1
|
Kilgas S, Syed A, Toolan-Kerr P, Swift ML, Roychoudhury S, Sarkar A, Wilkins S, Quigley M, Poetsch AR, Botuyan MV, Cui G, Mer G, Ule J, Drané P, Chowdhury D. NEAT1 modulates the TIRR/53BP1 complex to maintain genome integrity. Nat Commun 2024; 15:8438. [PMID: 39349456 PMCID: PMC11443056 DOI: 10.1038/s41467-024-52862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Tudor Interacting Repair Regulator (TIRR) is an RNA-binding protein (RBP) that interacts directly with 53BP1, restricting its access to DNA double-strand breaks (DSBs) and its association with p53. We utilized iCLIP to identify RNAs that directly bind to TIRR within cells, identifying the long non-coding RNA NEAT1 as the primary RNA partner. The high affinity of TIRR for NEAT1 is due to prevalent G-rich motifs in the short isoform (NEAT1_1) region of NEAT1. This interaction destabilizes the TIRR/53BP1 complex, promoting 53BP1's function. NEAT1_1 is enriched during the G1 phase of the cell cycle, thereby ensuring that TIRR-dependent inhibition of 53BP1's function is cell cycle-dependent. TDP-43, an RBP that is implicated in neurodegenerative diseases, modulates the TIRR/53BP1 complex by promoting the production of the NEAT1 short isoform, NEAT1_1. Together, we infer that NEAT1_1, and factors regulating NEAT1_1, may impact 53BP1-dependent DNA repair processes, with implications for a spectrum of diseases.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aleem Syed
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick Toolan-Kerr
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aniruddha Sarkar
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah Wilkins
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale School of Medicine, 333 Cedar St, New Haven, CT, USA
| | - Mikayla Quigley
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA
| | - Anna R Poetsch
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, Germany
| | | | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Pascal Drané
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Tsaousidou E, Chrzanowski J, Drané P, Lee GY, Bahour N, Wang ZB, Deng S, Cao Z, Huang K, He Y, Kaminski M, Michalek D, Güney E, Parmar K, Fendler W, Chowdhury D, Hotamışlıgil GS. Endogenous p53 inhibitor TIRR dissociates systemic metabolic health from oncogenic activity. Cell Rep 2024; 43:114337. [PMID: 38861384 PMCID: PMC11325268 DOI: 10.1016/j.celrep.2024.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
It is unclear whether metabolic health corresponds to reduced oncogenesis or vice versa. We study Tudor-interacting repair regulator (TIRR), an inhibitor of p53 binding protein 1 (53BP1)-mediated p53 activation, and the physiological consequences of enhancing tumor suppressor activity. Deleting TIRR selectively activates p53, significantly protecting against cancer but leading to a systemic metabolic imbalance in mice. TIRR-deficient mice are overweight and insulin resistant, even under normal chow diet. Similarly, reduced TIRR expression in human adipose tissue correlates with higher BMI and insulin resistance. Despite the metabolic challenges, TIRR loss improves p53 heterozygous (p53HET) mouse survival and correlates with enhanced progression-free survival in patients with various p53HET carcinomas. Finally, TIRR's oncoprotective and metabolic effects are dependent on p53 and lost upon p53 deletion in TIRR-deficient mice, with glucose homeostasis and orexigenesis being primarily regulated by TIRR expression in the adipose tissue and the CNS, respectively, as evidenced by tissue-specific models. In summary, TIRR deletion provides a paradigm of metabolic deregulation accompanied by reduced oncogenesis.
