1
|
Dalin S, Webster S, Sugawara N, Wu Q, Zhang S, Macias C, Sapède E, Cui T, Liang V, Tran L, Beroukhim R, Haber JE. Mutations and structural variants arising during double-strand break repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640809. [PMID: 40093125 PMCID: PMC11908181 DOI: 10.1101/2025.02.28.640809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Double-strand break (DSB) repair is highly mutagenic compared to normal replication. In budding yeast, repair of an HO endonuclease-induced DSB at MATα can be repaired by using a transcriptionally silent HMR::Kl-URA3 donor. During repair, -1 deletions in homonucleotide runs are strongly favored over +1 insertions, whereas during replication, spontaneous +1 and -1 events are equal. Microhomology-bounded, repair-associated intragenic deletions (IDs) are recovered 12 times more frequently than tandem duplications (TDs). IDs have a mean length of 56 bp, while TDs average 22 bp. These data suggest a picture of the structure of the repair replication fork: IDs and TDs occur within the open structure of a migrating D-loop, where the 3' end of a partly copied new DNA strand can dissociate and anneal with a single-stranded region of microhomology that lies either ~80 bp ahead or ~40 bp behind the 3' end. Another major class of repair-associated mutations (~10%) are interchromosomal template switches (ICTS), even though the K. lactis URA3 sequence in HMR is only 72% identical (homeologous) with S. cerevisiae ura3-52. ICTS events begin and end at regions of short (~7 bp) microhomology; however, ICTS events are constrained to the middle of the copied sequence. Whereas microhomology usage in intragenic deletions is not influenced by adjacent homeology, we show that extensive pairing of adjacent homeology plays a critical role in ICTS. Thus, although by convention, structural variants are characterized by the precise base pairs at their junction, microhomology-mediated template switching actually requires alignment of extensive adjacent homeology.
Collapse
Affiliation(s)
- Simona Dalin
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sophie Webster
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Neal Sugawara
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Qiuqin Wu
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Shu Zhang
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Carmen Macias
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Elena Sapède
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Tracy Cui
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Victoria Liang
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Laura Tran
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - James E. Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
2
|
Hung SH, Liang Y, Heyer WD. Multifaceted roles of H2B mono-ubiquitylation in D-loop metabolism during homologous recombination repair. Nucleic Acids Res 2025; 53:gkaf081. [PMID: 39945322 PMCID: PMC11822380 DOI: 10.1093/nar/gkaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Repairing DNA double-strand breaks is crucial for maintaining genome integrity, which occurs primarily through homologous recombination (HR) in Saccharomyces cerevisiae. Nucleosomes, composed of DNA wrapped around a histone octamer, present a natural barrier to end resection to initiate HR, but the impact on the downstream HR steps of homology search, DNA strand invasion, and repair synthesis remain to be determined. Displacement loops (D-loops) play a pivotal role in HR, yet the influence of chromatin dynamics on D-loop metabolism remains unclear. Using the physical D-loop capture and D-loop extension (DLE) assays to track HR intermediates, we employed genetic analysis to reveal that H2B mono-ubiquitylation (H2Bubi) affects multiple steps during HR repair. We infer that H2Bubi modulates chromatin structure, not only promoting histone degradation for nascent D-loop formation but also stabilizing extended D-loops through nucleosome assembly. Furthermore, H2Bubi regulates DNA resection via Rad9 recruitment to suppress a feedback control mechanism that dampens D-loop formation and DLE at hyper-resected ends. Through physical and genetic assays to determine repair outcomes, we demonstrate that H2Bubi plays a crucial role in preventing break-induced replication and thus promoting genomic stability.
Collapse
Affiliation(s)
- Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis, CA 95616, United States
| | - Yuan Liang
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis, CA 95616, United States
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis, CA 95616, United States
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis, CA 95616, United States
| |
Collapse
|
3
|
He C, Zhu H. Evolutionary Nonindependence Between Human piRNAs and Their Potential Target Sites in Protein-Coding Genes. J Mol Evol 2025; 93:83-99. [PMID: 39621077 DOI: 10.1007/s00239-024-10220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/08/2024] [Indexed: 02/26/2025]
Abstract
PIWI-interacting RNAs (piRNAs) are the most diverse small RNAs in animals. These small RNAs have been known to play an important role in the suppression of transposable elements (TEs). Protein-coding genes (PCGs) are the most well-recognized functional genes in genomes. In the present study, we designed and performed a set of statistics-based evolutionary analyses to reveal nonrandom phenomena in the evolution of human piRNA-PCG targeting relationships. Through analyzing the occurrence of single nucleotide variants (SNVs) in potential piRNA target sites in human PCGs, we provide evidence that there exists a mutational force biased to strengthen piRNA-PCG targeting relationships. Through analyzing the allele frequencies of SNVs in potential piRNA target sites in human PCGs, we provide evidence that there exists a piRNA-dependent selective force acting on potential piRNA target sites in human PCGs. Because of these nonrandom evolutionary forces, human piRNAs and their potential target sites in PCGs are not independent in evolution. Additionally, we found evidence that potential piRNA target sites in human PCGs are particularly likely to be present in regions derived from Alu elements. This finding suggests that the aforementioned evolutionary forces acting on piRNA-PCG targeting relationships could be particularly prone to affect Alu-derived regions in human PCGs. Collectively, our findings provide new insights into the evolutionary interplay between piRNAs, PCGs, and Alu elements in the evolution of the human genome.
Collapse
Affiliation(s)
- Chong He
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Triplett MK, Johnson MJ, Symington LS. Induction of homologous recombination by site-specific replication stress. DNA Repair (Amst) 2024; 142:103753. [PMID: 39190984 PMCID: PMC11425181 DOI: 10.1016/j.dnarep.2024.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
DNA replication stress is one of the primary causes of genome instability. In response to replication stress, cells can employ replication restart mechanisms that rely on homologous recombination to resume replication fork progression and preserve genome integrity. In this review, we provide an overview of various methods that have been developed to induce site-specific replication fork stalling or collapse in eukaryotic cells. In particular, we highlight recent studies of mechanisms of replication-associated recombination resulting from site-specific protein-DNA barriers and single-strand breaks, and we discuss the contributions of these findings to our understanding of the consequences of these forms of stress on genome stability.
Collapse
Affiliation(s)
- Marina K Triplett
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Matthew J Johnson
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Program in Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, United States.
| |
Collapse
|
5
|
Lee RS, Twarowski JM, Malkova A. Stressed? Break-induced replication comes to the rescue! DNA Repair (Amst) 2024; 142:103759. [PMID: 39241677 DOI: 10.1016/j.dnarep.2024.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Break-induced replication (BIR) is a homologous recombination (HR) pathway that repairs one-ended DNA double-strand breaks (DSBs), which can result from replication fork collapse, telomere erosion, and other events. Eukaryotic BIR has been mainly investigated in yeast, where it is initiated by invasion of the broken DNA end into a homologous sequence, followed by extensive replication synthesis proceeding to the chromosome end. Multiple recent studies have described BIR in mammalian cells, the properties of which show many similarities to yeast BIR. While HR is considered as "error-free" mechanism, BIR is highly mutagenic and frequently leads to chromosomal rearrangements-genetic instabilities known to promote human disease. In addition, it is now recognized that BIR is highly stimulated by replication stress (RS), including RS constantly present in cancer cells, implicating BIR as a contributor to cancer genesis and progression. Here, we discuss the past and current findings related to the mechanism of BIR, the association of BIR with replication stress, and the destabilizing effects of BIR on the eukaryotic genome. Finally, we consider the potential for exploiting the BIR machinery to develop anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rosemary S Lee
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Anna Malkova
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
6
|
van de Kooij B, van der Wal FJ, Rother MB, Wiegant WW, Creixell P, Stout M, Joughin BA, Vornberger J, Altmeyer M, van Vugt MATM, Yaffe MB, van Attikum H. The Fanconi anemia core complex promotes CtIP-dependent end resection to drive homologous recombination at DNA double-strand breaks. Nat Commun 2024; 15:7076. [PMID: 39152113 PMCID: PMC11329772 DOI: 10.1038/s41467-024-51090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/17/2024] [Indexed: 08/19/2024] Open
Abstract
During the repair of interstrand crosslinks (ICLs) a DNA double-strand break (DSB) is generated. The Fanconi anemia (FA) core complex, which is recruited to ICLs, promotes high-fidelity repair of this DSB by homologous recombination (HR). However, whether the FA core complex also promotes HR at ICL-independent DSBs, for example induced by ionizing irradiation or nucleases, remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen. Using isogenic cell line models, we further demonstrated an HR-promoting function of FANCL and Ube2T, and of their ubiquitination substrate FANCD2. We show that FANCL and Ube2T localize at DSBs in a FANCM-dependent manner, and are required for the DSB accumulation of FANCD2. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of CtIP at DSBs, thereby promoting end resection and Rad51 loading. Together, these data demonstrate a dual genome maintenance function of the FA core complex and FANCD2 in promoting repair of both ICLs and DSBs.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Fenna J van der Wal
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pau Creixell
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston, USA.
