importance to plant growth and development. Through characterizing the maize (Zea mays) defective kernel and embryo-lethal mutant dek58, we show that DEK58 encodes an Rrp15p domain-containing protein with 15.3% identity to yeast Rrp15. Over-expression of DEK58 rescues the mutant phenotype. DEK58 is localized in the nucleolus. Ribosome profiling and RNA gel blot analyses show that the absence of DEK58 reduces ribosome assembly and impedes pre-rRNA processing, accompanied by the accumulation of nearly all the pre-rRNA processing intermediates and the production of an aberrant processing product P-25S*. DEK58 interacts with ZmSSF1, a maize homolog of the yeast Ssf1 in the 60S processome. DEK58 and ZmSSF1 interact with ZmCK2α, a putative component of the yeast UTP-C complex involved in the small ribosomal subunit processome. These results demonstrate that DEK58 is essential to seed development in maize. It functions in the early stage of pre-rRNA processing in ribosome biogenesis, possibly through interacting with ZmSSF1 and ZmCK2α in maize.
Collapse
Affiliation(s)
- Bing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hui Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhi-Hui Xiu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Huan-Huan Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yong Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
12
|
Chen J, Chen H, Li S, Lin X, Hu R, Zhang K, Liu L. Structural and mechanistic insights into ribosomal ITS2 RNA processing by nuclease-kinase machinery. eLife 2024; 12:RP86847. [PMID: 38180340 PMCID: PMC10942766 DOI: 10.7554/elife.86847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Precursor ribosomal RNA (pre-rRNA) processing is a key step in ribosome biosynthesis and involves numerous RNases. A HEPN (higher eukaryote and prokaryote nucleotide binding) nuclease Las1 and a polynucleotide kinase Grc3 assemble into a tetramerase responsible for rRNA maturation. Here, we report the structures of full-length Saccharomyces cerevisiae and Cyberlindnera jadinii Las1-Grc3 complexes, and C. jadinii Las1. The Las1-Grc3 structures show that the central coiled-coil domain of Las1 facilitates pre-rRNA binding and cleavage, while the Grc3 C-terminal loop motif directly binds to the HEPN active center of Las1 and regulates pre-rRNA cleavage. Structural comparison between Las1 and Las1-Grc3 complex exhibits that Grc3 binding induces conformational rearrangements of catalytic residues associated with HEPN nuclease activation. Biochemical assays identify that Las1 processes pre-rRNA at the two specific sites (C2 and C2'), which greatly facilitates rRNA maturation. Our structures and specific pre-rRNA cleavage findings provide crucial insights into the mechanism and pathway of pre-rRNA processing in ribosome biosynthesis.
Collapse
Affiliation(s)
- Jiyun Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Hong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Xiaofeng Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Rong Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen UniversityXiamenChina
| |
Collapse
|
13
|
Thoms M, Lau B, Cheng J, Fromm L, Denk T, Kellner N, Flemming D, Fischer P, Falquet L, Berninghausen O, Beckmann R, Hurt E. Structural insights into coordinating 5S RNP rotation with ITS2 pre-RNA processing during ribosome formation. EMBO Rep 2023; 24:e57984. [PMID: 37921038 DOI: 10.15252/embr.202357984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023] Open
Abstract
The rixosome defined in Schizosaccharomyces pombe and humans performs diverse roles in pre-ribosomal RNA processing and gene silencing. Here, we isolate and describe the conserved rixosome from Chaetomium thermophilum, which consists of two sub-modules, the sphere-like Rix1-Ipi3-Ipi1 and the butterfly-like Las1-Grc3 complex, connected by a flexible linker. The Rix1 complex of the rixosome utilizes Sda1 as landing platform on nucleoplasmic pre-60S particles to wedge between the 5S rRNA tip and L1-stalk, thereby facilitating the 180° rotation of the immature 5S RNP towards its mature conformation. Upon rixosome positioning, the other sub-module with Las1 endonuclease and Grc3 polynucleotide-kinase can reach a strategic position at the pre-60S foot to cleave and 5' phosphorylate the nearby ITS2 pre-rRNA. Finally, inward movement of the L1 stalk permits the flexible Nop53 N-terminus with its AIM motif to become positioned at the base of the L1-stalk to facilitate Mtr4 helicase-exosome participation for completing ITS2 removal. Thus, the rixosome structure elucidates the coordination of two central ribosome biogenesis events, but its role in gene silencing may adapt similar strategies.
Collapse
Affiliation(s)
- Matthias Thoms
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin Lau
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lisa Fromm
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Timo Denk
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nikola Kellner
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Paulina Fischer
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Laurent Falquet
- University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | | | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
14
|
LaPeruta AJ, Hedayati S, Micic J, Fitzgerald F, Kim D, Oualline G, Woolford JL. Yeast ribosome biogenesis factors Puf6 and Nog2 and ribosomal proteins uL2 and eL43 act in concert to facilitate the release of nascent large ribosomal subunits from the nucleolus. Nucleic Acids Res 2023; 51:11277-11290. [PMID: 37811893 PMCID: PMC10639061 DOI: 10.1093/nar/gkad794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Large ribosomal subunit precursors (pre-LSUs) are primarily synthesized in the nucleolus. At an undetermined step in their assembly, they are released into the nucleoplasm. Structural models of yeast pre-LSUs at various stages of assembly have been collected using cryo-EM. However, which cryo-EM model is closest to the final nucleolar intermediate of the LSU has yet to be determined. To elucidate the mechanisms of the release of pre-LSUs from the nucleolus, we assayed effects of depleting or knocking out two yeast ribosome biogenesis factors (RiBi factors), Puf6 and Nog2, and two ribosomal proteins, uL2 and eL43. These proteins function during or stabilize onto pre-LSUs between the late nucleolar stages to early nucleoplasmic stages of ribosome biogenesis. By characterizing the phenotype of these four mutants, we determined that a particle that is intermediate between the cryo-EM model State NE1 and State NE2 likely represents the final nucleolar assembly intermediate of the LSU. We conclude that the release of the RiBi factors Nip7, Nop2 and Spb1 and the subsequent stabilization of rRNA domains IV and V may be key triggers for the release of pre-LSUs from the nucleolus.
Collapse
Affiliation(s)
- Amber J LaPeruta
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Stefanie Hedayati
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Fiona Fitzgerald
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - David Kim
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Grace Oualline
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Lau B, Huang Z, Kellner N, Niu S, Berninghausen O, Beckmann R, Hurt E, Cheng J. Mechanism of 5S RNP recruitment and helicase-surveilled rRNA maturation during pre-60S biogenesis. EMBO Rep 2023; 24:e56910. [PMID: 37129998 PMCID: PMC10328080 DOI: 10.15252/embr.202356910] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Ribosome biogenesis proceeds along a multifaceted pathway from the nucleolus to the cytoplasm that is extensively coupled to several quality control mechanisms. However, the mode by which 5S ribosomal RNA is incorporated into the developing pre-60S ribosome, which in humans links ribosome biogenesis to cell proliferation by surveillance by factors such as p53-MDM2, is poorly understood. Here, we report nine nucleolar pre-60S cryo-EM structures from Chaetomium thermophilum, one of which clarifies the mechanism of 5S RNP incorporation into the early pre-60S. Successive assembly states then represent how helicases Dbp10 and Spb4, and the Pumilio domain factor Puf6 act in series to surveil the gradual folding of the nearby 25S rRNA domain IV. Finally, the methyltransferase Spb1 methylates a universally conserved guanine nucleotide in the A-loop of the peptidyl transferase center, thereby licensing further maturation. Our findings provide insight into the hierarchical action of helicases in safeguarding rRNA tertiary structure folding and coupling to surveillance mechanisms that culminate in local RNA modification.
