1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Bespalova AV, Kulikova DA, Zelentsova ES, Rezvykh AP, Guseva IO, Dorador AP, Evgen’ev MB, Funikov SY. Paramutation-Like Behavior of Genic piRNA-Producing Loci in Drosophila virilis. Int J Mol Sci 2025; 26:4243. [PMID: 40362480 PMCID: PMC12072073 DOI: 10.3390/ijms26094243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Piwi-interacting RNAs (piRNAs) play a crucial role in silencing transposable elements (TEs) in the germ cells of Metazoa by acting as sequence-specific guides. Originating from distinct genomic loci, called piRNA clusters, piRNA can trigger an epigenetic conversion of TE insertions into piRNA clusters by means of a paramutation-like process. However, the variability in piRNA clusters' capacity to induce such conversions remains poorly understood. Here, we investigated two Drosophila virilis strains with differing capacities to produce piRNAs from the subtelomeric RhoGEF3 and Adar gene loci. We found that active piRNA generation correlates with high levels of the heterochromatic mark histone 3 lysine 9 trimethylation (H3K9me3) over genomic regions that give rise to piRNAs. Importantly, the maternal transmission of piRNAs drives their production in the progeny, even from homologous loci previously inactive in piRNA biogenesis. The RhoGEF3 locus, once epigenetically converted, maintained enhanced piRNA production in subsequent generations lacking the original allele carrying the active piRNA cluster. In contrast, piRNA expression from the converted Adar locus was lost in offspring lacking the inducer allele. The present findings suggest that the paramutation-like behavior of piRNA clusters may be influenced not only by piRNAs but also by structural features and the chromatin environment in the proximity to telomeres, providing new insights into the epigenetic regulation of the Drosophila genome.
Collapse
Affiliation(s)
- Alina V. Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dina A. Kulikova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander P. Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Iuliia O. Guseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Ana P. Dorador
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mikhail B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergei Y. Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Yu T, Blyton MBJ, Abajorga M, Koppetsch BS, Ho S, Xu B, Hu Z, Luban J, Chappell K, Weng Z, Theurkauf WE. Evolution of KoRV-A transcriptional silencing in wild koalas. Cell 2025; 188:2081-2093.e16. [PMID: 40056902 PMCID: PMC12009212 DOI: 10.1016/j.cell.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Koala retrovirus-A (KoRV-A) is spreading through wild koalas in a north-to-south wave while transducing the germ line, modifying the inherited genome as it transitions to an endogenous retrovirus. Previously, we found that KoRV-A is expressed in the germ line, but unspliced genomic transcripts are processed into sense-strand PIWI-interacting RNAs (piRNAs), which may provide an initial "innate" form of post-transcriptional silencing. Here, we show that this initial post-transcriptional response is prevalent south of the Brisbane River, whereas KoRV-A expression is suppressed, promoters are methylated, and sense and antisense piRNAs are equally abundant in a subpopulation of animals north of the river. These animals share a KoRV-A provirus in the MAP4K4 gene's 3' UTR that is spreading through northern koalas and produces hybrid transcripts that are processed into antisense piRNAs, which guide transcriptional silencing. We speculate that this provirus triggers adaptive transcriptional silencing of KoRV-A and is sweeping to fixation.
Collapse
Affiliation(s)
- Tianxiong Yu
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michaela B J Blyton
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Milky Abajorga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Birgit S Koppetsch
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Samantha Ho
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Bo Xu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongren Hu
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Keith Chappell
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia.
| | - Zhiping Weng
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Liu W, Deng L, Wang M, Liu X, Ouyang X, Wang Y, Miao N, Luo X, Wu X, Lu X, Xv X, Zhang T, Li Y, Ji J, Qiao Z, Wang S, Guan L, Li D, Dang Y, Liu C, Li W, Zhang Y, Wang Z, Chen FX, Chen C, Lin C, Goh WSS, Zhou W, Luo Z, Gao P, Li P, Yu Y. Pcf11/Spt5 condensates stall RNA polymerase II to facilitate termination and piRNA-guided heterochromatin formation. Mol Cell 2025; 85:929-947.e10. [PMID: 40015272 DOI: 10.1016/j.molcel.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/18/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
The PIWI-interacting RNA (piRNA) pathway plays a crucial role in protecting animal germ cells by repressing transposons. However, the mechanism of piRNA-guided heterochromatin formation and its relationship to transcriptional termination remains elusive. Through RNA interference screening, we discovered Pcf11 and PNUTS as essential for piRNA-guided silencing in Drosophila germ line. Enforced tethering of Pcf11 leads to co-transcriptional repression and RNA polymerase II (RNA Pol II) stalling, and both are dependent on an α-helical region of Pcf11 capable of forming condensates. An intrinsically disordered region can substitute for the α-helical region of Pcf11 in its silencing capacity and support animal development, arguing for a causal relationship between phase separation and Pcf11's function. Pcf11 stalls RNA Pol II by preferentially forming condensates with the unphosphorylated Spt5, promoted by the PP1/PNUTS phosphatase during termination. We propose that Pcf11/Spt5 condensates control termination by decelerating polymerase elongation, a property exploited by piRNAs to silence transposons and initiate RNA-mediated heterochromatin formation.