Collapse
Affiliation(s)
- Eva Tsaousidou
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jędrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Grace Y Lee
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nadine Bahour
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zeqiu Branden Wang
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shijun Deng
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zhe Cao
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kaimeng Huang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yizhou He
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mateusz Kaminski
- Department of General Surgery, Medical University of Lodz, 90-153 Lodz, Poland
| | - Dominika Michalek
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ekin Güney
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wojciech Fendler
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Gökhan S Hotamışlıgil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Parnandi N, Rendo V, Cui G, Botuyan MV, Remisova M, Nguyen H, Drané P, Beroukhim R, Altmeyer M, Mer G, Chowdhury D. TIRR inhibits the 53BP1-p53 complex to alter cell-fate programs. Mol Cell 2021; 81:2583-2595.e6. [PMID: 33961797 DOI: 10.1016/j.molcel.2021.03.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/19/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
53BP1 influences genome stability via two independent mechanisms: (1) regulating DNA double-strand break (DSB) repair and (2) enhancing p53 activity. We discovered a protein, Tudor-interacting repair regulator (TIRR), that associates with the 53BP1 Tudor domain and prevents its recruitment to DSBs. Here, we elucidate how TIRR affects 53BP1 function beyond its recruitment to DSBs and biochemically links the two distinct roles of 53BP1. Loss of TIRR causes an aberrant increase in the gene transactivation function of p53, affecting several p53-mediated cell-fate programs. TIRR inhibits the complex formation between the Tudor domain of 53BP1 and a dimethylated form of p53 (K382me2) that is poised for transcriptional activation of its target genes. TIRR mRNA expression levels negatively correlate with the expression of key p53 target genes in breast and prostate cancers. Further, TIRR loss is selectively not tolerated in p53-proficient tumors. Therefore, we establish that TIRR is an important inhibitor of the 53BP1-p53 complex.
Collapse
Affiliation(s)
- Nishita Parnandi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Veronica Rendo
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Michaela Remisova
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Cancer Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
R. Menon V, Ananthapadmanabhan V, Swanson S, Saini S, Sesay F, Yakovlev V, Florens L, DeCaprio JA, P. Washburn M, Dozmorov M, Litovchick L. DYRK1A regulates the recruitment of 53BP1 to the sites of DNA damage in part through interaction with RNF169. Cell Cycle 2019; 18:531-551. [PMID: 30773093 PMCID: PMC6464593 DOI: 10.1080/15384101.2019.1577525] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human Dual-specificity tyrosine (Y) Regulated Kinase 1A (DYRK1A) is encoded by a dosage dependent gene whereby either trisomy or haploinsufficiency result in developmental abnormalities. However, the function and regulation of this important protein kinase are not fully understood. Here, we report proteomic analysis of DYRK1A in human cells that revealed a novel role of DYRK1A in DNA double-strand breaks (DSBs) repair, mediated in part by its interaction with the ubiquitin-binding protein RNF169 that accumulates at the DSB sites and promotes homologous recombination repair (HRR) by displacing 53BP1, a key mediator of non-homologous end joining (NHEJ). We found that overexpression of active, but not the kinase inactive DYRK1A in U-2 OS cells inhibits accumulation of 53BP1 at the DSB sites in the RNF169-dependent manner. DYRK1A phosphorylates RNF169 at two sites that influence its ability to displace 53BP1 from the DSBs. Although DYRK1A is not required for the recruitment of RNF169 to the DSB sites and 53BP1 displacement, inhibition of DYRK1A or mutation of the DYRK1A phosphorylation sites in RNF169 decreases its ability to block accumulation of 53BP1 at the DSB sites. Interestingly, CRISPR-Cas9 knockout of DYRK1A in human and mouse cells also diminished the 53BP1 DSB recruitment in a manner that did not require RNF169, suggesting that dosage of DYRK1A can influence the DNA repair processes through both RNF169-dependent and independent mechanisms. Human U-2 OS cells devoid of DYRK1A display an increased HRR efficiency and resistance to DNA damage, therefore our findings implicate DYRK1A in the DNA repair processes.
Collapse
Affiliation(s)
- Vijay R. Menon
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Varsha Ananthapadmanabhan
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Selene Swanson
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Siddharth Saini
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Fatmata Sesay
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael P. Washburn
- Stowers and Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Mikhail Dozmorov
- Department of Biostatistics and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Larisa Litovchick
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|