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
8
|
Corazzi L, Ionasz V, Andrejev S, Wang LC, Vouzas A, Giaisi M, Di Muzio G, Ding B, Marx AJM, Henkenjohann J, Allers MM, Gilbert DM, Wei PC. Linear Interaction Between Replication and Transcription Shapes DNA Break Dynamics at Recurrent DNA Break Clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554340. [PMID: 37662334 PMCID: PMC10473677 DOI: 10.1101/2023.08.22.554340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Recurrent DNA break clusters (RDCs) are replication-transcription collision hotspots; many are unique to neural progenitor cells. Through high-resolution replication sequencing and a capture-ligation assay in mouse neural progenitor cells experiencing replication stress, we unraveled the replication features dictating RDC location and orientation. Most RDCs occur at the replication forks traversing timing transition regions (TTRs), where sparse replication origins connect unidirectional forks. Leftward-moving forks generate telomere-connected DNA double-strand breaks (DSBs), while rightward-moving forks lead to centromere-connected DSBs. Strand-specific mapping for DNA-bound RNA revealed co-transcriptional dual-strand DNA:RNA hybrids present at a higher density in RDC than in other actively transcribed long genes. In addition, mapping RNA polymerase activity revealed that head-to-head interactions between replication and transcription machinery resulted in 60% DSB contribution to the head-on compared to 40% for co-directional. Our findings revealed TTR as a novel fragile class and highlighted how the linear interaction between transcription and replication impacts genome stability.
Collapse
|
9
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
10
|
Hu J, Ferlez B, Dau J, Crickard JB. Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates. Nucleic Acids Res 2023; 51:11688-11705. [PMID: 37850655 PMCID: PMC10681728 DOI: 10.1093/nar/gkad848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Rdh54 is a conserved DNA translocase that participates in homologous recombination (HR), DNA checkpoint adaptation, and chromosome segregation. Saccharomyces cerevisiae Rdh54 is a known target of the Mec1/Rad53 signaling axis, which globally protects genome integrity during DNA metabolism. While phosphorylation of DNA repair proteins by Mec1/Rad53 is critical for HR progression little is known about how specific post translational modifications alter HR reactions. Phosphorylation of Rdh54 is linked to protection of genomic integrity but the consequences of modification remain poorly understood. Here, we demonstrate that phosphorylation of the Rdh54 C-terminus by the effector kinase Rad53 regulates Rdh54 clustering activity as revealed by single molecule imaging. This stems from phosphorylation dependent and independent interactions between Rdh54 and Rad53. Genetic assays reveal that loss of phosphorylation leads to phenotypic changes resulting in loss-of-heterozygosity (LOH) outcomes. Our data highlight Rad53 as a key regulator of HR intermediates through activation and attenuation of Rdh54 motor function.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Dau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
van de Kooij B, van der Wal FJ, Rother MB, Creixell P, Stout M, Wiegant W, Joughin BA, Vornberger J, van Vugt MA, Altmeyer M, Yaffe MB, van Attikum H. The Fanconi anemia core complex promotes CtIP-dependent end-resection to drive homologous recombination at DNA double-strand breaks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556391. [PMID: 37732274 PMCID: PMC10508776 DOI: 10.1101/2023.09.05.556391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Homologous Recombination (HR) is a high-fidelity repair mechanism of DNA Double-Strand Breaks (DSBs), which are induced by irradiation, genotoxic chemicals or physiological DNA damaging processes. DSBs are also generated as intermediates during the repair of interstrand crosslinks (ICLs). In this context, the Fanconi anemia (FA) core complex, which is effectively recruited to ICLs, promotes HR-mediated DSB-repair. However, whether the FA core complex also promotes HR at ICL-independent DSBs remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen with cells carrying the DSB-repair reporter DSB-Spectrum. Using isogenic cell-line models, we validated the HR-function of FANCL and Ube2T, and demonstrated a similar function for their ubiquitination-substrate FANCD2. We further show that FANCL and Ube2T are directly recruited to DSBs and are required for the accumulation of FANCD2 at these break sites. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of the nuclease CtIP at DSBs, and consequently for optimal end-resection and Rad51 loading. CtIP overexpression rescues HR in FANCL-deficient cells, validating that FANCL primarily regulates HR by promoting CtIP recruitment. Together, these data demonstrate that the FA core complex and FANCD2 have a dual genome maintenance function by promoting repair of DSBs as well as the repair of ICLs.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Current address: Department of Medical Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Fenna J. van der Wal
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Magdalena B. Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pau Creixell
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Current address: CRUK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Merula Stout
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Wouter Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian A. Joughin
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia Vornberger
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich (UZH), Zurich, Switzerland
| | - Michael B. Yaffe
- Koch Institute for Integrative Cancer Research, MIT Center for Precision Cancer Medicine, Departments of Biology and Bioengineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
12
|
Tosato V, Rossi B, Sims J, Bruschi CV. Timing of Chromosome DNA Integration throughout the Yeast Cell Cycle. Biomolecules 2023; 13:biom13040614. [PMID: 37189362 DOI: 10.3390/biom13040614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
The dynamic mechanism of cell uptake and genomic integration of exogenous linear DNA still has to be completely clarified, especially within each phase of the cell cycle. We present a study of integration events of double-stranded linear DNA molecules harboring at their ends sequence homologies to the host’s genome, all throughout the cell cycle of the model organism Saccharomyces cerevisiae, comparing the efficiency of chromosomal integration of two types of DNA cassettes tailored for site-specific integration and bridge-induced translocation. Transformability increases in S phase regardless of the sequence homologies, while the efficiency of chromosomal integration during a specific cycle phase depends upon the genomic targets. Moreover, the frequency of a specific translocation between chromosomes XV and VIII strongly increased during DNA synthesis under the control of Pol32 polymerase. Finally, in the null POL32 double mutant, different pathways drove the integration in the various phases of the cell cycle and bridge-induced translocation was possible outside the S phase even without Pol32. The discovery of this cell-cycle dependent regulation of specific pathways of DNA integration, associated with an increase of ROS levels following translocation events, is a further demonstration of a sensing ability of the yeast cell in determining a cell-cycle-related choice of DNA repair pathways under stress.
Collapse
|
13
|
Keymakh M, Dau J, Hu J, Ferlez B, Lisby M, Crickard JB. Rdh54 stabilizes Rad51 at displacement loop intermediates to regulate genetic exchange between chromosomes. PLoS Genet 2022; 18:e1010412. [PMID: 36099310 PMCID: PMC9506641 DOI: 10.1371/journal.pgen.1010412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is a double-strand break DNA repair pathway that preserves chromosome structure. To repair damaged DNA, HR uses an intact donor DNA sequence located elsewhere in the genome. After the double-strand break is repaired, DNA sequence information can be transferred between donor and recipient DNA molecules through different mechanisms, including DNA crossovers that form between homologous chromosomes. Regulation of DNA sequence transfer is an important step in effectively completing HR and maintaining genome integrity. For example, mitotic exchange of information between homologous chromosomes can result in loss-of-heterozygosity (LOH), and in higher eukaryotes, the development of cancer. The DNA motor protein Rdh54 is a highly conserved DNA translocase that functions during HR. Several existing phenotypes in rdh54Δ strains suggest that Rdh54 may regulate effective exchange of DNA during HR. In our current study, we used a combination of biochemical and genetic techniques to dissect the role of Rdh54 on the exchange of genetic information during DNA repair. Our data indicate that RDH54 regulates DNA strand exchange by stabilizing Rad51 at an early HR intermediate called the displacement loop (D-loop). Rdh54 acts in opposition to Rad51 removal by the DNA motor protein Rad54. Furthermore, we find that expression of a catalytically inactivate allele of Rdh54, rdh54K318R, favors non-crossover outcomes. From these results, we propose a model for how Rdh54 may kinetically regulate strand exchange during homologous recombination. Homologous recombination is an important pathway in repairing DNA double strand breaks. For the purposes of this study, HR can be divided into two stages. The first is a DNA repair stage in which the broken DNA molecule is fixed. In the second stage, information can move from one DNA molecule to another. Enzymes that use the power of ATP hydrolysis to move along dsDNA aid in regulating both stages of HR. In this work we focused on the understudied DNA motor protein Rdh54. We combined genetic and biochemical approaches to show that Rdh54 regulates HR by stabilizing the recombinase protein Rad51 at early HR intermediates.