Collapse
Affiliation(s)
- Weiwei Liu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Lijun Deng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaojun Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Ouyang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Na Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu Luo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangjin Xv
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Tianyu Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyao Ji
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenghao Qiao
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Sheng Wang
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health, Eye Hospital, Wenzhou Medical University, Zhejiang 325035, Wenzhou, China
| | - Li Guan
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Dong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Yadi Zhang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhenning Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Fudan University Shanghai, Shanghai 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Fudan University Shanghai, Shanghai 200032, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengqi Lin
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | | | - Wenhao Zhou
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhuojuan Luo
- School of Life Science and Technology, Southeast University, Nanjing 210096, China.
| | - Pu Gao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Srivastav SP, Feschotte C, Clark AG. Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary. Genome Res 2024; 34:711-724. [PMID: 38749655 PMCID: PMC11216404 DOI: 10.1101/gr.278062.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
The piRNA pathway is a highly conserved mechanism to repress transposable element (TE) activity in the animal germline via a specialized class of small RNAs called piwi-interacting RNAs (piRNAs). piRNAs are produced from discrete genomic regions called piRNA clusters (piCs). Although the molecular processes by which piCs function are relatively well understood in Drosophila melanogaster, much less is known about the origin and evolution of piCs in this or any other species. To investigate piC origin and evolution, we use a population genomic approach to compare piC activity and sequence composition across eight geographically distant strains of D. melanogaster with high-quality long-read genome assemblies. We perform annotations of ovary piCs and genome-wide TE content in each strain. Our analysis uncovers extensive variation in piC activity across strains and signatures of rapid birth and death of piCs. Most TEs inferred to be recently active show an enrichment of insertions into old and large piCs, consistent with the previously proposed "trap" model of piC evolution. In contrast, a small subset of active LTR families is enriched for the formation of new piCs, suggesting that these TEs have higher proclivity to form piCs. Thus, our findings uncover processes leading to the origin of piCs. We propose that piC evolution begins with the emergence of piRNAs from individual insertions of a few select TE families prone to seed new piCs that subsequently expand by accretion of insertions from most other TE families during evolution to form larger "trap" clusters. Our study shows that TEs themselves are the major force driving the rapid evolution of piCs.
Collapse
Affiliation(s)
- Satyam P Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
6
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
7
|
Ho S, Theurkauf W, Rice N. piRNA-Guided Transposon Silencing and Response to Stress in Drosophila Germline. Viruses 2024; 16:714. [PMID: 38793595 PMCID: PMC11125864 DOI: 10.3390/v16050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Transposons are integral genome constituents that can be domesticated for host functions, but they also represent a significant threat to genome stability. Transposon silencing is especially critical in the germline, which is dedicated to transmitting inherited genetic material. The small Piwi-interacting RNAs (piRNAs) have a deeply conserved function in transposon silencing in the germline. piRNA biogenesis and function are particularly well understood in Drosophila melanogaster, but some fundamental mechanisms remain elusive and there is growing evidence that the pathway is regulated in response to genotoxic and environmental stress. Here, we review transposon regulation by piRNAs and the piRNA pathway regulation in response to stress, focusing on the Drosophila female germline.
Collapse
Affiliation(s)
- Samantha Ho
- Program in Molecular Medicine, University Campus, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA;
| | | | - Nicholas Rice
- Program in Molecular Medicine, University Campus, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA;
| |
Collapse
|
8
|
Bence M, Jankovics F, Kristó I, Gyetvai Á, Vértessy BG, Erdélyi M. Direct interaction of Su(var)2-10 via the SIM-binding site of the Piwi protein is required for transposon silencing in Drosophila melanogaster. FEBS J 2024; 291:1759-1779. [PMID: 38308815 DOI: 10.1111/febs.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nuclear Piwi/Piwi-interacting RNA complexes mediate co-transcriptional silencing of transposable elements by inducing local heterochromatin formation. In Drosophila, sumoylation plays an essential role in the assembly of the silencing complex; however, the molecular mechanism by which the sumoylation machinery is recruited to the transposon loci is poorly understood. Here, we show that the Drosophila E3 SUMO-ligase Su(var)2-10 directly binds to the Piwi protein. This interaction is mediated by the SUMO-interacting motif-like (SIM-like) structure in the C-terminal domain of Su(var)2-10. We demonstrated that the SIM-like structure binds to a special region found in the MID domain of the Piwi protein, the structure of which is highly similar to the SIM-binding pocket of SUMO proteins. Abrogation of the Su(var)2-10-binding surface of the Piwi protein resulted in transposon derepression in the ovary of adult flies. Based on our results, we propose a model in which the Piwi protein initiates local sumoylation in the silencing complex by recruiting Su(var)2-10 to the transposon loci.
Collapse
Affiliation(s)
- Melinda Bence
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Medical Biology, University of Szeged, Hungary
| | - Ildikó Kristó
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ákos Gyetvai
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Hungary
- Institute of Enzymology, HUN-REN Research Centre of Natural Sciences, Budapest, Hungary
| | - Miklós Erdélyi
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
9
|
Luo Y, He P, Kanrar N, Fejes Toth K, Aravin AA. Maternally inherited siRNAs initiate piRNA cluster formation. Mol Cell 2023; 83:3835-3851.e7. [PMID: 37875112 PMCID: PMC10846595 DOI: 10.1016/j.molcel.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
PIWI-interacting RNAs (piRNAs) guide transposable element repression in animal germ lines. In Drosophila, piRNAs are produced from heterochromatic loci, called piRNA clusters, which act as information repositories about genome invaders. piRNA generation by dual-strand clusters depends on the chromatin-bound Rhino-Deadlock-Cutoff (RDC) complex, which is deposited on clusters guided by piRNAs, forming a positive feedback loop in which piRNAs promote their own biogenesis. However, how piRNA clusters are formed before cognate piRNAs are present remains unknown. Here, we report spontaneous de novo piRNA cluster formation from repetitive transgenic sequences. Cluster formation occurs over several generations and requires continuous trans-generational maternal transmission of small RNAs. We discovered that maternally supplied small interfering RNAs (siRNAs) trigger de novo cluster activation in progeny. In contrast, siRNAs are dispensable for cluster function after its establishment. These results reveal an unexpected interplay between the siRNA and piRNA pathways and suggest a mechanism for de novo piRNA cluster formation triggered by siRNAs.
