1
|
Jiang W, Li M, Peng S, Hu T, Long Y, Zhang J, Peng D, Shen Y. Ubiquitin ligase enzymes and de-ubiquitinating enzymes regulate innate immunity in the TLR, NLR, RLR, and cGAS-STING pathways. Immunol Res 2023; 71:800-813. [PMID: 37291329 DOI: 10.1007/s12026-023-09400-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitination (or ubiquitylation) and de-ubiquitination, which are both post-translational modifications (PTMs) of proteins, have become a research hotspot in recent years. Some ubiquitinated or de-ubiquitinated signaling proteins have been found to promote or suppress innate immunity through Toll-like receptor (TLR), RIG-like receptor (RIG-I-like receptor, RLR), NOD-like receptor (NLR), and the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-STING pathway. This article aimed to provide a review on the role of ubiquitination and de-ubiquitination, especially ubiquitin ligase enzymes and de-ubiquitinating enzymes, in the above four pathways. We hope that our work can contribute to the research and development of treatment strategies for innate immunity-related diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Wang Jiang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Mengling Li
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Siyuan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Tian Hu
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yan Long
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Jiayi Zhang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Dan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China.
| |
Collapse
|
2
|
Liu P, Liu S, Zhu C, Li Y, Li Y, Fei X, Hou J, Wang X, Pan Y. The deubiquitinating enzyme MINDY2 promotes pancreatic cancer proliferation and metastasis by stabilizing ACTN4 expression and activating the PI3K/AKT/mTOR signaling pathway. Front Oncol 2023; 13:1169833. [PMID: 37207150 PMCID: PMC10189038 DOI: 10.3389/fonc.2023.1169833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The pathogenic mechanisms of pancreatic cancer (PC) are still not fully understood. Ubiquitination modifications have a crucial role in tumorigenesis and progression. Yet, the role of MINDY2, a member of the motif interacting with Ub-containing novel DUB family (MINDY), as a newly identified deubiquitinating enzyme, in PC is still unclear. In this study, we found that MINDY2 expression is elevated in PC tissue (clinical samples) and was associated with poor prognosis. We also found that MINDY2 is associated with pro-carcinogenic factors such as epithelial-mesenchymal transition (EMT), inflammatory response, and angiogenesis; the ROC curve suggested that MINDY2 has a high diagnostic value in PC. Immunological correlation analysis suggested that MINDY2 is deeply involved in immune cell infiltration in PC and is associated with immune checkpoint-related genes. In vivo and in vitro experiments further suggested that elevated MINDY2 promotes PC proliferation, invasive metastasis, and EMT. Meanwhile, actinin alpha 4 (ACTN4) was identified as a MINDY2-interacting protein by mass spectrometry and other experiments, and ACTN4 protein levels were significantly correlated with MINDY2 expression. The ubiquitination assay confirmed that MINDY2 stabilizes the ACTN4 protein level by deubiquitination. The pro-oncogenic effect of MINDY2 was significantly inhibited by silencing ACTN4. Bioinformatics Analysis and Western blot experiments further confirmed that MINDY2 stabilizes ACTN4 through deubiquitination and thus activates the PI3K/AKT/mTOR signaling pathway. In conclusion, we identified the oncogenic role and mechanism of MINDY2 in PC, suggesting that MINDY2 is a viable candidate gene for PC and may be a therapeutic target and critical prognostic indicator.
Collapse
Affiliation(s)
- Peng Liu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Songbai Liu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Changhao Zhu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Yongning Li
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Li
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaobin Fei
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Junyi Hou
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xing Wang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Xing Wang, ; Yaozhen Pan,
| | - Yaozhen Pan
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Xing Wang, ; Yaozhen Pan,
| |
Collapse
|
3
|
Chaugule S, Kim JM, Yang YS, Knobeloch KP, He X, Shim JH. Deubiquitinating Enzyme USP8 Is Essential for Skeletogenesis by Regulating Wnt Signaling. Int J Mol Sci 2021; 22:10289. [PMID: 34638628 PMCID: PMC8508692 DOI: 10.3390/ijms221910289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Disturbance in a differentiation program of skeletal stem cells leads to indecorous skeletogenesis. Growing evidence suggests that a fine-tuning of ubiquitin-mediated protein degradation is crucial for skeletal stem cells to maintain their stemness and osteogenic potential. Here, we demonstrate that the deubiquitinating enzyme (DUB) ubiquitin-specific protease 8 (USP8) stabilizes the Wnt receptor frizzled 5 (FZD5) by preventing its lysosomal degradation. This pathway is essential for Wnt/β-catenin signaling and the differentiation of osteoprogenitors to mature osteoblasts. Accordingly, deletion of USP8 in osteoprogenitors (Usp8Osx) resulted in a near-complete blockade in skeletal mineralization, similar to that seen in mice with defective Wnt/β-catenin signaling. Likewise, transplanting USP8-deficient osteoprogenitors under the renal capsule in wild-type secondary hosts did not to induce bone formation. Collectively, this study unveils an essential role for the DUB USP8 in Wnt/β-catenin signaling in osteoprogenitors and osteogenesis during skeletal development.