Collapse
Affiliation(s)
- Margaret Keymakh
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Jennifer Dau
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Jingyi Hu
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Bryan Ferlez
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - J. Brooks Crickard
- Deparment of Molecular Biology and Genetics, Cornell University Ithaca, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Choi J, Kong M, Gallagher DN, Li K, Bronk G, Cao Y, Greene EC, Haber JE. Repair of mismatched templates during Rad51-dependent Break-Induced Replication. PLoS Genet 2022; 18:e1010056. [PMID: 36054210 PMCID: PMC9477423 DOI: 10.1371/journal.pgen.1010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/15/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Using budding yeast, we have studied Rad51-dependent break-induced replication (BIR), where the invading 3’ end of a site-specific double-strand break (DSB) and a donor template share 108 bp of homology that can be easily altered. BIR still occurs about 10% as often when every 6th base is mismatched as with a perfectly matched donor. Here we explore the tolerance of mismatches in more detail, by examining donor templates that each carry 10 mismatches, each with different spatial arrangements. Although 2 of the 6 arrangements we tested were nearly as efficient as the evenly-spaced reference, 4 were significantly less efficient. A donor with all 10 mismatches clustered at the 3’ invading end of the DSB was not impaired compared to arrangements where mismatches were clustered at the 5’ end. Our data suggest that the efficiency of strand invasion is principally dictated by thermodynamic considerations, i.e., by the total number of base pairs that can be formed; but mismatch position-specific effects are also important. We also addressed an apparent difference between in vitro and in vivo strand exchange assays, where in vitro studies had suggested that at a single contiguous stretch of 8 consecutive bases was needed to be paired for stable strand pairing, while in vivo assays using 108-bp substrates found significant recombination even when every 6th base was mismatched. Now, using substrates of either 90 or 108 nt–the latter being the size of the in vivo templates–we find that in vitro D-loop results are very similar to the in vivo results. However, there are still notable differences between in vivo and in vitro assays that are especially evident with unevenly-distributed mismatches. Mismatches in the donor template are incorporated into the BIR product in a strongly polar fashion up to ~40 nucleotides from the 3’ end. Mismatch incorporation depends on the 3’→ 5’ proofreading exonuclease activity of DNA polymerase δ, with little contribution from Msh2/Mlh1 mismatch repair proteins, or from Rad1-Rad10 flap nuclease or the Mph1 helicase. Surprisingly, the probability of a mismatch 27 nt from the 3’ end being replaced by donor sequence was the same whether the preceding 26 nucleotides were mismatched every 6th base or fully homologous. These data suggest that DNA polymerase δ “chews back” the 3’ end of the invading strand without any mismatch-dependent cues from the strand invasion structure. However, there appears to be an alternative way to incorporate a mismatch at the first base at the 3’ end of the donor. DNA double-strand breaks (DSBs) are the most lethal forms of DNA damage and inaccurate repair of these breaks presents a serious threat to genomic integrity and cell viability. Break-induced replication (BIR) is a homologous recombination pathway that results in a nonreciprocal translocation of chromosome ends. We used budding yeast Saccharomyces cerevisiae to investigate Rad51-mediated BIR, where the invading 3’ end of the DSB and a donor template share 108 bp of homology. We examined the tolerance of differently distributed mismatches on a homologous donor template. A donor with all 10 mismatches clustered every 6th base at the 3’ invading end of the DSB was not impaired compared to arrangements where mismatches were clustered at the 5’ end. We also compared the efficiency of in vivo BIR with in vitro D-loop formation and find that for substrates of the same length, the tolerance for mismatches is comparable. However, there are still notable differences between in vivo and in vitro assays that are especially evident in substrates with unevenly-distributed mismatches. Mismatches are incorporated into the BIR product in a strongly polar fashion as far as about 40 nucleotides from the 3’ end, dependent on the 5’ to 3’ proofreading activity of DNA polymerase δ. Pol δ can “chew back” the 3’ end of the invading strand even when the sequences removed have no mismatches for the first 26 nucleotides. However, a mismatch at the first base can be removed from the 3’ end by another, unidentified mechanism.
Collapse
Affiliation(s)
- Jihyun Choi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Muwen Kong
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Danielle N. Gallagher
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kevin Li
- Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Gabriel Bronk
- Department of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yiting Cao
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hu X, Biswas A, De S. KMT2C-deficient tumors have elevated APOBEC mutagenesis and genomic instability in multiple cancers. NAR Cancer 2022; 4:zcac023. [PMID: 35898555 PMCID: PMC9310081 DOI: 10.1093/narcan/zcac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
The histone methyltransferase KMT2C is among the most frequently mutated epigenetic modifier genes in cancer and plays an essential role in MRE11-dependent DNA replication fork restart. However, the effects of KMT2C deficiency on genomic instability during tumorigenesis are unclear. Analyzing 9,663 tumors from 30 cancer cohorts, we report that KMT2C mutant tumors have a significant excess of APOBEC mutational signatures in several cancer types. We show that KMT2C deficiency promotes APOBEC expression and deaminase activity, and compromises DNA replication speed and delays fork restart, facilitating APOBEC mutagenesis targeting single stranded DNA near stalled forks. APOBEC-mediated mutations primarily accumulate during early replication and tend to cluster along the genome and also in 3D nuclear domains. Excessive APOBEC mutational signatures in KMT2C mutant tumors correlate with elevated genome maintenance defects and signatures of homologous recombination deficiency. We propose that KMT2C deficiency is a likely promoter of APOBEC mutagenesis, which fosters further genomic instability during tumor progression in multiple cancer types.
Collapse
Affiliation(s)
- Xiaoju Hu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey , New Brunswick, NJ 08901, USA
| | - Antara Biswas
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey , New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey , New Brunswick, NJ 08901, USA
| |
Collapse
|
16
|
Uribe-Calvillo T, Maestroni L, Marsolier MC, Khadaroo B, Arbiol C, Schott J, Llorente B. Comprehensive analysis of cis- and trans-acting factors affecting ectopic Break-Induced Replication. PLoS Genet 2022; 18:e1010124. [PMID: 35727827 PMCID: PMC9249352 DOI: 10.1371/journal.pgen.1010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/01/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Break-induced replication (BIR) is a highly mutagenic eukaryotic homologous DNA recombination pathway that repairs one-ended DNA double strand breaks such as broken DNA replication forks and eroded telomeres. While searching for cis-acting factors regulating ectopic BIR efficiency, we found that ectopic BIR efficiency is the highest close to chromosome ends. The variations of ectopic BIR efficiency as a function of the length of DNA to replicate can be described as a combination of two decreasing exponential functions, a property in line with repeated cycles of strand invasion, elongation and dissociation that characterize BIR. Interestingly, the apparent processivity of ectopic BIR depends on the length of DNA already synthesized. Ectopic BIR is more susceptible to disruption during the synthesis of the first ~35–40 kb of DNA than later, notably when the template chromatid is being transcribed or heterochromatic. Finally, we show that the Srs2 helicase promotes ectopic BIR from both telomere proximal and telomere distal regions in diploid cells but only from telomere proximal sites in haploid cells. Altogether, we bring new light on the factors impacting a last resort DNA repair pathway. DNA is a long molecule composed of two anti-parallel strands that can undergo breaks that need to be efficiently repaired to ensure genomic stability, hence preventing genetic diseases such as cancer. Homologous recombination is a major DNA repair pathway that copies DNA from intact homologous templates to seal DNA double strand breaks. Short DNA repair tracts are favored when homologous sequences for the two extremities of the broken molecule are present. However, when homologous sequences are present for only one extremity of the broken molecule, DNA repair synthesis can proceed up to the end of the chromosome, the telomere. This notably occurs at eroded telomeres when telomerase, the enzyme normally responsible for telomere elongation, is inactive, and at broken DNA replication intermediates. However, this Break-Induced Replication or BIR pathway is highly mutagenic. By initiating BIR at various distances from the telomere, we found that the length of DNA to synthesize significantly reduces BIR efficiency. Interestingly, our findings support two DNA synthesis phases, the first one being much less processive than the second one. Ultimately, this tends to restrain the use of this last resort DNA repair pathway to chromosome extremities notably when it takes place between non-allelic homologous sequences.