Collapse
Affiliation(s)
- Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peng He
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nivedita Kanrar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katalin Fejes Toth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Kalmykova AI, Sokolova OA. Retrotransposons and Telomeres. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1739-1753. [PMID: 38105195 DOI: 10.1134/s0006297923110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 12/19/2023]
Abstract
Transposable elements (TEs) comprise a significant part of eukaryotic genomes being a major source of genome instability and mutagenesis. Cellular defense systems suppress the TE expansion at all stages of their life cycle. Piwi proteins and Piwi-interacting RNAs (piRNAs) are key elements of the anti-transposon defense system, which control TE activity in metazoan gonads preventing inheritable transpositions and developmental defects. In this review, we discuss various regulatory mechanisms by which small RNAs combat TE activity. However, active transposons persist, suggesting these powerful anti-transposon defense mechanisms have a limited capacity. A growing body of evidence suggests that increased TE activity coincides with genome reprogramming and telomere lengthening in different species. In the Drosophila fruit fly, whose telomeres consist only of retrotransposons, a piRNA-mediated mechanism is required for telomere maintenance and their length control. Therefore, the efficacy of protective mechanisms must be finely balanced in order not only to suppress the activity of transposons, but also to maintain the proper length and stability of telomeres. Structural and functional relationship between the telomere homeostasis and LINE1 retrotransposon in human cells indicates a close link between selfish TEs and the vital structure of the genome, telomere. This relationship, which permits the retention of active TEs in the genome, is reportedly a legacy of the retrotransposon origin of telomeres. The maintenance of telomeres and the execution of other crucial roles that TEs acquired during the process of their domestication in the genome serve as a type of payment for such a "service."
Collapse
Affiliation(s)
- Alla I Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Olesya A Sokolova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
11
|
Santilli F, Boskovic A. Mechanisms of transgenerational epigenetic inheritance: lessons from animal model organisms. Curr Opin Genet Dev 2023; 79:102024. [PMID: 36893483 DOI: 10.1016/j.gde.2023.102024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 03/09/2023]
Abstract
Epigenetic inheritance is a phenomenon whereby stochastic or signal-induced changes to parental germline epigenome modulate phenotypic output in one or more subsequent generations, independently of mutations in the genomic DNA. While the number of reported epigenetic inheritance phenomena across phyla is exponentially growing, much remains to be elucidated about their mechanistic underpinnings, and their significance for organismal homeostasis and adaptation. Here, we review the most recent epigenetic inheritance examples in animal models, outlining molecular details behind environmental sensing by the germline, and the functional relationships connecting epigenetic mechanisms and phenotypic traits after fertilization. We touch upon the experimental challenges associated with studying the scope of environmental input on phenotypic outcomes between generations. Finally, we discuss the implications of mechanistic findings from model organisms for the emergent examples of parental effects in human populations.
Collapse
Affiliation(s)
- Flavio Santilli
- European Molecular Biology Laboratory Epigenetics & Neurobiology Unit, Monterotondo, RM, Italy. https://twitter.com/@santilli_flavio
| | - Ana Boskovic
- European Molecular Biology Laboratory Epigenetics & Neurobiology Unit, Monterotondo, RM, Italy.
| |
Collapse
|
12
|
Tang X, Liu N, Qi H, Lin H. Piwi maintains homeostasis in the Drosophila adult intestine. Stem Cell Reports 2023; 18:503-518. [PMID: 36736325 PMCID: PMC9969073 DOI: 10.1016/j.stemcr.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
PIWI genes are well known for their germline but not somatic functions. Here, we report the function of the Drosophila piwi gene in the adult gut, where intestinal stem cells (ISCs) produce enteroendocrine cells and enteroblasts that generate enterocytes. We show that piwi is expressed in ISCs and enteroblasts. Piwi deficiency reduced ISC number, compromised enteroblasts maintenance, and induced apoptosis in enterocytes, but did not affect ISC proliferation and its differentiation to enteroendocrine cells. In addition, deficiency of zygotic but not maternal piwi mildly de-silenced several retrotransposons in the adult gut. Importantly, either piwi mutations or piwi knockdown specifically in ISCs and enteroblasts shortened the Drosophila lifespan, indicating that intestinal piwi contributes to longevity. Finally, our mRNA sequencing data implied that Piwi may achieve its intestinal function by regulating diverse molecular processes involved in metabolism and oxidation-reduction reaction.
Collapse
Affiliation(s)
- Xiongzhuo Tang
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA.
| | - Na Liu
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Hongying Qi
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
13
|
Measuring Transposable Element Activity in Adult Drosophila Ovaries. Methods Mol Biol 2023; 2626:309-321. [PMID: 36715912 DOI: 10.1007/978-1-0716-2970-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transposons are genetic elements that use various mechanisms of transposition to move around the genome, thus posing a risk to genomic integrity. Repression of transposable elements (TEs) involves the complex PIWI pathway and several proteins associated with heterochromatinization. All players of TE repression are indispensable for proper reproductive fitness, as loss-of-function mutations in these genes result primarily in sterility and impaired reproductive development. When investigating the function of novel genes with similar phenotypes, elevated transposon expression in reproductive tissues can be a marker for involvement in the aforementioned processes. Here, we present a protocol for investigating TE levels in adult Drosophila ovaries, from dissection to data analysis.