Collapse
Affiliation(s)
- Benjamin Lau
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and MetabolismFudan UniversityShanghaiChina
| | - Nikola Kellner
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | | | | | - Roland Beckmann
- Gene CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and MetabolismFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Covalent targeting the LAS1-NOL9 axis for selective treatment in NPM1 mutant acute myeloid leukemia. Pharmacol Res 2023; 189:106700. [PMID: 36796466 DOI: 10.1016/j.phrs.2023.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Patients with NPM1 gene mutation-associated acute myeloid leukemia (AML), particularly those over the age of 60, have no viable targeted therapeutic choices. In this study, we identified HEN-463, a sesquiterpene lactone derivative specific targets AML with this gene mutation. This compound inhibits the interaction of LAS1-NOL9 by covalently binding to the C264 site of the ribosomal biogenesis-related protein LAS1, which translocates the LAS1 to the cytoplasm, thereby inhibiting the maturation of 28 S rRNA. This has a profound effect on the NPM1-MDM2-p53 pathway and ultimately results in the stabilization of p53. Combining this treatment with the XPO1 inhibitor Selinexor (Sel) can ideally preserve the stabilized p53 in the nucleus, considerably enhancing the efficacy of HEN-463 and addressing Sel's drug resistance. Patients with AML over the age of 60 who possess the NPM1 mutation have an unusually elevated level of LAS1, which has a significant impact on their prognosis. In NPM1-mutant AML cells, decreased LAS1 expression promotes proliferation inhibition, apoptosis, cell differentiation, and cell cycle arrest. This suggests that it may be a therapeutic target for this kind of blood cancer, especially in patients over the age of 60.
Collapse
|
18
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Overbeck JH, Stelzig D, Fuchs AL, Wurm JP, Sprangers R. Observation of conformational changes that underlie the catalytic cycle of Xrn2. Nat Chem Biol 2022; 18:1152-1160. [PMID: 36008487 PMCID: PMC9512700 DOI: 10.1038/s41589-022-01111-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
Nuclear magnetic resonance (NMR) methods that quantitatively probe motions on molecular and atomic levels have propelled the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. In this work, we studied the structure and dynamics of the essential 100-kDa eukaryotic 5'→3' exoribonuclease Xrn2. A combination of complementary fluorine and methyl-TROSY NMR spectroscopy reveals that the apo enzyme is highly dynamic around the catalytic center. These observed dynamics are in agreement with a transition of the enzyme from the ground state into a catalytically competent state. We show that the conformational equilibrium in Xrn2 shifts substantially toward the active state in the presence of substrate and magnesium. Finally, our data reveal that the dynamics in Xrn2 correlate with the RNA degradation rate, as a mutation that attenuates motions also affects catalytic activity. In that light, our results stress the importance of studies that go beyond static structural information.
Collapse
Affiliation(s)
- Jan H Overbeck
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - David Stelzig
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Anna-Lisa Fuchs
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
- Department of Informatics, TU Munich, Garching, Germany
| | - Jan Philip Wurm
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
20
|
Liu H, Xiu Z, Yang H, Ma Z, Yang D, Wang H, Tan BC. Maize Shrek1 encodes a WD40 protein that regulates pre-rRNA processing in ribosome biogenesis. THE PLANT CELL 2022; 34:4028-4044. [PMID: 35867001 PMCID: PMC9516035 DOI: 10.1093/plcell/koac216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Ribosome biogenesis is a fundamental and highly orchestrated process that involves hundreds of ribosome biogenesis factors. Despite advances that have been made in yeast, the molecular mechanism of ribosome biogenesis remains largely unknown in plants. We uncovered a WD40 protein, Shrunken and Embryo Defective Kernel 1 (SHREK1), and showed that it plays a crucial role in ribosome biogenesis and kernel development in maize (Zea mays). The shrek1 mutant shows an aborted embryo and underdeveloped endosperm and embryo-lethal in maize. SHREK1 localizes mainly to the nucleolus and accumulates to high levels in the seed. Depleting SHREK1 perturbs pre-rRNA processing and causes imbalanced profiles of mature rRNA and ribosome. The expression pattern of ribosomal-related genes is significantly altered in shrek1. Like its yeast (Saccharomyces cerevisiae) ortholog Periodic tryptophan protein 1 (PWP1), SHREK1 physically interacts with ribosomal protein ZmRPL7a, a transient component of the PWP1-subcomplex involved in pre-rRNA processing in yeast. Additionally, SHREK1 may assist in the A3 cleavage of the pre-rRNA in maize by interacting with the nucleolar protein ZmPOP4, a maize homolog of the yeast RNase mitochondrial RNA-processing complex subunit. Overall, our work demonstrates a vital role of SHREK1 in pre-60S ribosome maturation, and reveals that impaired ribosome function accounts for the embryo lethality in shrek1.
Collapse
Affiliation(s)
- Hui Liu
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Zhihui Xiu
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Huanhuan Yang
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Zhaoxing Ma
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Dalin Yang
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | | |
Collapse
|
21
|
Transcriptomic analysis of ribosome biogenesis and pre-rRNA processing during growth stress in Entamoeba histolytica. Exp Parasitol 2022; 239:108308. [PMID: 35718007 DOI: 10.1016/j.exppara.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Ribosome biogenesis, a multi-step process involving transcription, modification, folding and processing of rRNA, is the major consumer of cellular energy. It involves sequential assembly of ribosomal proteins (RP)s via more than 200 ribogenesis factors. Unlike model organisms where transcription of rRNA and RP genes slows down during stress, in Entamoeba histolytica, pre-rRNA synthesis continues, and unprocessed pre-rRNA accumulates. Northern hybridization from different spacer regions depicted the accumulation of unprocessed intermediates during stress. To gain insight into the vast repertoire of ribosome biogenesis factors and understand the major components playing role during stress we computationally identified ribosome biogenesis factors in E. histolytica. Of the ∼279 Saccharomyces cerevisiae proteins, we could only find 188 proteins in E. histolytica. Some of the proteins missing in E. histolytica were also missing in humans. A number of proteins represented by multiple genes in S. cerevisiae had a single copy in E. histolytica. Interestingly E. histolytica lacked mitochondrial ribosome biogenesis factors and had far less RNase components compared to S. cerevisiae. Transcriptomic studies revealed the differential regulation of ribosomal factors both in serum starved and RRP6 down-regulation conditions. These included the NEP1 and TSR3 proteins that chemically modify 18S-rRNA. Pre-rRNA precursors accumulate upon downregulation of the latter proteins in S. cerevisiae and humans. These data reveal the major factors that regulate pre-rRNA processing during stress in E. histolytica and provide the first complete repertoire of ribosome biogenesis factors in this early-branching protist.