Collapse
Affiliation(s)
- Tannia Uribe-Calvillo
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Laetitia Maestroni
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Marie-Claude Marsolier
- Institute for Integrative Biology of the Cell (I2BC), Institut des sciences du vivant Frédéric Joliot, CNRS UMR 9198, CEA Saclay, Gif-sur-Yvette, France
- Eco-anthropologie (EA), Muséum national d’Histoire naturelle, CNRS, Université de Paris, Musée de l’Homme, Paris, France
| | - Basheer Khadaroo
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Christine Arbiol
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Jonathan Schott
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Bertrand Llorente
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
- * E-mail:
| |
Collapse
|
17
|
Break-induced replication: unraveling each step. Trends Genet 2022; 38:752-765. [PMID: 35459559 DOI: 10.1016/j.tig.2022.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Break-induced replication (BIR) repairs one-ended double-strand DNA breaks through invasion into a homologous template followed by DNA synthesis. Different from S-phase replication, BIR copies the template DNA in a migrating displacement loop (D-loop) and results in conservative inheritance of newly synthesized DNA. This unusual mode of DNA synthesis makes BIR a source of various genetic instabilities like those associated with cancer in humans. This review focuses on recent progress in delineating the mechanism of Rad51-dependent BIR in budding yeast. In addition, we discuss new data that describe changes in BIR efficiency and fidelity on encountering replication obstacles as well as the implications of these findings for BIR-dependent processes such as telomere maintenance and the repair of collapsed replication forks.
Collapse
|
18
|
A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation. Nat Commun 2022; 13:2012. [PMID: 35440629 PMCID: PMC9019021 DOI: 10.1038/s41467-022-29629-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Transcriptionally active loci are particularly prone to breakage and mounting evidence suggests that DNA Double-Strand Breaks arising in active genes are handled by a dedicated repair pathway, Transcription-Coupled DSB Repair (TC-DSBR), that entails R-loop accumulation and dissolution. Here, we uncover a function for the Bloom RecQ DNA helicase (BLM) in TC-DSBR in human cells. BLM is recruited in a transcription dependent-manner at DSBs where it fosters resection, RAD51 binding and accurate Homologous Recombination repair. However, in an R-loop dissolution-deficient background, we find that BLM promotes cell death. We report that upon excessive RNA:DNA hybrid accumulation, DNA synthesis is enhanced at DSBs, in a manner that depends on BLM and POLD3. Altogether our work unveils a role for BLM at DSBs in active chromatin, and highlights the toxic potential of RNA:DNA hybrids that accumulate at transcription-associated DSBs. DNA Double Strand breaks in transcriptionally active loci (TC-DSBs) undergo a dedicated repair pathway. Here, the authors show that excessive RNA:DNA hybrid accumulation at TC-DSBs elicits POLD3/BLM-dependent DNA synthesis that induces cell toxicity.
Collapse
|
19
|
Yan Z, Liu L, Pham N, Thakre PK, Malkova A, Ira G. Measuring the contributions of helicases to break-induced replication. Methods Enzymol 2022; 672:339-368. [DOI: 10.1016/bs.mie.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Epum EA, Haber JE. DNA replication: the recombination connection. Trends Cell Biol 2022; 32:45-57. [PMID: 34384659 PMCID: PMC8688190 DOI: 10.1016/j.tcb.2021.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
Failure to complete DNA replication is one of the major sources of genome instability leading to aneuploidy, chromosome breakage, and chromosome rearrangements that are associated with human cancer. One of the surprising revelations of the past decade is that the completion of replication at so-called common fragile sites (CFS) occurs very late in the cell cycle - at mitosis - through a process termed MiDAS (mitotic DNA synthesis). MiDAS is strongly related to another cancer-promoting phenomenon: the activation of alternative lengthening of telomeres (ALT). Our understanding of the mechanisms of ALT and MiDAS in mammalian cells has drawn heavily from recent advances in the study of break-induced replication (BIR), especially in budding yeast. We provide new insights into the BIR, MiDAS, and ALT pathways and their shared similarities.
Collapse
|
21
|
Anand R, Buechelmaier E, Belan O, Newton M, Vancevska A, Kaczmarczyk A, Takaki T, Rueda DS, Powell SN, Boulton SJ. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. Nature 2022; 601:268-273. [PMID: 34937945 PMCID: PMC8755542 DOI: 10.1038/s41586-021-04261-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/17/2021] [Indexed: 02/04/2023]
Abstract
DNA double-stranded breaks (DSBs) are deleterious lesions, and their incorrect repair can drive cancer development1. HELQ is a superfamily 2 helicase with 3' to 5' polarity, and its disruption in mice confers germ cells loss, infertility and increased predisposition to ovarian and pituitary tumours2-4. At the cellular level, defects in HELQ result in hypersensitivity to cisplatin and mitomycin C, and persistence of RAD51 foci after DNA damage3,5. Notably, HELQ binds to RPA and the RAD51-paralogue BCDX2 complex, but the relevance of these interactions and how HELQ functions in DSB repair remains unclear3,5,6. Here we show that HELQ helicase activity and a previously unappreciated DNA strand annealing function are differentially regulated by RPA and RAD51. Using biochemistry analyses and single-molecule imaging, we establish that RAD51 forms a complex with and strongly stimulates HELQ as it translocates during DNA unwinding. By contrast, RPA inhibits DNA unwinding by HELQ but strongly stimulates DNA strand annealing. Mechanistically, we show that HELQ possesses an intrinsic ability to capture RPA-bound DNA strands and then displace RPA to facilitate annealing of complementary sequences. Finally, we show that HELQ deficiency in cells compromises single-strand annealing and microhomology-mediated end-joining pathways and leads to bias towards long-tract gene conversion tracts during homologous recombination. Thus, our results implicate HELQ in multiple arms of DSB repair through co-factor-dependent modulation of intrinsic translocase and DNA strand annealing activities.
Collapse
Affiliation(s)
- Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Erika Buechelmaier
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Matthew Newton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | | | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Tohru Takaki
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK.
| | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
22
|
Wu X, Malkova A. Break-induced replication mechanisms in yeast and mammals. Curr Opin Genet Dev 2021; 71:163-170. [PMID: 34481360 DOI: 10.1016/j.gde.2021.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 11/26/2022]
Abstract
Break-induced replication (BIR) is a pathway specialized in repair of double-strand DNA breaks with only one end capable of invading homologous template that can arise following replication collapse, telomere erosion or DNA cutting by site-specific endonucleases. For a long time, yeast remained the only model system to study BIR. Studies in yeast demonstrated that BIR represents an unusual mode of DNA synthesis that is driven by a migrating bubble and leads to conservative inheritance of newly synthesized DNA. This unusual type of DNA synthesis leads to high levels of mutations and chromosome rearrangements. Recently, multiple examples of BIR were uncovered in mammalian cells that allowed the comparison of BIR between organisms. It appeared initially that BIR in mammalian cells is predominantly independent of RAD51, and therefore different from BIR that is predominantly Rad51-dependent in yeast. However, a series of systematic studies utilizing site-specific DNA breaks for BIR initiation in mammalian reporters led to the discovery of highly efficient RAD51-dependent BIR, allowing side-by side comparison with BIR in yeast which is the focus of this review.
Collapse
Affiliation(s)
- Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States.
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
23
|
Elbakry A, Löbrich M. Homologous Recombination Subpathways: A Tangle to Resolve. Front Genet 2021; 12:723847. [PMID: 34408777 PMCID: PMC8365153 DOI: 10.3389/fgene.2021.723847] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
Homologous recombination (HR) is an essential pathway for DNA double-strand break (DSB) repair, which can proceed through various subpathways that have distinct elements and genetic outcomes. In this mini-review, we highlight the main features known about HR subpathways operating at DSBs in human cells and the factors regulating subpathway choice. We examine new developments that provide alternative models of subpathway usage in different cell types revise the nature of HR intermediates involved and reassess the frequency of repair outcomes. We discuss the impact of expanding our understanding of HR subpathways and how it can be clinically exploited.