Collapse
|
14
|
Kristó I, Borkúti P, Kovács Z, Szabó A, Szikora S, Vilmos P. Detection of Actin in Nuclear Protein Fraction Isolated from Adult Drosophila Ovary. Methods Mol Biol 2023; 2626:353-364. [PMID: 36715915 DOI: 10.1007/978-1-0716-2970-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Much evidence supports the presence of cytoskeletal elements in the nucleus; however, the exact functions of these proteins in the nucleus are still uncertain. Of the cytoskeletal proteins, the activity and biological significance of nuclear actin has been the most extensively researched. It is now clear that actin performs essential tasks both in the cytoplasm and the nucleus, and that the dynamic balance between the large cytoplasmic and the significantly smaller nuclear actin pools is maintained by robust transport mechanisms. Therefore, the compartment-specific manipulation or investigation of actin has been an enormous challenge. Here, we present a protocol for the detection of actin in isolated nuclear protein fractions from Drosophila ovaries.
Collapse
Affiliation(s)
- Ildikó Kristó
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Péter Borkúti
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Zoltán Kovács
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Anikó Szabó
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Péter Vilmos
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
15
|
Miller DE, Dorador AP, Van Vaerenberghe K, Li A, Grantham EK, Cerbin S, Cummings C, Barragan M, Egidy RR, Scott AR, Hall KE, Perera A, Gilliland WD, Hawley RS, Blumenstiel JP. Off-target piRNA gene silencing in Drosophila melanogaster rescued by a transposable element insertion. PLoS Genet 2023; 19:e1010598. [PMID: 36809339 PMCID: PMC9983838 DOI: 10.1371/journal.pgen.1010598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/03/2023] [Accepted: 01/04/2023] [Indexed: 02/23/2023] Open
Abstract
Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila, it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster, a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald, the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock, a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex.
Collapse
Affiliation(s)
- Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Ana P. Dorador
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Kelley Van Vaerenberghe
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Angela Li
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Emily K. Grantham
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Stefan Cerbin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Celeste Cummings
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Marilyn Barragan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Rhonda R. Egidy
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison R. Scott
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kate E. Hall
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Gilliland
- Department of Biological Sciences, DePaul University, Chicago, Illinois, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
16
|
Akkouche A, Brasset E. More than just an inert dense region. eLife 2022; 11:83076. [PMID: 36239700 PMCID: PMC9566848 DOI: 10.7554/elife.83076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A newly discovered protein helps define a subset of heterochromatin regions that can silence harmful mobile genetic elements in the genome of fruit flies.
Collapse
Affiliation(s)
- Abdou Akkouche
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, Clermont-Ferrand, France
| | - Emilie Brasset
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
17
|
Dorador AP, Dalikova M, Cerbin S, Stillman CM, Zych MG, Hawley RS, Miller DE, Ray DA, Funikov SY, Evgen’ev MB, Blumenstiel JP. Paramutation-like Epigenetic Conversion by piRNA at the Telomere of Drosophila virilis. BIOLOGY 2022; 11:biology11101480. [PMID: 36290385 PMCID: PMC9598792 DOI: 10.3390/biology11101480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
First discovered in maize, paramutation is a phenomenon in which one allele can trigger an epigenetic conversion of an alternate allele. This conversion causes a genetically heterozygous individual to transmit alleles that are functionally the same, in apparent violation of Mendelian segregation. Studies over the past several decades have revealed a strong connection between mechanisms of genome defense against transposable elements by small RNA and the phenomenon of paramutation. For example, a system of paramutation in Drosophila melanogaster has been shown to be mediated by piRNAs, whose primary function is to silence transposable elements in the germline. In this paper, we characterize a second system of piRNA-mediated paramutation-like behavior at the telomere of Drosophila virilis. In Drosophila, telomeres are maintained by arrays of retrotransposons that are regulated by piRNAs. As a result, the telomere and sub-telomeric regions of the chromosome have unique regulatory and chromatin properties. Previous studies have shown that maternally deposited piRNAs derived from a sub-telomeric piRNA cluster can silence the sub-telomeric center divider gene of Drosophila virilis in trans. In this paper, we show that this silencing can also be maintained in the absence of the original silencing allele in a subsequent generation. The precise mechanism of this paramutation-like behavior may be explained by either the production of retrotransposon piRNAs that differ across strains or structural differences in the telomere. Altogether, these results show that the capacity for piRNAs to mediate paramutation in trans may depend on the local chromatin environment and proximity to the uniquely structured telomere regulated by piRNAs. This system promises to provide significant insights into the mechanisms of paramutation.
Collapse
Affiliation(s)
- Ana P. Dorador
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Martina Dalikova
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Stefan Cerbin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Chris M. Stillman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Molly G. Zych
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Sergei Y. Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
18
|
Baumgartner L, Handler D, Platzer SW, Yu C, Duchek P, Brennecke J. The Drosophila ZAD zinc finger protein Kipferl guides Rhino to piRNA clusters. eLife 2022; 11:e80067. [PMID: 36193674 PMCID: PMC9531945 DOI: 10.7554/elife.80067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
RNA interference systems depend on the synthesis of small RNA precursors whose sequences define the target spectrum of these silencing pathways. The Drosophila Heterochromatin Protein 1 (HP1) variant Rhino permits transcription of PIWI-interacting RNA (piRNA) precursors within transposon-rich heterochromatic loci in germline cells. Current models propose that Rhino's specific chromatin occupancy at piRNA source loci is determined by histone marks and maternally inherited piRNAs, but also imply the existence of other, undiscovered specificity cues. Here, we identify a member of the diverse family of zinc finger associated domain (ZAD)-C2H2 zinc finger proteins, Kipferl, as critical Rhino cofactor in ovaries. By binding to guanosine-rich DNA motifs and interacting with the Rhino chromodomain, Kipferl recruits Rhino to specific loci and stabilizes it on chromatin. In kipferl mutant flies, Rhino is lost from most of its target chromatin loci and instead accumulates on pericentromeric Satellite arrays, resulting in decreased levels of transposon targeting piRNAs and impaired fertility. Our findings reveal that DNA sequence, in addition to the H3K9me3 mark, determines the identity of piRNA source loci and provide insight into how Rhino might be caught in the crossfire of genetic conflicts.