Collapse
|
22
|
Hurtig JE, van Hoof A. Yeast Dxo1 is required for 25S rRNA maturation and acts as a transcriptome-wide distributive exonuclease. RNA (NEW YORK, N.Y.) 2022; 28:657-667. [PMID: 35140172 PMCID: PMC9014881 DOI: 10.1261/rna.078952.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
The Dxo1/Rai1/DXO family of decapping and exonuclease enzymes can catalyze the in vitro removal of chemically diverse 5' ends from RNA. Specifically, these enzymes act poorly on RNAs with a canonical 7mGpppN cap, but instead prefer RNAs with a triphosphate, monophosphate, hydroxyl, or nonconventional cap. In each case, these enzymes generate an RNA with a 5' monophosphate, which is then thought to be further degraded by Rat1/Xrn1 5' exoribonucleases. For most Dxo1/Rai1/DXO family members, it is not known which of these activities is most important in vivo. Here we describe the in vivo function of the poorly characterized cytoplasmic family member, yeast Dxo1. Using RNA-seq of 5' monophosphate ends, we show that Dxo1 can act as a distributive exonuclease, removing a few nucleotides from endonuclease or decapping products. We also show that Dxo1 is required for the final 5' end processing of 25S rRNA, and that this is the primary role of Dxo1. While Dxo1/Rai1/DXO members were expected to act upstream of Rat1/Xrn1, this order is reversed in 25S rRNA processing, with Dxo1 acting downstream from Rat1. Such a hand-off from a processive to a distributive exonuclease may be a general phenomenon in the precise maturation of RNA ends.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Ambro van Hoof
- Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
23
|
Ismail S, Flemming D, Thoms M, Gomes-Filho JV, Randau L, Beckmann R, Hurt E. Emergence of the primordial pre-60S from the 90S pre-ribosome. Cell Rep 2022; 39:110640. [PMID: 35385737 PMCID: PMC8994135 DOI: 10.1016/j.celrep.2022.110640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
Synthesis of ribosomes begins in the nucleolus with formation of the 90S pre-ribosome, during which the pre-40S and pre-60S pathways diverge by pre-rRNA cleavage. However, it remains unclear how, after this uncoupling, the earliest pre-60S subunit continues to develop. Here, we reveal a large-subunit intermediate at the beginning of its construction when still linked to the 90S, the precursor to the 40S subunit. This primordial pre-60S is characterized by the SPOUT domain methyltransferase Upa1-Upa2, large α-solenoid scaffolds, Mak5, one of several RNA helicases, and two small nucleolar RNA (snoRNAs), C/D box snR190 and H/ACA box snR37. The emerging pre-60S does not efficiently disconnect from the 90S pre-ribosome in a dominant mak5 helicase mutant, allowing a 70-nm 90S-pre-60S bipartite particle to be visualized by electron microscopy. Our study provides insight into the assembly pathway when the still-connected nascent 40S and 60S subunits are beginning to separate.
Collapse
Affiliation(s)
- Sherif Ismail
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | | | - Lennart Randau
- Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Nepomuceno-Mejía T, Florencio-Martínez LE, Pineda-García I, Martínez-Calvillo S. Identification of factors involved in ribosome assembly in the protozoan parasite Leishmania major. Acta Trop 2022; 228:106315. [PMID: 35041807 DOI: 10.1016/j.actatropica.2022.106315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 01/23/2023]
Abstract
Formation of the ribosome subunits is a complex and progressive cellular process that requires a plethora of non-ribosomal transient proteins and diverse small nucleolar RNAs, which are involved from the synthesis of the precursor ribosomal RNA in the nucleolus to the final ribosome processing steps in the cytoplasm. Employing PTP-tagged Nop56 as a fishing bait to capture pre-ribosomal particles by tandem affinity purifications, mass spectrometry assays and a robust in silico analysis, here we describe tens of ribosome assembly factors involved in the synthesis of both ribosomal subunits in the human pathogen Leishmania major, where the knowledge about ribosomal biogenesis is scarce. We identified a large number of proteins that participate in most stages of ribosome biogenesis in yeast and mammals. Among them, we found several putative orthologs of factors not previously identified in L. major, such as t-Utp4, t-Utp5, Rrp7, Nop9 and Nop15. Even more interesting is the fact that we identified several novel candidates that could participate in the assembly of the atypical 60S subunit in L. major, which contains eight different rRNA species. As these proteins do not seem to have a human counterpart, they have potential as targets for novel anti-leishmanial drugs. Also, numerous proteins whose function is not apparently linked to ribosome assembly were copurified, suggesting that the L. major nucleolus is a multifunctional nuclear body.
Collapse
|
25
|
Zhou H, Stein CB, Shafiq TA, Shipkovenska G, Kalocsay M, Paulo JA, Zhang J, Luo Z, Gygi SP, Adelman K, Moazed D. Rixosomal RNA degradation contributes to silencing of Polycomb target genes. Nature 2022; 604:167-174. [PMID: 35355014 PMCID: PMC8986528 DOI: 10.1038/s41586-022-04598-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are histone-modifying and -binding complexes that mediate the formation of facultative heterochromatin and are required for silencing of developmental genes and maintenance of cell fate1–3. Multiple pathways of RNA decay work together to establish and maintain heterochromatin in fission yeast, including a recently identified role for a conserved RNA-degradation complex known as the rixosome or RIX1 complex4–6. Whether RNA degradation also has a role in the stability of mammalian heterochromatin remains unknown. Here we show that the rixosome contributes to silencing of many Polycomb targets in human cells. The rixosome associates with human PRC complexes and is enriched at promoters of Polycomb target genes. Depletion of either the rixosome or Polycomb results in accumulation of paused and elongating RNA polymerase at Polycomb target genes. We identify point mutations in the RING1B subunit of PRC1 that disrupt the interaction between PRC1 and the rixosome and result in diminished silencing, suggesting that direct recruitment of the rixosome to chromatin is required for silencing. Finally, we show that the RNA endonuclease and kinase activities of the rixosome and the downstream XRN2 exoribonuclease, which degrades RNAs with 5′ monophosphate groups generated by the rixosome, are required for silencing. Our findings suggest that rixosomal degradation of nascent RNA is conserved from fission yeast to human, with a primary role in RNA degradation at facultative heterochromatin in human cells. The rixosome associates with Polycomb repressive complexes and chromatin and has a role in silencing of Polycomb target gene expression in human cells via degradation of nascent RNA transcripts.