Collapse
Affiliation(s)
- Amira Elbakry
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
24
|
Cai P, Duan X, Wu X, Gao L, Ye M, Zhou YJ. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris. Nucleic Acids Res 2021; 49:7791-7805. [PMID: 34197615 PMCID: PMC8287956 DOI: 10.1093/nar/gkab535] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/28/2021] [Accepted: 06/13/2021] [Indexed: 02/05/2023] Open
Abstract
The industrial yeast Pichia pastoris has been harnessed extensively for production of proteins, and it is attracting attention as a chassis cell factory for production of chemicals. However, the lack of synthetic biology tools makes it challenging in rewiring P. pastoris metabolism. We here extensively engineered the recombination machinery by establishing a CRISPR-Cas9 based genome editing platform, which improved the homologous recombination (HR) efficiency by more than 54 times, in particular, enhanced the simultaneously assembly of multiple fragments by 13.5 times. We also found that the key HR-relating gene RAD52 of P. pastoris was largely repressed in compared to that of Saccharomyces cerevisiae. This gene editing system enabled efficient seamless gene disruption, genome integration and multiple gene assembly with positive rates of 68–90%. With this efficient genome editing platform, we characterized 46 potential genome integration sites and 18 promoters at different growth conditions. This library of neutral sites and promoters enabled two-factorial regulation of gene expression and metabolic pathways and resulted in a 30-fold range of fatty alcohol production (12.6–380 mg/l). The expanding genetic toolbox will facilitate extensive rewiring of P. pastoris for chemical production, and also shed light on engineering of other non-conventional yeasts.
Collapse
Affiliation(s)
- Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xingpeng Duan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ye
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Laboratory of Synthetic Biology for Biocataysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Al-Zain AM, Symington LS. The dark side of homology-directed repair. DNA Repair (Amst) 2021; 106:103181. [PMID: 34311272 DOI: 10.1016/j.dnarep.2021.103181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
DNA double strand breaks (DSB) are cytotoxic lesions that can lead to genome rearrangements and genomic instability, which are hallmarks of cancer. The two main DSB repair pathways are non-homologous end joining and homologous recombination (HR). While HR is generally highly accurate, it has the potential for rearrangements that occur directly or through intermediates generated during the repair process. Whole genome sequencing of cancers has revealed numerous types of structural rearrangement signatures that are often indicative of repair mediated by sequence homology. However, it can be challenging to delineate repair mechanisms from sequence analysis of rearrangement end products from cancer genomes, or even model systems, because the same rearrangements can be generated by different pathways. Here, we review homology-directed repair pathways and their consequences. Exploring those pathways can lead to a greater understanding of rearrangements that occur in cancer cells.
Collapse
Affiliation(s)
- Amr M Al-Zain
- Program in Biological Sciences, Columbia University, New York, NY, 10027, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, United States.
| |
Collapse
|
26
|
Learning Yeast Genetics from Miro Radman. Cells 2021; 10:cells10040945. [PMID: 33923882 PMCID: PMC8072546 DOI: 10.3390/cells10040945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Miroslav Radman's far-sighted ideas have penetrated many aspects of our study of the repair of broken eukaryotic chromosomes. For over 35 years my lab has studied different aspects of the repair of chromosomal breaks in the budding yeast, Saccharomyces cerevisiae. From the start, we have made what we thought were novel observations that turned out to have been predicted by Miro's extraordinary work in the bacterium Escherichia coli and then later in the radiation-resistant Dienococcus radiodurans. In some cases, we have been able to extend some of his ideas a bit further.
Collapse
|
27
|
Pham N, Yan Z, Yu Y, Faria Afreen M, Malkova A, Haber JE, Ira G. Mechanisms restraining break-induced replication at two-ended DNA double-strand breaks. EMBO J 2021; 40:e104847. [PMID: 33844333 DOI: 10.15252/embj.2020104847] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.
Collapse
Affiliation(s)
- Nhung Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mosammat Faria Afreen
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Tripuraneni V, Memisoglu G, MacAlpine HK, Tran TQ, Zhu W, Hartemink AJ, Haber JE, MacAlpine DM. Local nucleosome dynamics and eviction following a double-strand break are reversible by NHEJ-mediated repair in the absence of DNA replication. Genome Res 2021; 31:775-788. [PMID: 33811083 PMCID: PMC8092003 DOI: 10.1101/gr.271155.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
We interrogated at nucleotide resolution the spatiotemporal order of chromatin changes that occur immediately following a site-specific double-strand break (DSB) upstream of the PHO5 locus and its subsequent repair by nonhomologous end joining (NHEJ). We observed the immediate eviction of a nucleosome flanking the break and the repositioning of adjacent nucleosomes away from the break. These early chromatin events were independent of the end-processing Mre11-Rad50-Xrs2 (MRX) complex and preceded the MRX-dependent broad eviction of histones and DNA end-resectioning that extends up to ∼8 kb away from the break. We also examined the temporal dynamics of NHEJ-mediated repair in a G1-arrested population. Concomitant with DSB repair by NHEJ, we observed the redeposition and precise repositioning of nucleosomes at their originally occupied positions. This re-establishment of the prelesion chromatin landscape suggests that a DNA replication-independent mechanism exists to preserve epigenome organization following DSB repair.
Collapse
Affiliation(s)
- Vinay Tripuraneni
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Gonen Memisoglu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Trung Q Tran
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Wei Zhu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
29
|
Kockler ZW, Osia B, Lee R, Musmaker K, Malkova A. Repair of DNA Breaks by Break-Induced Replication. Annu Rev Biochem 2021; 90:165-191. [PMID: 33792375 DOI: 10.1146/annurev-biochem-081420-095551] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.
Collapse
Affiliation(s)
- Z W Kockler
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - B Osia
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - R Lee
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - K Musmaker
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| | - A Malkova
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|
30
|
Garcia LE, Edera AA, Palmer JD, Sato H, Sanchez-Puerta MV. Horizontal gene transfers dominate the functional mitochondrial gene space of a holoparasitic plant. THE NEW PHYTOLOGIST 2021; 229:1701-1714. [PMID: 32929737 DOI: 10.1111/nph.16926] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Although horizontal gene transfer (HGT) is common in angiosperm mitochondrial DNAs (mtDNAs), few cases of functional foreign genes have been identified. The one outstanding candidate for large-scale functional HGT is the holoparasite Lophophytum mirabile, whose mtDNA has lost most native genes but contains intact foreign homologs acquired from legume host plants. To investigate the extent to which this situation results from functional replacement of native by foreign genes, functional mitochondrial gene transfer to the nucleus, and/or loss of mitochondrial biochemical function in the context of extreme parasitism, we examined the Lophophytum mitochondrial and nuclear transcriptomes by deep paired-end RNA sequencing. Most foreign mitochondrial genes in Lophophytum are highly transcribed, accurately spliced, and efficiently RNA edited. By contrast, we found no evidence for functional gene transfer to the nucleus or loss of mitochondrial functions in Lophophytum. Many functional replacements occurred via the physical replacement of native genes by foreign genes. Some of these events probably occurred as the final act of HGT itself. Lophophytum mtDNA has experienced an unprecedented level of functional replacement of native genes by foreign copies. This raises important questions concerning population-genetic and molecular regimes that underlie such a high level of foreign gene takeover.
Collapse
Affiliation(s)
- Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza, M5502JMA, Argentina
| | - Alejandro A Edera
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Argentina
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Hector Sato
- Facultad de Ciencias Agrarias (UNJu), Cátedra de Botánica General-Herbario JUA, Alberdi 47, Jujuy, CP 4600, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza, M5502JMA, Argentina
| |
Collapse
|
31
|
Li S, Wang H, Jehi S, Li J, Liu S, Wang Z, Truong L, Chiba T, Wang Z, Wu X. PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J 2021; 40:e104509. [PMID: 33470420 PMCID: PMC8047440 DOI: 10.15252/embj.2020104509] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Break‐induced replication (BIR) is a specialized homologous‐recombination pathway for DNA double‐strand break (DSB) repair, which often induces genome instability. In this study, we establish EGFP‐based recombination reporters to systematically study BIR in mammalian cells and demonstrate an important role of human PIF1 helicase in promoting BIR. We show that at endonuclease cleavage sites, PIF1‐dependent BIR is used for homology‐initiated recombination requiring long track DNA synthesis, but not short track gene conversion (STGC). We also show that structure formation‐prone AT‐rich DNA sequences derived from common fragile sites (CFS‐ATs) induce BIR upon replication stress and oncogenic stress, and PCNA‐dependent loading of PIF1 onto collapsed/broken forks is critical for BIR activation. At broken replication forks, even STGC‐mediated repair of double‐ended DSBs depends on POLD3 and PIF1, revealing an unexpected mechanism of BIR activation upon replication stress that differs from the conventional BIR activation model requiring DSB end sensing at endonuclease‐generated breaks. Furthermore, loss of PIF1 is synthetically lethal with loss of FANCM, which is involved in protecting CFS‐ATs. The breast cancer‐associated PIF1 mutant L319P is defective in BIR, suggesting a direct link of BIR to oncogenic processes.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hailong Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sanaa Jehi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jun Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shuo Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Zi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Lan Truong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, University of Chinese Academy of Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
32
|
Stivison EA, Young KJ, Symington LS. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres. Nucleic Acids Res 2021; 48:12697-12710. [PMID: 33264397 PMCID: PMC7736798 DOI: 10.1093/nar/gkaa1081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Break-induced replication (BIR) is a mechanism used to heal one-ended DNA double-strand breaks, such as those formed at collapsed replication forks or eroded telomeres. Instead of utilizing a canonical replication fork, BIR is driven by a migrating D-loop and is associated with a high frequency of mutagenesis. Here we show that when BIR encounters an interstitial telomere sequence (ITS), the machinery frequently terminates, resulting in the formation of an ectopic telomere. The primary mechanism to convert the ITS to a functional telomere is by telomerase-catalyzed addition of telomeric repeats with homology-directed repair serving as a back-up mechanism. Termination of BIR and creation of an ectopic telomere is promoted by Mph1/FANCM helicase, which has the capacity to disassemble D-loops. Other sequences that have the potential to seed new telomeres but lack the unique features of a natural telomere sequence, do not terminate BIR at a significant frequency in wild-type cells. However, these sequences can form ectopic telomeres if BIR is made less processive. Our results support a model in which features of the ITS itself, such as the propensity to form secondary structures and telomeric protein binding, pose a challenge to BIR and increase the vulnerability of the D-loop to dissociation by helicases, thereby promoting ectopic telomere formation.