Collapse
Affiliation(s)
- Lisa Baumgartner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | | | - Changwei Yu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| |
Collapse
|
19
|
Di Stefano L. All Quiet on the TE Front? The Role of Chromatin in Transposable Element Silencing. Cells 2022; 11:cells11162501. [PMID: 36010577 PMCID: PMC9406493 DOI: 10.3390/cells11162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute a sizeable portion of many eukaryotic genomes. Through their mobility, they represent a major source of genetic variation, and their activation can cause genetic instability and has been linked to aging, cancer and neurodegenerative diseases. Accordingly, tight regulation of TE transcription is necessary for normal development. Chromatin is at the heart of TE regulation; however, we still lack a comprehensive understanding of the precise role of chromatin marks in TE silencing and how chromatin marks are established and maintained at TE loci. In this review, I discuss evidence documenting the contribution of chromatin-associated proteins and histone marks in TE regulation across different species with an emphasis on Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Luisa Di Stefano
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
20
|
Watson OT, Buchmann G, Young P, Lo K, Remnant EJ, Yagound B, Shambrook M, Hill AF, Oldroyd BP, Ashe A. Abundant small RNAs in the reproductive tissues and eggs of the honey bee, Apis mellifera. BMC Genomics 2022; 23:257. [PMID: 35379185 PMCID: PMC8978429 DOI: 10.1186/s12864-022-08478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background Polyandrous social insects such as the honey bee are prime candidates for parental manipulation of gene expression in offspring. Although there is good evidence for parent-of-origin effects in honey bees the epigenetic mechanisms that underlie these effects remain a mystery. Small RNA molecules such as miRNAs, piRNAs and siRNAs play important roles in transgenerational epigenetic inheritance and in the regulation of gene expression during development. Results Here we present the first characterisation of small RNAs present in honey bee reproductive tissues: ovaries, spermatheca, semen, fertilised and unfertilised eggs, and testes. We show that semen contains fewer piRNAs relative to eggs and ovaries, and that piRNAs and miRNAs which map antisense to genes involved in DNA regulation and developmental processes are differentially expressed between tissues. tRNA fragments are highly abundant in semen and have a similar profile to those seen in the semen of other animals. Intriguingly we also find abundant piRNAs that target the sex determination locus, suggesting that piRNAs may play a role in honey bee sex determination. Conclusions We conclude that small RNAs may play a fundamental role in honey bee gametogenesis and reproduction and provide a plausible mechanism for parent-of-origin effects on gene expression and reproductive physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08478-9.
Collapse
Affiliation(s)
- Owen T Watson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gabriele Buchmann
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul Young
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute NSW 2010, Darlinghurst, Australia
| | - Kitty Lo
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Emily J Remnant
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Boris Yagound
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mitch Shambrook
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia.,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Benjamin P Oldroyd
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia. .,Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193, Berlin, Germany.
| | - Alyson Ashe
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
21
|
To export, or not to export: how nuclear export factor variants resolve Piwi's dilemma. Biochem Soc Trans 2021; 49:2073-2079. [PMID: 34643228 DOI: 10.1042/bst20201171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Piwi-interacting RNAs (piRNAs) defend animal gonads by guiding PIWI-clade Argonaute proteins to silence transposons. The nuclear Piwi/piRNA complexes confer transcriptional repression of transposons, which is accompanied with heterochromatin formation at target loci. On the other hand, piRNA clusters, genomic loci that transcribe piRNA precursors composed of transposon fragments, are often recognized by piRNAs to define their heterochromatic identity. Therefore, Piwi/piRNA complexes must resolve this conundrum of silencing transposons while allowing the expression of piRNA precursors, at least in Drosophila germlines. This review is focused on recent advances how the piRNA pathway deals with this genetic conflict.
Collapse
|
22
|
Cecere G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Lett 2021; 595:2953-2977. [PMID: 34671979 PMCID: PMC9298081 DOI: 10.1002/1873-3468.14210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Inherited information is transmitted to progeny primarily by the genome through the gametes. However, in recent years, epigenetic inheritance has been demonstrated in several organisms, including animals. Although it is clear that certain post‐translational histone modifications, DNA methylation, and noncoding RNAs regulate epigenetic inheritance, the molecular mechanisms responsible for epigenetic inheritance are incompletely understood. This review focuses on the role of small RNAs in transmitting epigenetic information across generations in animals. Examples of documented cases of transgenerational epigenetic inheritance are discussed, from the silencing of transgenes to the inheritance of complex traits, such as fertility, stress responses, infections, and behavior. Experimental evidence supporting the idea that small RNAs are epigenetic molecules capable of transmitting traits across generations is highlighted, focusing on the mechanisms by which small RNAs achieve such a function. Just as the role of small RNAs in epigenetic processes is redefining the concept of inheritance, so too our understanding of the molecular pathways and mechanisms that govern epigenetic inheritance in animals is radically changing.