Collapse
Affiliation(s)
- Sachin Chaugule
- Shim Lab, Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (S.C.); (J.-M.K.); (Y.-S.Y.)
| | - Jung-Min Kim
- Shim Lab, Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (S.C.); (J.-M.K.); (Y.-S.Y.)
| | - Yeon-Suk Yang
- Shim Lab, Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (S.C.); (J.-M.K.); (Y.-S.Y.)
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany;
| | - Xi He
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA;
| | - Jae-Hyuck Shim
- Shim Lab, Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (S.C.); (J.-M.K.); (Y.-S.Y.)
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
5
|
Liu L, Damerell DR, Koukouflis L, Tong Y, Marsden BD, Schapira M. UbiHub: a data hub for the explorers of ubiquitination pathways. Bioinformatics 2020; 35:2882-2884. [PMID: 30601939 PMCID: PMC6691330 DOI: 10.1093/bioinformatics/bty1067] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 01/01/2023] Open
Abstract
Motivation Protein ubiquitination plays a central role in important cellular machineries such as protein degradation or chromatin-mediated signaling. With the recent discovery of the first potent ubiquitin-specific protease inhibitors, and the maturation of proteolysis targeting chimeras as promising chemical tools to exploit the ubiquitin-proteasome system, protein target classes associated with ubiquitination pathways are becoming the focus of intense drug-discovery efforts. Results We have developed UbiHub, an online resource that can be used to visualize a diverse array of biological, structural and chemical data on phylogenetic trees of human protein families involved in ubiquitination signaling, including E3 ligases and deubiquitinases. This interface can inform target prioritization and drug design, and serves as a navigation tool for medicinal chemists, structural and cell biologists exploring ubiquitination pathways. Availability and implementation https://ubihub.thesgc.org.
Collapse
Affiliation(s)
- Lihua Liu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - David R Damerell
- Structural Genomics Consortium, University of Oxford, Headington Oxford, Oxfordshire, UK
| | - Leonidas Koukouflis
- Structural Genomics Consortium, University of Oxford, Headington Oxford, Oxfordshire, UK
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Brian D Marsden
- Structural Genomics Consortium, University of Oxford, Headington Oxford, Oxfordshire, UK.,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, Oxfordshire, UK
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
The 'dark matter' of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains. Biochem Soc Trans 2020; 47:1949-1962. [PMID: 31829417 DOI: 10.1042/bst20190869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin modifications of target proteins act to localise, direct and specify a diverse range of cellular processes, many of which are biomedically relevant. To allow this diversity, ubiquitin modifications exhibit remarkable complexity, determined by a combination of polyubiquitin chain length, linkage type, numbers of ubiquitin chains per target, and decoration of ubiquitin with other small modifiers. However, many questions remain about how different ubiquitin signals are specifically recognised and transduced by the decoding ubiquitin-binding domains (UBDs) within ubiquitin-binding proteins. This review briefly outlines our current knowledge surrounding the diversity of UBDs, identifies key challenges in their discovery and considers recent structural studies with implications for the increasing complexity of UBD function and identification. Given the comparatively low numbers of functionally characterised polyubiquitin-selective UBDs relative to the ever-expanding variety of polyubiquitin modifications, it is possible that many UBDs have been overlooked, in part due to limitations of current approaches used to predict their presence within the proteome. Potential experimental approaches for UBD discovery are considered; web-based informatic analyses, Next-Generation Phage Display, deubiquitinase-resistant diubiquitin, proximity-dependent biotinylation and Ubiquitin-Phototrap, including possible advantages and limitations. The concepts discussed here work towards identifying new UBDs which may represent the 'dark matter' of the ubiquitin system.