Collapse
Affiliation(s)
- Elizabeth A Stivison
- Program in Nutritional and Metabolic Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kati J Young
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
33
|
Shah SS, Hartono S, Piazza A, Som V, Wright W, Chédin F, Heyer WD. Rdh54/Tid1 inhibits Rad51-Rad54-mediated D-loop formation and limits D-loop length. eLife 2020; 9:59112. [PMID: 33185188 PMCID: PMC7695457 DOI: 10.7554/elife.59112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Displacement loops (D-loops) are critical intermediates formed during homologous recombination. Rdh54 (a.k.a. Tid1), a Rad54 paralog in Saccharomyces cerevisiae, is well-known for its role with Dmc1 recombinase during meiotic recombination. Yet contrary to Dmc1, Rdh54/Tid1 is also present in somatic cells where its function is less understood. While Rdh54/Tid1 enhances the Rad51 DNA strand invasion activity in vitro, it is unclear how it interplays with Rad54. Here, we show that Rdh54/Tid1 inhibits D-loop formation by Rad51 and Rad54 in an ATPase-independent manner. Using a novel D-loop Mapping Assay, we further demonstrate that Rdh54/Tid1 uniquely restricts the length of Rad51-Rad54-mediated D-loops. The alterations in D-loop properties appear to be important for cell survival and mating-type switch in haploid yeast. We propose that Rdh54/Tid1 and Rad54 compete for potential binding sites within the Rad51 filament, where Rdh54/Tid1 acts as a physical roadblock to Rad54 translocation, limiting D-loop formation and D-loop length.
Collapse
Affiliation(s)
- Shanaya Shital Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| | - Stella Hartono
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Aurèle Piazza
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States.,CR CNRS UMR5239, Team Genome Mechanics, Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon 46, Lyon, France
| | - Vanessa Som
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| | - William Wright
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States.,Mammoth Biosciences, South San Francisco, United States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
34
|
Paix A, Rasoloson D, Folkmann A, Seydoux G. Rapid Tagging of Human Proteins with Fluorescent Reporters by Genome Engineering using Double-Stranded DNA Donors. ACTA ACUST UNITED AC 2020; 129:e102. [PMID: 31710422 PMCID: PMC6935516 DOI: 10.1002/cpmb.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tagging proteins with fluorescent reporters such as green fluorescent protein (GFP) is a powerful method to determine protein localization, especially when proteins are tagged in the endogenous context to preserve native genomic regulation. However, insertion of fluorescent reporters into the genomes of mammalian cells has required the construction of plasmids containing selection markers and/or extended sequences homologous to the site of insertion (homology arms). Here we describe a streamlined protocol that eliminates all cloning steps by taking advantage of the high propensity of linear DNAs to engage in homology‐directed repair of DNA breaks induced by the Cas9 RNA‐guided endonuclease. The protocol uses PCR amplicons, or synthetic gene fragments, with short homology arms (30‐40 bp) to insert fluorescent reporters at specific genomic locations. The linear DNAs are introduced into cells with preassembled Cas9‐crRNA‐tracrRNA complexes using one of two transfection procedures, nucleofection or lipofection. The protocol can be completed under a week, with efficiencies ranging from 0.5% to 20% of transfected cells depending on the locus targeted. © 2019 The Authors.
Collapse
Affiliation(s)
- Alexandre Paix
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dominique Rasoloson
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Folkmann
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Hanscom T, McVey M. Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution. Cells 2020; 9:E1657. [PMID: 32660124 PMCID: PMC7407515 DOI: 10.3390/cells9071657] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer.
Collapse
Affiliation(s)
| | - Mitch McVey
- Department. of Biology, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
36
|
Crickard JB, Moevus CJ, Kwon Y, Sung P, Greene EC. Rad54 Drives ATP Hydrolysis-Dependent DNA Sequence Alignment during Homologous Recombination. Cell 2020; 181:1380-1394.e18. [PMID: 32502392 DOI: 10.1016/j.cell.2020.04.056] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022]
Abstract
Homologous recombination (HR) helps maintain genome integrity, and HR defects give rise to disease, especially cancer. During HR, damaged DNA must be aligned with an undamaged template through a process referred to as the homology search. Despite decades of study, key aspects of this search remain undefined. Here, we use single-molecule imaging to demonstrate that Rad54, a conserved Snf2-like protein found in all eukaryotes, switches the search from the diffusion-based pathways characteristic of the basal HR machinery to an active process in which DNA sequences are aligned via an ATP-dependent molecular motor-driven mechanism. We further demonstrate that Rad54 disrupts the donor template strands, enabling the search to take place within a migrating DNA bubble-like structure that is bound by replication protein A (RPA). Our results reveal that Rad54, working together with RPA, fundamentally alters how DNA sequences are aligned during HR.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Corentin J Moevus
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
37
|
Wierson WA, Welker JM, Almeida MP, Mann CM, Webster DA, Torrie ME, Weiss TJ, Kambakam S, Vollbrecht MK, Lan M, McKeighan KC, Levey J, Ming Z, Wehmeier A, Mikelson CS, Haltom JA, Kwan KM, Chien CB, Balciunas D, Ekker SC, Clark KJ, Webber BR, Moriarity BS, Solin SL, Carlson DF, Dobbs DL, McGrail M, Essner J. Efficient targeted integration directed by short homology in zebrafish and mammalian cells. eLife 2020; 9:e53968. [PMID: 32412410 PMCID: PMC7228771 DOI: 10.7554/elife.53968] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Efficient precision genome engineering requires high frequency and specificity of integration at the genomic target site. Here, we describe a set of resources to streamline reporter gene knock-ins in zebrafish and demonstrate the broader utility of the method in mammalian cells. Our approach uses short homology of 24-48 bp to drive targeted integration of DNA reporter cassettes by homology-mediated end joining (HMEJ) at high frequency at a double strand break in the targeted gene. Our vector series, pGTag (plasmids for Gene Tagging), contains reporters flanked by a universal CRISPR sgRNA sequence which enables in vivo liberation of the homology arms. We observed high rates of germline transmission (22-100%) for targeted knock-ins at eight zebrafish loci and efficient integration at safe harbor loci in porcine and human cells. Our system provides a straightforward and cost-effective approach for high efficiency gene targeting applications in CRISPR and TALEN compatible systems.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- CRISPR-Associated Proteins/genetics
- CRISPR-Associated Proteins/metabolism
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Fibroblasts/metabolism
- Gene Expression Regulation
- Gene Knock-In Techniques
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Recombinational DNA Repair
- Sequence Homology, Nucleic Acid
- Sus scrofa
- Transcription Activator-Like Effector Nucleases/genetics
- Transcription Activator-Like Effector Nucleases/metabolism
- Zebrafish/genetics
Collapse
Affiliation(s)
- Wesley A Wierson
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Carla M Mann
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | | | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Trevor J Weiss
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Sekhar Kambakam
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | | | - Merrina Lan
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Kenna C McKeighan
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Jacklyn Levey
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Zhitao Ming
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Alec Wehmeier
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Christopher S Mikelson
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Jeffrey A Haltom
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah Medical CenterSalt Lake CityUnited States
| | - Darius Balciunas
- Department of Biology, Temple UniversityPhiladelphiaUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUnited States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUnited States
| | - Beau R Webber
- Department of Pediatrics, Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
| | - Branden S Moriarity
- Department of Pediatrics, Masonic Cancer Center, University of MinnesotaMinneapolisUnited States
| | | | | | - Drena L Dobbs
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| | - Jeffrey Essner
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmesUnited States
| |
Collapse
|
38
|
O'Rourke JJ, Bythell-Douglas R, Dunn EA, Deans AJ. ALT control, delete: FANCM as an anti-cancer target in Alternative Lengthening of Telomeres. Nucleus 2020; 10:221-230. [PMID: 31663812 PMCID: PMC6949022 DOI: 10.1080/19491034.2019.1685246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Break-induced replication is a specific type of DNA repair that has a co-opted role in telomere extension by telomerase-negative cancer cells. This Alternative Lengthening of Telomeres (or ‘ALT’) is required for viability in approximately 10% of all carcinomas, but up to 50% of the soft-tissue derived sarcomas. In several recent studies, we and others demonstrate that expression and activity of FANCM, a DNA translocase protein, is essential for the viability of ALT-associated cancers. Here we provide a summary of how and why FANCM depletion leads to deletion of ALT-controlled cancers, predominantly through a hyper-activation of break-induced replication. We also discuss how FANCM can and has been targeted in cancer cell killing, including potential opportunities in ALT and other genetic backgrounds.