Collapse
Affiliation(s)
- Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Chad B Stein
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tiasha A Shafiq
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gergana Shipkovenska
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marian Kalocsay
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jiuchun Zhang
- Initiative for Genome Editing and Neurodegeneration, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhenhua Luo
- Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Sailer C, Jansen J, Sekulski K, Cruz VE, Erzberger JP, Stengel F. A comprehensive landscape of 60S ribosome biogenesis factors. Cell Rep 2022; 38:110353. [PMID: 35139378 PMCID: PMC8884084 DOI: 10.1016/j.celrep.2022.110353] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/02/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023] Open
Abstract
Eukaryotic ribosome biogenesis is facilitated and regulated by numerous ribosome biogenesis factors (RBFs). High-resolution cryoelectron microscopy (cryo-EM) maps have defined the molecular interactions of RBFs during maturation, but many transient and dynamic interactions, particularly during early assembly, remain uncharacterized. Using quantitative proteomics and crosslinking coupled to mass spectrometry (XL-MS) data from an extensive set of pre-ribosomal particles, we derive a comprehensive and time-resolved interaction map of RBF engagement during 60S maturation. We localize 22 previously unmapped RBFs to specific biogenesis intermediates and validate our results by mapping the catalytic activity of the methyltransferases Bmt2 and Rcm1 to their predicted nucleolar 60S intermediates. Our analysis reveals the interaction sites for the RBFs Noc2 and Ecm1 and elucidates the interaction map and timing of 60S engagement by the DEAD-box ATPases Dbp9 and Dbp10. Our data provide a powerful resource for future studies of 60S ribosome biogenesis. In this study, Sailer et al. generate a comprehensive and precise timeline of ribosome biogenesis factor (RBF) engagement during 60S maturation and localize previously unmapped RBFs in the yeast Saccharomyces cerevisiae. Overall, their data represent an essential resource for future structural studies of large subunit ribosome biogenesis.
Collapse
Affiliation(s)
- Carolin Sailer
- Department of Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany
| | - Jasmin Jansen
- Department of Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany
| | - Kamil Sekulski
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Victor E Cruz
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Jan P Erzberger
- Department of Biophysics, UT Southwestern Medical Center - ND10.124B, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | - Florian Stengel
- Department of Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrae 10, 78457 Konstanz, Germany.
| |
Collapse
|
27
|
Moraleva AA, Deryabin AS, Rubtsov YP, Rubtsova MP, Dontsova OA. Eukaryotic Ribosome Biogenesis: The 40S Subunit. Acta Naturae 2022; 14:14-30. [PMID: 35441050 PMCID: PMC9013438 DOI: 10.32607/actanaturae.11540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
The formation of eukaryotic ribosomes is a sequential process of ribosomal precursors maturation in the nucleolus, nucleoplasm, and cytoplasm. Hundreds of ribosomal biogenesis factors ensure the accurate processing and formation of the ribosomal RNAs' tertiary structure, and they interact with ribosomal proteins. Most of what we know about the ribosome assembly has been derived from yeast cell studies, and the mechanisms of ribosome biogenesis in eukaryotes are considered quite conservative. Although the main stages of ribosome biogenesis are similar across different groups of eukaryotes, this process in humans is much more complicated owing to the larger size of the ribosomes and pre-ribosomes and the emergence of regulatory pathways that affect their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. This review addresses the key aspects of yeast and human ribosome biogenesis, using the 40S subunit as an example. The mechanisms underlying these differences are still not well understood, because, unlike yeast, there are no effective methods for characterizing pre-ribosomal complexes in humans. Understanding the mechanisms of human ribosome assembly would have an incidence on a growing number of genetic diseases (ribosomopathies) caused by mutations in the genes encoding ribosomal proteins and ribosome biogenesis factors. In addition, there is evidence that ribosome assembly is regulated by oncogenic signaling pathways, and that defects in the ribosome biogenesis are linked to the activation of tumor suppressors.
Collapse
Affiliation(s)
- A. A. Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. S. Deryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Yu. P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. P. Rubtsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
| | - O. A. Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
28
|
Mitterer V, Pertschy B. RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol 2022; 19:781-810. [PMID: 35678541 PMCID: PMC9196750 DOI: 10.1080/15476286.2022.2079890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome biogenesis involves the synthesis of ribosomal RNA (rRNA) and its stepwise folding into the unique structure present in mature ribosomes. rRNA folding starts already co-transcriptionally in the nucleolus and continues when pre-ribosomal particles further maturate in the nucleolus and upon their transit to the nucleoplasm and cytoplasm. While the approximate order of folding of rRNA subdomains is known, especially from cryo-EM structures of pre-ribosomal particles, the actual mechanisms of rRNA folding are less well understood. Both small nucleolar RNAs (snoRNAs) and proteins have been implicated in rRNA folding. snoRNAs hybridize to precursor rRNAs (pre-rRNAs) and thereby prevent premature folding of the respective rRNA elements. Ribosomal proteins (r-proteins) and ribosome assembly factors might have a similar function by binding to rRNA elements and preventing their premature folding. Besides that, a small group of ribosome assembly factors are thought to play a more active role in rRNA folding. In particular, multiple RNA helicases participate in individual ribosome assembly steps, where they are believed to coordinate RNA folding/unfolding events or the release of proteins from the rRNA. In this review, we summarize the current knowledge on mechanisms of RNA folding and on the specific function of the individual RNA helicases involved. As the yeast Saccharomyces cerevisiae is the organism in which ribosome biogenesis and the role of RNA helicases in this process is best studied, we focused our review on insights from this model organism, but also make comparisons to other organisms where applicable.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
- BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, Graz, Austria
| |
Collapse
|
29
|
Bagatelli FFM, de Luna Vitorino FN, da Cunha JPC, Oliveira CC. The ribosome assembly factor Nop53 has a structural role in the formation of nuclear pre-60S intermediates, affecting late maturation events. Nucleic Acids Res 2021; 49:7053-7074. [PMID: 34125911 PMCID: PMC8266606 DOI: 10.1093/nar/gkab494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic ribosome biogenesis is an elaborate process during which ribosomal proteins assemble with the pre-rRNA while it is being processed and folded. Hundreds of assembly factors (AF) are required and transiently recruited to assist the sequential remodeling events. One of the most intricate ones is the stepwise removal of the internal transcribed spacer 2 (ITS2), between the 5.8S and 25S rRNAs, that constitutes together with five AFs the pre-60S ‘foot’. In the transition from nucleolus to nucleoplasm, Nop53 replaces Erb1 at the basis of the foot and recruits the RNA exosome for the ITS2 cleavage and foot disassembly. Here we comprehensively analyze the impact of Nop53 recruitment on the pre-60S compositional changes. We show that depletion of Nop53, different from nop53 mutants lacking the exosome-interacting motif, not only causes retention of the unprocessed foot in late pre-60S intermediates but also affects the transition from nucleolar state E particle to subsequent nuclear stages. Additionally, we reveal that Nop53 depletion causes the impairment of late maturation events such as Yvh1 recruitment. In light of recently described pre-60S cryo-EM structures, our results provide biochemical evidence for the structural role of Nop53 rearranging and stabilizing the foot interface to assist the Nog2 particle formation.