Collapse
|
7
|
Roles of ubiquitin in autophagy and cell death. Semin Cell Dev Biol 2018; 93:125-135. [PMID: 30195063 PMCID: PMC6854449 DOI: 10.1016/j.semcdb.2018.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 01/12/2023]
Abstract
The balance between cell survival and cell death is often lost in human pathologies such as inflammation and cancer. Autophagy plays a critical role in cell survival: essential nutrients are generated by autophagy-dependent degradation and recycling of cellular garbage. On the other hand, cell death is induced by different programs, such as apoptosis, pyroptosis, and necroptosis. Emerging evidence is revealing how cell survival and cell death pathways are coordinated to determine cell fate. For instance, posttranslational modification of proteins with ubiquitin regulates many steps of autophagy and cell death pathways. In this review article, we will discuss how the ubiquitin system influences cell death and autophagy.
Collapse
|
8
|
James C, Zhao TY, Rahim A, Saxena P, Muthalif NA, Uemura T, Tsuneyoshi N, Ong S, Igarashi K, Lim CY, Dunn NR, Vardy LA. MINDY1 Is a Downstream Target of the Polyamines and Promotes Embryonic Stem Cell Self-Renewal. Stem Cells 2018; 36:1170-1178. [PMID: 29644784 DOI: 10.1002/stem.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/28/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
Embryonic stem cells have the ability to self-renew or differentiate and these processes are under tight control. We previously reported that the polyamine regulator AMD1 is critical for embryonic stem cell self-renewal. The polyamines putrescine, spermidine, and spermine are essential organic cations that play a role in a wide array of cellular processes. Here, we explore the essential role of the polyamines in the promotion of self-renewal and identify a new stem cell regulator that acts downstream of the polyamines: MINDY1. MINDY1 protein levels are high in embryonic stem cells (ESCs) and are dependent on high polyamine levels. Overexpression of MINDY1 can promote ESC self-renewal in the absence of the usually essential cytokine Leukemia Inhibitory Factor (LIF). MINDY1 protein is prenylated and this modification is required for its ability to promote self-renewal. We go on to show that Mindy1 RNA is targeted for repression by mir-710 during Neural Precursor cell differentiation. Taken together, these data demonstrate that high polyamine levels are required for ESC self-renewal and that they function, in part, through promotion of high MINDY1 levels. Stem Cells 2018;36:1170-1178.
Collapse
Affiliation(s)
| | - Tian Yun Zhao
- Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Anisa Rahim
- Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Parul Saxena
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | | | - Takeshi Uemura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | - Sheena Ong
- Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Chin Yan Lim
- Institute of Medical Biology, A*STAR, Immunos, Singapore
| | - Norris Ray Dunn
- Institute of Medical Biology, A*STAR, Immunos, Singapore.,School of Biological Sciences and the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Leah A Vardy
- Institute of Medical Biology, A*STAR, Immunos, Singapore.,School of Biological Sciences and the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
9
|
Ott CA, Baljinnyam B, Zakharov AV, Jadhav A, Simeonov A, Zhuang Z. Cell Lysate-Based AlphaLISA Deubiquitinase Assay Platform for Identification of Small Molecule Inhibitors. ACS Chem Biol 2017; 12:2399-2407. [PMID: 28836754 DOI: 10.1021/acschembio.7b00543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The deubiquitinases, or DUBs, are associated with various human diseases, including neurological disorders, cancer, and viral infection, making them excellent candidates for pharmacological intervention. Drug discovery campaigns against DUBs require enzymatic deubiquitination assays amenable for high-throughput screening (HTS). Although several DUB substrates and assays have been developed in recent years, they are largely limited to recombinantly purified DUBs. Many DUBs are large multidomain proteins that are difficult to obtain recombinantly in sufficient quantities for HTS. Therefore, an assay that obviates the need of recombinant protein generation and also recapitulates a physiologically relevant environment is highly desirable. Such an assay will open doors for drug discovery against many therapeutically relevant, but currently inaccessible, DUBs. Here, we report a cell lysate DUB assay based on AlphaLISA technology for high throughput screening. This assay platform uses a biotin-tagged ubiquitin probe and a HA-tagged DUB expressed in human cells. The assay was validated and adapted to a 1536-well format, which enabled a screening against UCHL1 as proof of principle using a library of 15 000 compounds. We expect that the new platform can be readily adapted to other DUBs to allow the identification of more potent and selective small molecule inhibitors and chemical probes.
Collapse
Affiliation(s)
- Christine A. Ott
- Department
of Chemistry and Biochemistry, University of Delaware, 214A Drake
Hall, Newark, Delaware 19716, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland 20892, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland 20892, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland 20892, United States
| | - Zhihao Zhuang
- Department
of Chemistry and Biochemistry, University of Delaware, 214A Drake
Hall, Newark, Delaware 19716, United States
| |
Collapse
|