Collapse
Affiliation(s)
- Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, (St Vincent's) University of Melbourne, Fitzroy, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Elyse A Dunn
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, (St Vincent's) University of Melbourne, Fitzroy, Australia
| |
Collapse
|
39
|
Krais JJ, Johnson N. Ectopic RNF168 expression promotes break-induced replication-like DNA synthesis at stalled replication forks. Nucleic Acids Res 2020; 48:4298-4308. [PMID: 32182354 PMCID: PMC7192614 DOI: 10.1093/nar/gkaa154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 01/26/2023] Open
Abstract
The RNF168 E3 ubiquitin ligase is activated in response to double stranded DNA breaks (DSBs) where it mono-ubiquitinates γH2AX (ub-H2AX). RNF168 protein expression and ubiquitin signaling are finely regulated during the sensing, repair and resolution of DNA damage in order to avoid excessive spreading of ubiquitinated chromatin. Supra-physiological RNF168 protein expression levels have been shown to block DNA end resection at DSBs and increase PARP inhibitor (PARPi) sensitivity. In this study, we examined the impact of ectopic RNF168 overexpression on hydroxyurea (HU)-induced stalled replication forks in the setting of BRCA1 deficiency. Surprisingly, RNF168 overexpression resulted in the extension of DNA fibers, despite the presence of HU, in BRCA1 deficient cells. Mechanistically, RNF168 overexpression recruited RAD18 to ub-H2AX at HU-induced DNA breaks. Subsequently, a RAD18-SLF1 axis was responsible for initiating DNA synthesis in a manner that also required the break-induced replication (BIR) factors RAD52 and POLD3. Strikingly, the presence of wild-type BRCA1 blocked RNF168-induced DNA synthesis. Notably, BIR-like repair has previously been linked with tandem duplication events found in BRCA1-mutated genomes. Thus, in the absence of BRCA1, excessive RNF168 expression may drive BIR, and contribute to the mutational signatures observed in BRCA1-mutated cancers.
Collapse
Affiliation(s)
- John J Krais
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
40
|
Ciudad T, Bellido A, Hermosa B, Andaluz E, Larriba G. DLH1, the Candida albicans homologue of the meiosis-specific DMC1, is not involved in DNA repair but catalyses spontaneous interhomologue recombination and might promote non-crossover events. Cell Microbiol 2019; 22:e13137. [PMID: 31701646 DOI: 10.1111/cmi.13137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Toni Ciudad
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Alberto Bellido
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Belén Hermosa
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Encarnación Andaluz
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Germán Larriba
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
41
|
Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 2019; 20:698-714. [PMID: 31263220 PMCID: PMC7315405 DOI: 10.1038/s41580-019-0152-0] [Citation(s) in RCA: 945] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 11/09/2022]
Abstract
The major pathways of DNA double-strand break (DSB) repair are crucial for maintaining genomic stability. However, if deployed in an inappropriate cellular context, these same repair functions can mediate chromosome rearrangements that underlie various human diseases, ranging from developmental disorders to cancer. The two major mechanisms of DSB repair in mammalian cells are non-homologous end joining (NHEJ) and homologous recombination. In this Review, we consider DSB repair-pathway choice in somatic mammalian cells as a series of 'decision trees', and explore how defective pathway choice can lead to genomic instability. Stalled, collapsed or broken DNA replication forks present a distinctive challenge to the DSB repair system. Emerging evidence suggests that the 'rules' governing repair-pathway choice at stalled replication forks differ from those at replication-independent DSBs.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Replication Stress Response Links RAD52 to Protecting Common Fragile Sites. Cancers (Basel) 2019; 11:cancers11101467. [PMID: 31569559 PMCID: PMC6826974 DOI: 10.3390/cancers11101467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Rad52 in yeast is a key player in homologous recombination (HR), but mammalian RAD52 is dispensable for HR as shown by the lack of a strong HR phenotype in RAD52-deficient cells and in RAD52 knockout mice. RAD52 function in mammalian cells first emerged with the discovery of its important backup role to BRCA (breast cancer genes) in HR. Recent new evidence further demonstrates that RAD52 possesses multiple activities to cope with replication stress. For example, replication stress-induced DNA repair synthesis in mitosis (MiDAS) and oncogene overexpression-induced DNA replication are dependent on RAD52. RAD52 becomes essential in HR to repair DSBs containing secondary structures, which often arise at collapsed replication forks. RAD52 is also implicated in break-induced replication (BIR) and is found to inhibit excessive fork reversal at stalled replication forks. These various functions of RAD52 to deal with replication stress have been linked to the protection of genome stability at common fragile sites, which are often associated with the DNA breakpoints in cancer. Therefore, RAD52 has important recombination roles under special stress conditions in mammalian cells, and presents as a promising anti-cancer therapy target.
Collapse
|
43
|
Donnianni RA, Zhou ZX, Lujan SA, Al-Zain A, Garcia V, Glancy E, Burkholder AB, Kunkel TA, Symington LS. DNA Polymerase Delta Synthesizes Both Strands during Break-Induced Replication. Mol Cell 2019; 76:371-381.e4. [PMID: 31495565 DOI: 10.1016/j.molcel.2019.07.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 04/15/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Break-induced replication (BIR) is a pathway of homology-directed repair that repairs one-ended DNA breaks, such as those formed at broken replication forks or uncapped telomeres. In contrast to conventional S phase DNA synthesis, BIR proceeds by a migrating D-loop and results in conservative synthesis of the nascent strands. DNA polymerase delta (Pol δ) initiates BIR; however, it is not known whether synthesis of the invading strand switches to a different polymerase or how the complementary strand is synthesized. By using alleles of the replicative DNA polymerases that are permissive for ribonucleotide incorporation, thus generating a signature of their action in the genome that can be identified by hydrolytic end sequencing, we show that Pol δ replicates both the invading and the complementary strand during BIR. In support of this conclusion, we show that depletion of Pol δ from cells reduces BIR, whereas depletion of Pol ε has no effect.
Collapse
Affiliation(s)
- Roberto A Donnianni
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott A Lujan
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, NC 27709, USA
| | - Amr Al-Zain
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Valerie Garcia
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eleanor Glancy
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, NIH/NIEHS, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity & Structural Biology Laboratory, NIH/NIEHS, DHHS, Research Triangle Park, NC 27709, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
44
|
Steinfeld JB, Beláň O, Kwon Y, Terakawa T, Al-Zain A, Smith MJ, Crickard JB, Qi Z, Zhao W, Rothstein R, Symington LS, Sung P, Boulton SJ, Greene EC. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes Dev 2019; 33:1191-1207. [PMID: 31371435 PMCID: PMC6719624 DOI: 10.1101/gad.328062.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
The vast majority of eukaryotes possess two DNA recombinases: Rad51, which is ubiquitously expressed, and Dmc1, which is meiosis-specific. The evolutionary origins of this two-recombinase system remain poorly understood. Interestingly, Dmc1 can stabilize mismatch-containing base triplets, whereas Rad51 cannot. Here, we demonstrate that this difference can be attributed to three amino acids conserved only within the Dmc1 lineage of the Rad51/RecA family. Chimeric Rad51 mutants harboring Dmc1-specific amino acids gain the ability to stabilize heteroduplex DNA joints with mismatch-containing base triplets, whereas Dmc1 mutants with Rad51-specific amino acids lose this ability. Remarkably, RAD-51 from Caenorhabditis elegans, an organism without Dmc1, has acquired "Dmc1-like" amino acids. Chimeric C. elegans RAD-51 harboring "canonical" Rad51 amino acids gives rise to toxic recombination intermediates, which must be actively dismantled to permit normal meiotic progression. We propose that Dmc1 lineage-specific amino acids involved in the stabilization of heteroduplex DNA joints with mismatch-containing base triplets may contribute to normal meiotic recombination.