Collapse
Affiliation(s)
- Felipe F M Bagatelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Francisca N de Luna Vitorino
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, SP 05503-900, Brazil.,Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Julia P C da Cunha
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, SP 05503-900, Brazil.,Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
30
|
Liao H, Gaur A, Mauvais C, Denicourt C. p53 induces a survival transcriptional response after nucleolar stress. Mol Biol Cell 2021; 32:ar3. [PMID: 34319761 PMCID: PMC8684752 DOI: 10.1091/mbc.e21-05-0251] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Accumulating evidence indicates that increased ribosome biogenesis is a hallmark of cancer. It is well established that inhibition of any steps of ribosome biogenesis induces nucleolar stress characterized by p53 activation and subsequent cell cycle arrest and/or cell death. However, cells derived from solid tumors have demonstrated different degrees of sensitivity to ribosome biogenesis inhibition, where cytostatic effects rather than apoptosis are observed. The reason for this is not clear, and the p53-specific transcriptional program induced after nucleolar stress has not been previously investigated. Here we demonstrate that blocking rRNA synthesis by depletion of essential rRNA processing factors such as LAS1L, PELP1, and NOP2 or by inhibition of RNA Pol I with the specific small molecule inhibitor CX-5461, mainly induce cell cycle arrest accompanied by autophagy in solid tumor–derived cell lines. Using gene expression analysis, we find that p53 orchestrates a transcriptional program involved in promoting metabolic remodeling and autophagy to help cells survive under nucleolar stress. Importantly, our study demonstrates that blocking autophagy significantly sensitizes cancer cells to RNA Pol I inhibition by CX-5461, suggesting that interfering with autophagy should be considered a strategy to heighten the responsiveness of ribosome biogenesis–targeted therapies in p53-positive tumors.
Collapse
Affiliation(s)
- Han Liao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Anushri Gaur
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Claire Mauvais
- Current address: UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| |
Collapse
|
31
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Eshraky KE, Gorka M, Cheong BE, Jimenez-Posada EV, Walther D, Skirycz A, Roessner U, Kopka J, Pereira Firmino AA. Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:6160. [PMID: 34200446 PMCID: PMC8201131 DOI: 10.3390/ijms22116160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Olga Beine-Golovchuk
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Heidelberg University, Biochemie-Zentrum, Nuclear Pore Complex and Ribosome Assembly, 69120 Heidelberg, Germany
| | - Yin-Chen Hsieh
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Institute for Arctic and Marine Biology, UiT Arctic University of Norway, 9037 Tromsø, Norway
| | - Kheloud El Eshraky
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Michal Gorka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Bo-Eng Cheong
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Malaysia
| | - Erika V. Jimenez-Posada
- Grupo de Biotecnología-Productos Naturales, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
- Emerging Infectious Diseases and Tropical Medicine Research Group—Sci-Help, Pereira 660009, Colombia
| | - Dirk Walther
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Aleksandra Skirycz
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Alexandre Augusto Pereira Firmino
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| |
Collapse
|
32
|
Frazier MN, Pillon MC, Kocaman S, Gordon J, Stanley RE. Structural overview of macromolecular machines involved in ribosome biogenesis. Curr Opin Struct Biol 2021; 67:51-60. [PMID: 33099228 PMCID: PMC8058114 DOI: 10.1016/j.sbi.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
The production of ribosomes is essential for ensuring the translational capacity of cells. Because of its high energy demand ribosome production is subject to stringent cellular controls. Hundreds of ribosome assembly factors are required to facilitate assembly of nascent ribosome particles with high fidelity. Many ribosome assembly factors organize into macromolecular machines that drive complex steps of the production pathway. Recent advances in structural biology, in particular cryo-EM, have provided detailed information about the structure and function of these higher order enzymatic assemblies. Here, we summarize recent structures revealing molecular insight into these macromolecular machines with an emphasis on the interplay between discrete active sites.
Collapse
Affiliation(s)
- Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Seda Kocaman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
33
|
Pillon MC, Gordon J, Frazier MN, Stanley RE. HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes. Crit Rev Biochem Mol Biol 2021; 56:88-108. [PMID: 33349060 PMCID: PMC7856873 DOI: 10.1080/10409238.2020.1856769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center. While the core HEPN fold is conserved, the organization surrounding the HEPN dimer can support large structural deviations that contribute to their specialized functions. HEPN RNases are conserved throughout evolution and include bacterial HEPN RNases such as CRISPR-Cas and toxin-antitoxin associated nucleases, as well as eukaryotic HEPN RNases that adopt large multi-component machines. Here we summarize the canonical elements of the growing HEPN RNase family and identify molecular features that influence RNase function and regulation. We explore similarities and differences between members of the HEPN RNase family and describe the current mechanisms for HEPN RNase activation and inhibition.
Collapse
Affiliation(s)
- Monica C. Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N. Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
34
|
Lacoux C, Wacheul L, Saraf K, Pythoud N, Huvelle E, Figaro S, Graille M, Carapito C, Lafontaine DLJ, Heurgué-Hamard V. The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucleic Acids Res 2020; 48:12310-12325. [PMID: 33166396 PMCID: PMC7708063 DOI: 10.1093/nar/gkaa972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.
Collapse
Affiliation(s)
- Caroline Lacoux
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Kritika Saraf
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Emmeline Huvelle
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Valérie Heurgué-Hamard
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
35
|
Lau B, Cheng J, Flemming D, La Venuta G, Berninghausen O, Beckmann R, Hurt E. Structure of the Maturing 90S Pre-ribosome in Association with the RNA Exosome. Mol Cell 2020; 81:293-303.e4. [PMID: 33326748 DOI: 10.1016/j.molcel.2020.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Ribosome assembly is catalyzed by numerous trans-acting factors and coupled with irreversible pre-rRNA processing, driving the pathway toward mature ribosomal subunits. One decisive step early in this progression is removal of the 5' external transcribed spacer (5'-ETS), an RNA extension at the 18S rRNA that is integrated into the huge 90S pre-ribosome structure. Upon endo-nucleolytic cleavage at an internal site, A1, the 5'-ETS is separated from the 18S rRNA and degraded. Here we present biochemical and cryo-electron microscopy analyses that depict the RNA exosome, a major 3'-5' exoribonuclease complex, in a super-complex with the 90S pre-ribosome. The exosome is docked to the 90S through its co-factor Mtr4 helicase, a processive RNA duplex-dismantling helicase, which strategically positions the exosome at the base of 5'-ETS helices H9-H9', which are dislodged in our 90S-exosome structures. These findings suggest a direct role of the exosome in structural remodeling of the 90S pre-ribosome to drive eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- Benjamin Lau
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jingdong Cheng
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Giuseppe La Venuta
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Otto Berninghausen
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Roland Beckmann
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Mutational Analysis of the Nsa2 N-Terminus Reveals Its Essential Role in Ribosomal 60S Subunit Assembly. Int J Mol Sci 2020; 21:ijms21239108. [PMID: 33266193 PMCID: PMC7730687 DOI: 10.3390/ijms21239108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022] Open
Abstract
The ribosome assembly factor Nsa2 is part of the Rea1-Rsa4-Nsa2 interconnected relay on nuclear pre-60S particles that is essential for 60S ribosome biogenesis. Cryo-EM structures depict Nsa2 docked via its C-terminal β-barrel domain to nuclear pre-60S particles, whereas the extended N-terminus, consisting of three α-helical segments, meanders between various 25S rRNA helices with the extreme N-terminus in close vicinity to the Nog1 GTPase center. Here, we tested whether this unappreciated proximity between Nsa2 and Nog1 is of functional importance. Our findings demonstrate that a conservative mutation, Nsa2 Q3N, abolished cell growth and impaired 60S biogenesis. Subsequent genetic and biochemical analyses verified that the Nsa2 N-terminus is required to target Nsa2 to early pre-60S particles. However, overexpression of the Nsa2 N-terminus abolished cytoplasmic recycling of the Nog1 GTPase, and both Nog1 and the Nsa2-N (1-58) construct, but not the respective Nsa2-N (1-58) Q3N mutant, were found arrested on late cytoplasmic pre-60S particles. These findings point to specific roles of the different Nsa2 domains for 60S ribosome biogenesis.