Collapse
Affiliation(s)
- Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| |
Collapse
|
23
|
Gibert JM, Peronnet F. The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization. INSECTS 2021; 12:884. [PMID: 34680653 PMCID: PMC8537509 DOI: 10.3390/insects12100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023]
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| | - Frédérique Peronnet
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement (LBD), Institut de Biologie Paris Seine (IBPS), Sorbonne Université, 75005 Paris, France
| |
Collapse
|
24
|
Tumor-derived MMPs regulate cachexia in a Drosophila cancer model. Dev Cell 2021; 56:2664-2680.e6. [PMID: 34473940 DOI: 10.1016/j.devcel.2021.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Cachexia, the wasting syndrome commonly observed in advanced cancer patients, accounts for up to one-third of cancer-related mortalities. We have established a Drosophila larval model of organ wasting whereby epithelial overgrowth in eye-antennal discs leads to wasting of the adipose tissue and muscles. The wasting is associated with fat-body remodeling and muscle detachment and is dependent on tumor-secreted matrix metalloproteinase 1 (Mmp1). Mmp1 can both modulate TGFβ signaling in the fat body and disrupt basement membrane (BM)/extracellular matrix (ECM) protein localization in both the fat body and the muscle. Inhibition of TGFβ signaling or Mmps in the fat body/muscle using a QF2-QUAS binary expression system rescues muscle wasting in the presence of tumor. Altogether, our study proposes that tumor-derived Mmps are central mediators of organ wasting in cancer cachexia.
Collapse
|
25
|
|
26
|
Chen P, Luo Y, Aravin AA. RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility. PLoS Genet 2021; 17:e1009591. [PMID: 34473737 PMCID: PMC8412364 DOI: 10.1371/journal.pgen.1009591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
piRNAs are small non-coding RNAs that guide the silencing of transposons and other targets in animal gonads. In Drosophila female germline, many piRNA source loci dubbed “piRNA clusters” lack hallmarks of active genes and exploit an alternative path for transcription, which relies on the Rhino-Deadlock-Cutoff (RDC) complex. RDC was thought to be absent in testis, so it remains to date unknown how piRNA cluster transcription is regulated in the male germline. We found that components of RDC complex are expressed in male germ cells during early spermatogenesis, from germline stem cells (GSCs) to early spermatocytes. RDC is essential for expression of dual-strand piRNA clusters and transposon silencing in testis; however, it is dispensable for expression of Y-linked Suppressor of Stellate piRNAs and therefore Stellate silencing. Despite intact Stellate repression, males lacking RDC exhibited compromised fertility accompanied by germline DNA damage and GSC loss. Thus, piRNA-guided repression is essential for normal spermatogenesis beyond Stellate silencing. While RDC associates with multiple piRNA clusters in GSCs and early spermatogonia, its localization changes in later stages as RDC concentrates on a single X-linked locus, AT-chX. Dynamic RDC localization is paralleled by changes in piRNA cluster expression, indicating that RDC executes a fluid piRNA program during different stages of spermatogenesis. These results disprove the common belief that RDC is dispensable for piRNA biogenesis in testis and uncover the unexpected, sexually dimorphic and dynamic behavior of a core piRNA pathway machinery. Large fractions of eukaryotic genomes are occupied by mobile genetic elements called transposons. Active transposons can move in the genome causing DNA damage and mutations, while inactive copies can contribute to chromosome organization and regulation of gene expression. Host cells employ several mechanisms to discriminate transposons from other genes and repress transposon activities. In germ cells, a conserved class of short RNAs called Piwi-interacting (pi)RNAs recognize target RNAs in both the nucleus and cytoplasm and then guide transposon repression by preventing their transcription and destroying their RNAs. piRNAs are encoded in extended genomic regions dubbed piRNA clusters. Previously, composition and regulation of piRNA clusters were studied in the female germline of fruit flies, where a nuclear protein complex, the RDC complex, was shown to promote non-canonical transcription of these regions. However, RDC was believed to be dispensable in males. Here, we showed that RDC is essential for transposon repression in males, and males lacking RDC exhibit compromised fertility and loss of germ cells. We found that RDC binds multiple piRNA clusters in early germ cells but concentrates on a single locus at later stages. Our results indicate dynamic regulation of loci that produce piRNAs and, therefore, piRNA targets throughout spermatogenesis.
Collapse
Affiliation(s)
- Peiwei Chen
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California, United States of America
- * E-mail: (PC); (AAA)
| | - Yicheng Luo
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California, United States of America
| | - Alexei A. Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California, United States of America
- * E-mail: (PC); (AAA)
| |
Collapse
|
27
|
Gonzalez LE, Tang X, Lin H. Maternal Piwi regulates primordial germ cell development to ensure the fertility of female progeny in Drosophila. Genetics 2021; 219:iyab091. [PMID: 34142134 PMCID: PMC8757300 DOI: 10.1093/genetics/iyab091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
In many animals, germline development is initiated by proteins and RNAs that are expressed maternally. PIWI proteins and their associated small noncoding PIWI-interacting RNAs (piRNAs), which guide PIWI to target RNAs by base-pairing, are among the maternal components deposited into the germline of the Drosophila early embryo. Piwi has been extensively studied in the adult ovary and testis, where it is required for transposon suppression, germline stem cell self-renewal, and fertility. Consequently, loss of Piwi in the adult ovary using piwi-null alleles or knockdown from early oogenesis results in complete sterility, limiting investigation into possible embryonic functions of maternal Piwi. In this study, we show that the maternal Piwi protein persists in the embryonic germline through gonad coalescence, suggesting that maternal Piwi can regulate germline development beyond early embryogenesis. Using a maternal knockdown strategy, we find that maternal Piwi is required for the fertility and normal gonad morphology of female, but not male, progeny. Following maternal piwi knockdown, transposons were mildly derepressed in the early embryo but were fully repressed in the ovaries of adult progeny. Furthermore, the maternal piRNA pool was diminished, reducing the capacity of the PIWI/piRNA complex to target zygotic genes during embryogenesis. Examination of embryonic germ cell proliferation and ovarian gene expression showed that the germline of female progeny was partially masculinized by maternal piwi knockdown. Our study reveals a novel role for maternal Piwi in the germline development of female progeny and suggests that the PIWI/piRNA pathway is involved in germline sex determination in Drosophila.