Collapse
Affiliation(s)
- Justin B Steinfeld
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Ondrej Beláň
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Tsuyoshi Terakawa
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Amr Al-Zain
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Michael J Smith
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - J Brooks Crickard
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Zhi Qi
- Center for Quantitative Biology, Peking University-Tsinghua University Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
45
|
Bhandari J, Karg T, Golic KG. Homolog-Dependent Repair Following Dicentric Chromosome Breakage in Drosophila melanogaster. Genetics 2019; 212:615-630. [PMID: 31053594 PMCID: PMC6614899 DOI: 10.1534/genetics.119.302247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Double-strand DNA breaks are repaired by one of several mechanisms that rejoin two broken ends. However, cells are challenged when asked to repair a single broken end and respond by: (1) inducing programmed cell death; (2) healing the broken end by constructing a new telomere; (3) adapting to the broken end and resuming the mitotic cycle without repair; and (4) using information from the sister chromatid or homologous chromosome to restore a normal chromosome terminus. During one form of homolog-dependent repair in yeast, termed break-induced replication (BIR), a template chromosome can be copied for hundreds of kilobases. BIR efficiency depends on Pif1 helicase and Pol32, a nonessential subunit of DNA polymerase δ. To date, there is little evidence that BIR can be used for extensive chromosome repair in higher eukaryotes. We report that a dicentric chromosome broken in mitosis in the male germline of Drosophila melanogaster is usually repaired by healing, but can also be repaired in a homolog-dependent fashion, restoring at least 1.3 Mb of terminal sequence information. This mode of repair is significantly reduced in pif1 and pol32 mutants. Formally, the repaired chromosomes are recombinants. However, the absence of reciprocal recombinants and the dependence on Pif1 and Pol32 strongly support the hypothesis that BIR is the mechanism for restoration of the chromosome terminus. In contrast to yeast, pif1 mutants in Drosophila exhibit a reduced rate of chromosome healing, likely owing to fundamental differences in telomeres between these organisms.
Collapse
Affiliation(s)
- Jayaram Bhandari
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Travis Karg
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Kent G Golic
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
46
|
FANCM limits ALT activity by restricting telomeric replication stress induced by deregulated BLM and R-loops. Nat Commun 2019; 10:2253. [PMID: 31138795 PMCID: PMC6538666 DOI: 10.1038/s41467-019-10179-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Telomerase negative immortal cancer cells elongate telomeres through the Alternative Lengthening of Telomeres (ALT) pathway. While sustained telomeric replicative stress is required to maintain ALT, it might also lead to cell death when excessive. Here, we show that the ATPase/translocase activity of FANCM keeps telomeric replicative stress in check specifically in ALT cells. When FANCM is depleted in ALT cells, telomeres become dysfunctional, and cells stop proliferating and die. FANCM depletion also increases ALT-associated marks and de novo synthesis of telomeric DNA. Depletion of the BLM helicase reduces the telomeric replication stress and cell proliferation defects induced by FANCM inactivation. Finally, FANCM unwinds telomeric R-loops in vitro and suppresses their accumulation in cells. Overexpression of RNaseH1 completely abolishes the replication stress remaining in cells codepleted for FANCM and BLM. Thus, FANCM allows controlled ALT activity and ALT cell proliferation by limiting the toxicity of uncontrolled BLM and telomeric R-loops. In cancer cells, telomeres can be elongated through homology directed-repair pathways in a process known as Alternative Lengthening of Telomeres (ALT). Here, the authors reveal that FANCM regulates ALT activity and ALT cell proliferation by limiting the activity of uncontrolled BLM and telomeric R-loops.
Collapse
|
47
|
Lu R, O'Rourke JJ, Sobinoff AP, Allen JAM, Nelson CB, Tomlinson CG, Lee M, Reddel RR, Deans AJ, Pickett HA. The FANCM-BLM-TOP3A-RMI complex suppresses alternative lengthening of telomeres (ALT). Nat Commun 2019; 10:2252. [PMID: 31138797 PMCID: PMC6538672 DOI: 10.1038/s41467-019-10180-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
The collapse of stalled replication forks is a major driver of genomic instability. Several committed mechanisms exist to resolve replication stress. These pathways are particularly pertinent at telomeres. Cancer cells that use Alternative Lengthening of Telomeres (ALT) display heightened levels of telomere-specific replication stress, and co-opt stalled replication forks as substrates for break-induced telomere synthesis. FANCM is a DNA translocase that can form independent functional interactions with the BLM-TOP3A-RMI (BTR) complex and the Fanconi anemia (FA) core complex. Here, we demonstrate that FANCM depletion provokes ALT activity, evident by increased break-induced telomere synthesis, and the induction of ALT biomarkers. FANCM-mediated attenuation of ALT requires its inherent DNA translocase activity and interaction with the BTR complex, but does not require the FA core complex, indicative of FANCM functioning to restrain excessive ALT activity by ameliorating replication stress at telomeres. Synthetic inhibition of FANCM-BTR complex formation is selectively toxic to ALT cancer cells.
Collapse
Affiliation(s)
- Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher G Tomlinson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Michael Lee
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia.
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia.
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia.
| |
Collapse
|
48
|
Frequency of DNA end joining in trans is not determined by the predamage spatial proximity of double-strand breaks in yeast. Proc Natl Acad Sci U S A 2019; 116:9481-9490. [PMID: 31019070 DOI: 10.1073/pnas.1818595116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA double-strand breaks (DSBs) are serious genomic insults that can lead to chromosomal rearrangements if repaired incorrectly. To gain insight into the nuclear mechanisms contributing to these rearrangements, we developed an assay in yeast to measure cis (same site) vs. trans (different site) repair for the majority process of precise nonhomologous end joining (NHEJ). In the assay, the HO endonuclease gene is placed between two HO cut sites such that HO expression is self-terminated upon induction. We further placed an additional cut site in various genomic loci such that NHEJ in trans led to expression of a LEU2 reporter gene. Consistent with prior reports, cis NHEJ was more efficient than trans NHEJ. However, unlike homologous recombination, where spatial distance between a single DSB and donor locus was previously shown to correlate with repair efficiency, trans NHEJ frequency remained essentially constant regardless of the position of the two DSB loci, even when they were on the same chromosome or when two trans repair events were put in competition. Repair of similar DSBs via single-strand annealing of short terminal direct repeats showed substantially higher repair efficiency and trans repair frequency, but still without a strong correlation of trans repair to genomic position. Our results support a model in which yeast cells mobilize, and perhaps compartmentalize, multiple DSBs in a manner that no longer reflects the predamage position of two broken loci.
Collapse
|
49
|
Bordelet H, Dubrana K. Keep moving and stay in a good shape to find your homologous recombination partner. Curr Genet 2019; 65:29-39. [PMID: 30097675 PMCID: PMC6342867 DOI: 10.1007/s00294-018-0873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023]
Abstract
Genomic DNA is constantly exposed to damage. Among the lesion in DNA, double-strand breaks (DSB), because they disrupt the two strands of the DNA double helix, are the more dangerous. DSB are repaired through two evolutionary conserved mechanisms: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). Whereas NHEJ simply reseals the double helix with no or minimal processing, HR necessitates the formation of a 3'ssDNA through the processing of DSB ends by the resection machinery and relies on the recognition and pairing of this 3'ssDNA tails with an intact homologous sequence. Despite years of active research on HR, the manner by which the two homologous sequences find each other in the crowded nucleus, and how this modulates HR efficiency, only recently emerges. Here, we review recent advances in our understanding of the factors limiting the search of a homologous sequence during HR.
Collapse
Affiliation(s)
- Hélène Bordelet
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France
| | - Karine Dubrana
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France.
| |
Collapse
|
50
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|