Collapse
|
37
|
Zhang W, Tian W, Gao Z, Wang G, Zhao H. Phylogenetic Utility of rRNA ITS2 Sequence-Structure under Functional Constraint. Int J Mol Sci 2020; 21:ijms21176395. [PMID: 32899108 PMCID: PMC7504139 DOI: 10.3390/ijms21176395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The crucial function of the internal transcribed spacer 2 (ITS2) region in ribosome biogenesis depends on its secondary and tertiary structures. Despite rapidly evolving, ITS2 is under evolutionary constraints to maintain the specific secondary structures that provide functionality. A link between function, structure and evolution could contribute an understanding to each other and recently has created a growing point of sequence-structure phylogeny of ITS2. Here we briefly review the current knowledge of ITS2 processing in ribosome biogenesis, focusing on the conservative characteristics of ITS2 secondary structure, including structure form, structural motifs, cleavage sites, and base-pair interactions. We then review the phylogenetic implications and applications of this structure information, including structure-guiding sequence alignment, base-pair mutation model, and species distinguishing. We give the rationale for why incorporating structure information into tree construction could improve reliability and accuracy, and some perspectives of bioinformatics coding that allow for a meaningful evolutionary character to be extracted. In sum, this review of the integration of function, structure and evolution of ITS2 will expand the traditional sequence-based ITS2 phylogeny and thus contributes to the tree of life. The generality of ITS2 characteristics may also inspire phylogenetic use of other similar structural regions.
Collapse
Affiliation(s)
- Wei Zhang
- Marine College, Shandong University, Weihai 264209, China; (Z.G.); (G.W.); (H.Z.)
- Correspondence: ; Tel.: +86-631-5688-303
| | - Wen Tian
- State Key Laboratory of Ballast Water Research, Comprehensive Technical Service Center of Jiangyin Customs, Jiangyin 214440, China;
| | - Zhipeng Gao
- Marine College, Shandong University, Weihai 264209, China; (Z.G.); (G.W.); (H.Z.)
| | - Guoli Wang
- Marine College, Shandong University, Weihai 264209, China; (Z.G.); (G.W.); (H.Z.)
| | - Hong Zhao
- Marine College, Shandong University, Weihai 264209, China; (Z.G.); (G.W.); (H.Z.)
| |
Collapse
|
38
|
Micic J, Li Y, Wu S, Wilson D, Tutuncuoglu B, Gao N, Woolford JL. Coupling of 5S RNP rotation with maturation of functional centers during large ribosomal subunit assembly. Nat Commun 2020; 11:3751. [PMID: 32719344 PMCID: PMC7385084 DOI: 10.1038/s41467-020-17534-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
The protein composition and structure of assembling 60S ribosomal subunits undergo numerous changes as pre-ribosomes transition from the nucleolus to the nucleoplasm. This includes stable anchoring of the Rpf2 subcomplex containing 5S rRNA, rpL5, rpL11, Rpf2 and Rrs1, which initially docks onto the flexible domain V of rRNA at earlier stages of assembly. In this work, we tested the function of the C-terminal domain (CTD) of Rpf2 during these anchoring steps, by truncating this extension and assaying effects on middle stages of subunit maturation. The rpf2Δ255-344 mutation affects proper folding of rRNA helices H68-70 during anchoring of the Rpf2 subcomplex. In addition, several assembly factors (AFs) are absent from pre-ribosomes or in altered conformations. Consequently, major remodeling events fail to occur: rotation of the 5S RNP, maturation of the peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), and export of assembling subunits to the cytoplasm. As assembling 60S subunits transit from the nucleolus to the nucleoplasm, they undergo significant changes in protein composition and structure. Here, the authors provide a structural view of interconnected events during the middle steps of assembly that include the maturation of the central protuberance, the peptidyltransferase center and the nascent polypeptide exit tunnel.
Collapse
Affiliation(s)
- Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yu Li
- State Key Laboratory of Membrane Biology, School of Life Science, Tsinghua University, Beijing, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Beijing, China
| | - Shan Wu
- State Key Laboratory of Membrane Biology, School of Life Science, Tsinghua University, Beijing, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Daniel Wilson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Beril Tutuncuoglu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Okuda EK, Gonzales-Zubiate FA, Gadal O, Oliveira CC. Nucleolar localization of the yeast RNA exosome subunit Rrp44 hints at early pre-rRNA processing as its main function. J Biol Chem 2020; 295:11195-11213. [PMID: 32554806 DOI: 10.1074/jbc.ra120.013589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/12/2020] [Indexed: 01/12/2023] Open
Abstract
The RNA exosome is a multisubunit protein complex involved in RNA surveillance of all classes of RNA, and is essential for pre-rRNA processing. The exosome is conserved throughout evolution, present in archaea and eukaryotes from yeast to humans, where it localizes to the nucleus and cytoplasm. The catalytically active subunit Rrp44/Dis3 of the exosome in budding yeast (Saccharomyces cerevisiae) is considered a protein present in these two subcellular compartments, and here we report that it not only localizes mainly to the nucleus, but is concentrated in the nucleolus, where the early pre-rRNA processing reactions take place. Moreover, we show by confocal microscopy analysis that the core exosome subunits Rrp41 and Rrp43 also localize largely to the nucleus and strongly accumulate in the nucleolus. These results shown here shed additional light on the localization of the yeast exosome and have implications regarding the main function of this RNase complex, which seems to be primarily in early pre-rRNA processing and surveillance.