Collapse
Affiliation(s)
- Lauren E Gonzalez
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06519, USA
| | - Xiongzhuo Tang
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
28
|
Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors. Life (Basel) 2021; 11:life11080736. [PMID: 34440480 PMCID: PMC8399856 DOI: 10.3390/life11080736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of RNA metabolism can drive tumorigenesis and influence chemotherapeutic response. Notably, the expression of non-coding RNAs as well as specific splice variants is deeply deregulated in human cancers. Since these cancer-related RNA species are considered promising diagnostic, prognostic and therapeutic targets, understanding their function in cancer development is becoming a major challenge. Here, we summarize how the different expression of RNA species repertoire, including non-coding RNAs and protein-coding splicing variants, impacts on TGCTs’ onset and progression and sustains therapeutic resistance. Finally, the role of transcription-associated R-loop misregulation in the maintenance of genomic stability in TGCTs is also discussed.
Collapse
|
29
|
Wei X, Eickbush DG, Speece I, Larracuente AM. Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. eLife 2021; 10:e62375. [PMID: 34259629 PMCID: PMC8321551 DOI: 10.7554/elife.62375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Large blocks of tandemly repeated DNAs-satellite DNAs (satDNAs)-play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated; however, their misregulation is associated with genomic instability and human diseases. We use the Drosophila melanogaster germline as a model to study the regulation of satDNA transcription and chromatin. Here we show that complex satDNAs (>100-bp repeat units) are transcribed into long noncoding RNAs and processed into piRNAs (PIWI interacting RNAs). This satDNA piRNA production depends on the Rhino-Deadlock-Cutoff complex and the transcription factor Moonshiner-a previously described non-canonical pathway that licenses heterochromatin-dependent transcription of dual-strand piRNA clusters. We show that this pathway is important for establishing heterochromatin at satDNAs. Therefore, satDNAs are regulated by piRNAs originating from their own genomic loci. This novel mechanism of satDNA regulation provides insight into the role of piRNA pathways in heterochromatin formation and genome stability.
Collapse
Affiliation(s)
- Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical CenterRochesterUnited States
| | - Danna G Eickbush
- Department of Biology, University of RochesterRochesterUnited States
| | - Iain Speece
- Department of Biology, University of RochesterRochesterUnited States
| | | |
Collapse
|
30
|
Fabry MH, Falconio FA, Joud F, Lythgoe EK, Czech B, Hannon GJ. Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis. eLife 2021; 10:e68573. [PMID: 34236313 PMCID: PMC8352587 DOI: 10.7554/elife.68573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. In Drosophila, piRNAs are intergenerationally inherited through the maternal lineage, and this has demonstrated importance in the specification of piRNA source loci and in silencing of I- and P-elements in the germ cells of daughters. Maternally inherited Piwi protein enters somatic nuclei in early embryos prior to zygotic genome activation and persists therein for roughly half of the time required to complete embryonic development. To investigate the role of the piRNA pathway in the embryonic soma, we created a conditionally unstable Piwi protein. This enabled maternally deposited Piwi to be cleared from newly laid embryos within 30 min and well ahead of the activation of zygotic transcription. Examination of RNA and protein profiles over time, and correlation with patterns of H3K9me3 deposition, suggests a role for maternally deposited Piwi in attenuating zygotic transposon expression in somatic cells of the developing embryo. In particular, robust deposition of piRNAs targeting roo, an element whose expression is mainly restricted to embryonic development, results in the deposition of transient heterochromatic marks at active roo insertions. We hypothesize that roo, an extremely successful mobile element, may have adopted a lifestyle of expression in the embryonic soma to evade silencing in germ cells.