Collapse
Affiliation(s)
- Ellen K Okuda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Shipkovenska G, Durango A, Kalocsay M, Gygi SP, Moazed D. A conserved RNA degradation complex required for spreading and epigenetic inheritance of heterochromatin. eLife 2020; 9:54341. [PMID: 32491985 PMCID: PMC7269676 DOI: 10.7554/elife.54341] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Heterochromatic domains containing histone H3 lysine 9 methylation (H3K9me) can be epigenetically inherited independently of underlying DNA sequence. To gain insight into the mechanisms that mediate epigenetic inheritance, we used a Schizosaccharomyces pombe inducible heterochromatin formation system to perform a genetic screen for mutations that abolish heterochromatin inheritance without affecting its establishment. We identified mutations in several pathways, including the conserved and essential Rix1-associated complex (henceforth the rixosome), which contains RNA endonuclease and polynucleotide kinase activities with known roles in ribosomal RNA processing. We show that the rixosome is required for spreading and epigenetic inheritance of heterochromatin in fission yeast. Viable rixosome mutations that disrupt its association with Swi6/HP1 fail to localize to heterochromatin, lead to accumulation of heterochromatic RNAs, and block spreading of H3K9me and silencing into actively transcribed regions. These findings reveal a new pathway for degradation of heterochromatic RNAs with essential roles in heterochromatin spreading and inheritance.
Collapse
Affiliation(s)
- Gergana Shipkovenska
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Alexander Durango
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Marian Kalocsay
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
41
|
Lingaraju M, Schuller JM, Falk S, Gerlach P, Bonneau F, Basquin J, Benda C, Conti E. To Process or to Decay: A Mechanistic View of the Nuclear RNA Exosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:155-163. [PMID: 32493762 DOI: 10.1101/sqb.2019.84.040295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.
Collapse
Affiliation(s)
- Mahesh Lingaraju
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Jan M Schuller
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Sebastian Falk
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, 1030, Vienna, Austria
| | - Piotr Gerlach
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Fabien Bonneau
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Jérôme Basquin
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Christian Benda
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Elena Conti
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| |
Collapse
|
42
|
Pillon MC, Stanley RE. Nonradioactive Assay to Measure Polynucleotide Phosphorylation of Small Nucleotide Substrates. J Vis Exp 2020. [PMID: 32449708 DOI: 10.3791/61258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polynucleotide kinases (PNKs) are enzymes that catalyze the phosphorylation of the 5' hydroxyl end of DNA and RNA oligonucleotides. The activity of PNKs can be quantified using direct or indirect approaches. Presented here is a direct, in vitro approach to measure PNK activity that relies on a fluorescently-labeled oligonucleotide substrate and polyacrylamide gel electrophoresis. This approach provides resolution of the phosphorylated products while avoiding the use of radiolabeled substrates. The protocol details how to set up the phosphorylation reaction, prepare and run large polyacrylamide gels, and quantify the reaction products. The most technically challenging part of this assay is pouring and running the large polyacrylamide gels; thus, important details to overcome common difficulties are provided. This protocol was optimized for Grc3, a PNK that assembles into an obligate pre-ribosomal RNA processing complex with its binding partner, the Las1 nuclease. However, this protocol can be adapted to measure the activity of other PNK enzymes. Moreover, this assay can also be modified to determine the effects of different components of the reaction, such as the nucleoside triphosphate, metal ions, and oligonucleotides.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health;
| |
Collapse
|
43
|
Pillon MC, Goslen KH, Gordon J, Wells ML, Williams JG, Stanley RE. It takes two (Las1 HEPN endoribonuclease domains) to cut RNA correctly. J Biol Chem 2020; 295:5857-5870. [PMID: 32220933 DOI: 10.1074/jbc.ra119.011193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
The ribosome biogenesis factor Las1 is an essential endoribonuclease that is well-conserved across eukaryotes and a newly established member of the higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain-containing nuclease family. HEPN nucleases participate in diverse RNA cleavage pathways and share a short HEPN nuclease motif (RφXXXH) important for RNA cleavage. Most HEPN nucleases participate in stress-activated RNA cleavage pathways; Las1 plays a fundamental role in processing pre-rRNA. Underscoring the significance of Las1 function in the cell, mutations in the human LAS1L (LAS1-like) gene have been associated with neurological dysfunction. Two juxtaposed HEPN nuclease motifs create Las1's composite nuclease active site, but the roles of the individual HEPN motif residues are poorly defined. Here using a combination of in vivo experiments in Saccharomyces cerevisiae and in vitro assays, we show that both HEPN nuclease motifs are required for Las1 nuclease activity and fidelity. Through in-depth sequence analysis and systematic mutagenesis, we determined the consensus HEPN motif in the Las1 subfamily and uncovered its canonical and specialized elements. Using reconstituted Las1 HEPN-HEPN' chimeras, we defined the molecular requirements for RNA cleavage. Intriguingly, both copies of the Las1 HEPN motif were important for nuclease function, revealing that both HEPN motifs participate in coordinating the RNA within the Las1 active site. We also established that conformational flexibility of the two HEPN domains is important for proper nuclease function. The results of our work reveal critical information about how dual HEPN domains come together to drive Las1-mediated RNA cleavage.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Kevin H Goslen
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Melissa L Wells
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
44
|
Braun CM, Hackert P, Schmid CE, Bohnsack MT, Bohnsack KE, Perez-Fernandez J. Pol5 is required for recycling of small subunit biogenesis factors and for formation of the peptide exit tunnel of the large ribosomal subunit. Nucleic Acids Res 2020; 48:405-420. [PMID: 31745560 PMCID: PMC7145529 DOI: 10.1093/nar/gkz1079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/24/2023] Open
Abstract
More than 200 assembly factors (AFs) are required for the production of ribosomes in yeast. The stepwise association and dissociation of these AFs with the pre-ribosomal subunits occurs in a hierarchical manner to ensure correct maturation of the pre-rRNAs and assembly of the ribosomal proteins. Although decades of research have provided a wealth of insights into the functions of many AFs, others remain poorly characterized. Pol5 was initially classified with B-type DNA polymerases, however, several lines of evidence indicate the involvement of this protein in ribosome assembly. Here, we show that depletion of Pol5 affects the processing of pre-rRNAs destined for the both the large and small subunits. Furthermore, we identify binding sites for Pol5 in the 5' external transcribed spacer and within domain III of the 25S rRNA sequence. Consistent with this, we reveal that Pol5 is required for recruitment of ribosomal proteins that form the polypeptide exit tunnel in the LSU and that depletion of Pol5 impairs the release of 5' ETS fragments from early pre-40S particles. The dual functions of Pol5 in 60S assembly and recycling of pre-40S AFs suggest that this factor could contribute to ensuring the stoichiometric production of ribosomal subunits.
Collapse
Affiliation(s)
- Christina M Braun
- Department of Biochemistry III, University of Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Catharina E Schmid
- Department of Biochemistry III, University of Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Jorge Perez-Fernandez
- Department of Biochemistry III, University of Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
45
|
Fujinami H, Shiraishi H, Hada K, Inoue M, Morisaki I, Higa R, Shin T, Kobayashi T, Hanada R, Penninger JM, Mimata H, Hanada T. CLP1 acts as the main RNA kinase in mice. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30334-X. [PMID: 32081435 DOI: 10.1016/j.bbrc.2020.02.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/09/2020] [Indexed: 01/10/2023]
Abstract
CLP1 plays an essential role in the protein complex involved in mRNA 3'-end formation and polyadenylation as well as in the tRNA splicing endonuclease (TSEN) complex involved in the splicing of precursor tRNAs. NOL9 localizes in the nucleolus of cells and plays an essential role in ribosomal RNA maturation. Both CLP1 and NOL9 are RNA kinases that phosphorylate the 5' end of RNAs. From the evidence that phosphorylation of the 5' end of a siRNA is essential for its efficient RNA cleavage, it was expected that CLP1 and NOL9 would be corresponding molecules. However, there had been no direct evidence that this is the case. In this study, murine NOL9 showed no apparent RNA kinase activity in cells or even in an RNA kinase assay using recombinant murine NOL9 protein. Although siRNA efficiency was decreased in CLP1 kinase-dead (Clp1K/K) cells, it was not influenced by NOL9 overexpression. These findings indicate that in mouse cells it is CLP1 that mainly acts to phosphorylate the 5' end of RNAs in the siRNA pathway, with no apparent involvement of NOL9.
Collapse
Affiliation(s)
- Hiroyuki Fujinami
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan; Department of Urology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Kazumasa Hada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Masanori Inoue
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Ikuko Morisaki
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Ryoko Higa
- Department of Infectious Disease Control, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Toshitaka Shin
- Department of Urology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, Canada
| | - Hiromitsu Mimata
- Department of Urology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
46
|
Stolyarenko AD. Nuclear Argonaute Piwi Gene Mutation Affects rRNA by Inducing rRNA Fragment Accumulation, Antisense Expression, and Defective Processing in Drosophila Ovaries. Int J Mol Sci 2020; 21:ijms21031119. [PMID: 32046213 PMCID: PMC7037970 DOI: 10.3390/ijms21031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3′-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophilamelanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.
Collapse
Affiliation(s)
- Anastasia D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia
| |
Collapse
|
47
|
Abstract
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Collapse
|
48
|
Native Chromatin Proteomics Reveals a Role for Specific Nucleoporins in Heterochromatin Organization and Maintenance. Mol Cell 2019; 77:51-66.e8. [PMID: 31784357 DOI: 10.1016/j.molcel.2019.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/19/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
Abstract
Spatially and functionally distinct domains of heterochromatin and euchromatin play important roles in the maintenance of chromosome stability and regulation of gene expression, but a comprehensive knowledge of their composition is lacking. Here, we develop a strategy for the isolation of native Schizosaccharomyces pombe heterochromatin and euchromatin fragments and analyze their composition by using quantitative mass spectrometry. The shared and euchromatin-specific proteomes contain proteins involved in DNA and chromatin metabolism and in transcription, respectively. The heterochromatin-specific proteome includes all proteins with known roles in heterochromatin formation and, in addition, is enriched for subsets of nucleoporins and inner nuclear membrane (INM) proteins, which associate with different chromatin domains. While the INM proteins are required for the integrity of the nucleolus, containing ribosomal DNA repeats, the nucleoporins are required for aggregation of heterochromatic foci and epigenetic inheritance. The results provide a comprehensive picture of heterochromatin-associated proteins and suggest a role for specific nucleoporins in heterochromatin function.
Collapse
|
49
|
Cepeda LPP, Bagatelli FFM, Santos RM, Santos MDM, Nogueira FCS, Oliveira CC. The ribosome assembly factor Nop53 controls association of the RNA exosome with pre-60S particles in yeast. J Biol Chem 2019; 294:19365-19380. [PMID: 31662437 DOI: 10.1074/jbc.ra119.010193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic ribosomal biogenesis is a high-energy-demanding and complex process that requires hundreds of trans-acting factors to dynamically build the highly-organized 40S and 60S subunits. Each ribonucleoprotein complex comprises specific rRNAs and ribosomal proteins that are organized into functional domains. The RNA exosome complex plays a crucial role as one of the pre-60S-processing factors, because it is the RNase responsible for processing the 7S pre-rRNA to the mature 5.8S rRNA. The yeast pre-60S assembly factor Nop53 has previously been shown to associate with the nucleoplasmic pre-60S in a region containing the "foot" structure assembled around the 3' end of the 7S pre-rRNA. Nop53 interacts with 25S rRNA and with several 60S assembly factors, including the RNA exosome, specifically, with its catalytic subunit Rrp6 and with the exosome-associated RNA helicase Mtr4. Nop53 is therefore considered the adaptor responsible for recruiting the exosome complex for 7S processing. Here, using proteomics-based approaches in budding yeast to analyze the effects of Nop53 on the exosome interactome, we found that the exosome binds pre-ribosomal complexes early during the ribosome maturation pathway. We also identified interactions through which Nop53 modulates exosome activity in the context of 60S maturation and provide evidence that in addition to recruiting the exosome, Nop53 may also be important for positioning the exosome during 7S processing. On the basis of these findings, we propose that the exosome is recruited much earlier during ribosome assembly than previously thought, suggesting the existence of additional interactions that remain to be described.
Collapse
Affiliation(s)
- Leidy Paola P Cepeda
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Felipe F M Bagatelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Renata M Santos
- Proteomics Unit and Laboratory of Proteomics/LADETEC, Federal University of Rio de Janeiro, 22410-001 Rio de Janeiro (RJ), Brazil
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Curitiba, PR, CEP 81350-010, Brazil
| | - Fabio C S Nogueira
- Proteomics Unit and Laboratory of Proteomics/LADETEC, Federal University of Rio de Janeiro, 22410-001 Rio de Janeiro (RJ), Brazil
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
50
|
Pillon MC, Lo YH, Stanley RE. IT'S 2 for the price of 1: Multifaceted ITS2 processing machines in RNA and DNA maintenance. DNA Repair (Amst) 2019; 81:102653. [PMID: 31324529 PMCID: PMC6764878 DOI: 10.1016/j.dnarep.2019.102653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cells utilize sophisticated RNA processing machines to ensure the quality of RNA. Many RNA processing machines have been further implicated in regulating the DNA damage response signifying a strong link between RNA processing and genome maintenance. One of the most intricate and highly regulated RNA processing pathways is the processing of the precursor ribosomal RNA (pre-rRNA), which is paramount for the production of ribosomes. Removal of the Internal Transcribed Spacer 2 (ITS2), located between the 5.8S and 25S rRNA, is one of the most complex steps of ribosome assembly. Processing of the ITS2 is initiated by the newly discovered endoribonuclease Las1, which cleaves at the C2 site within the ITS2, generating products that are further processed by the polynucleotide kinase Grc3, the 5'→3' exonuclease Rat1, and the 3'→5' RNA exosome complex. In addition to their defined roles in ITS2 processing, these critical cellular machines participate in other stages of ribosome assembly, turnover of numerous cellular RNAs, and genome maintenance. Here we summarize recent work defining the molecular mechanisms of ITS2 processing by these essential RNA processing machines and highlight their emerging roles in transcription termination, heterochromatin function, telomere maintenance, and DNA repair.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|