Collapse
Affiliation(s)
- Martin H Fabry
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Federica A Falconio
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Fadwa Joud
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Emily K Lythgoe
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Benjamin Czech
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Gregory J Hannon
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
31
|
Chavda V, Madhwani K, Chaurasia B. PiWi RNA in Neurodevelopment and Neurodegenerative disorders. Curr Mol Pharmacol 2021; 15:517-531. [PMID: 34212832 DOI: 10.2174/1874467214666210629164535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Shedding light on the mysterious dark matter of the genome gears up the knowledge of modern biology. Beyond the genome, epigenome layers an untraveled path of fundamental biological and functional roles of gene regulation. Extraordinary character- P element wimpy testis-induced (PiWi)-interacting RNA (piRNA) is a type of small non-coding RNA that serves as a defender that imposes genomic and cellular defense by silencing nucleic and structural invaders. PIWI proteins and piRNAs appear in both reproductive and somatic cells, though germ line richness is partially unraveled more as it was originally discovered. The foremost function is to suppress invasive DNA sequences, which move within genomic DNA referred to as transposon elements (TEs) and downstream target genes via Transcriptional gene silencing (TGS) and Post-translational gene silencing (PTGS). Germline piRNAs maintain genomic integrity, stability, sternness, and impact imprinting expression. Somatic tissue-specific piRNAs have been surprised by their novel roles. piRNA regulates neurodevelopmental processes in metazoans, including humans. Neural heterogeneity, neurogenesis, neural plasticity, and transgenerational inheritance of adaptive and long-term memory are governed by the PIWI pathway. Neuro-developmental, neurodegenerative or psychiatric illness are the outcome of dysregulated piRNA. Aberrant piRNA signature causes inappropriate switching on or off genes by activation of TEs, incorrect epigenetic tags on DNA, and or histones. Defective piRNA regulation leads to abnormal brain development and neurodegenerative etiology, promoting life-threatening disorders. Exemplification of exciting roles of piRNA is in infancy, so future investigation may expand on these observations using innovative techniques and launch them as impending biomarkers for diagnostics and therapeutics. In this current review, we have summarized the possible gene molecular role of piRNAs regulating neurobiology and contributing as uncharted biomarkers and therapeutic targets for life-threatening diseases.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| | | |
Collapse
|
32
|
Marconcini M, Pischedda E, Houé V, Palatini U, Lozada-Chávez N, Sogliani D, Failloux AB, Bonizzoni M. Profile of Small RNAs, vDNA Forms and Viral Integrations in Late Chikungunya Virus Infection of Aedes albopictus Mosquitoes. Viruses 2021; 13:553. [PMID: 33806250 PMCID: PMC8066115 DOI: 10.3390/v13040553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus is contributing to the (re)-emergence of Chikungunya virus (CHIKV). To gain insights into the molecular underpinning of viral persistence, which renders a mosquito a life-long vector, we coupled small RNA and whole genome sequencing approaches on carcasses and ovaries of mosquitoes sampled 14 days post CHIKV infection and investigated the profile of small RNAs and the presence of vDNA fragments. Since Aedes genomes harbor nonretroviral Endogenous Viral Elements (nrEVEs) which confers tolerance to cognate viral infections in ovaries, we also tested whether nrEVEs are formed after CHIKV infection. We show that while small interfering (si)RNAs are evenly distributed along the full viral genome, PIWI-interacting (pi)RNAs mostly arise from a ~1000 bp window, from which a unique vDNA fragment is identified. CHIKV infection does not result in the formation of new nrEVEs, but piRNAs derived from existing nrEVEs correlate with differential expression of an endogenous transcript. These results demonstrate that all three RNAi pathways contribute to the homeostasis during the late stage of CHIKV infection, but in different ways, ranging from directly targeting the viral sequence to regulating the expression of mosquito transcripts and expand the role of nrEVEs beyond immunity against cognate viruses.
Collapse
Affiliation(s)
- Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Vincent Houé
- Arbovirus and Insect Vectors Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; (V.H.); (A.-B.F.)
| | - Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Nabor Lozada-Chávez
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Davide Sogliani
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Anna-Bella Failloux
- Arbovirus and Insect Vectors Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; (V.H.); (A.-B.F.)
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| |
Collapse
|
33
|
Dong Q, Zavortink M, Froldi F, Golenkina S, Lam T, Cheng LY. Glial Hedgehog signalling and lipid metabolism regulate neural stem cell proliferation in Drosophila. EMBO Rep 2021; 22:e52130. [PMID: 33751817 DOI: 10.15252/embr.202052130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/07/2023] Open
Abstract
The final size and function of the adult central nervous system (CNS) are determined by neuronal lineages generated by neural stem cells (NSCs) in the developing brain. In Drosophila, NSCs called neuroblasts (NBs) reside within a specialised microenvironment called the glial niche. Here, we explore non-autonomous glial regulation of NB proliferation. We show that lipid droplets (LDs) which reside within the glial niche are closely associated with the signalling molecule Hedgehog (Hh). Under physiological conditions, cortex glial Hh is autonomously required to sustain niche chamber formation. Upon FGF-mediated cortex glial overgrowth, glial Hh non-autonomously activates Hh signalling in the NBs, which in turn disrupts NB cell cycle progression and its ability to produce neurons. Glial Hh's ability to signal to NB is further modulated by lipid storage regulator lipid storage droplet-2 (Lsd-2) and de novo lipogenesis gene fatty acid synthase 1 (Fasn1). Together, our data suggest that glial-derived Hh modified by lipid metabolism mechanisms can affect the neighbouring NB's ability to proliferate and produce neurons.
Collapse
Affiliation(s)
- Qian Dong
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Michael Zavortink
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Francesca Froldi
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Sofya Golenkina
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Tammy Lam
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia.,The Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
34
|
Placentino M, de Jesus Domingues AM, Schreier J, Dietz S, Hellmann S, de Albuquerque BFM, Butter F, Ketting RF. Intrinsically disordered protein PID-2 modulates Z granules and is required for heritable piRNA-induced silencing in the Caenorhabditis elegans embryo. EMBO J 2021; 40:e105280. [PMID: 33231880 PMCID: PMC7849312 DOI: 10.15252/embj.2020105280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In Caenorhabditis elegans, the piRNA (21U RNA) pathway is required to establish proper gene regulation and an immortal germline. To achieve this, PRG-1-bound 21U RNAs trigger silencing mechanisms mediated by RNA-dependent RNA polymerase (RdRP)-synthetized 22G RNAs. This silencing can become PRG-1-independent and heritable over many generations, a state termed RNA-induced epigenetic gene silencing (RNAe). How and when RNAe is established, and how it is maintained, is not known. We show that maternally provided 21U RNAs can be sufficient for triggering RNAe in embryos. Additionally, we identify PID-2, a protein containing intrinsically disordered regions (IDRs), as a factor required for establishing and maintaining RNAe. PID-2 interacts with two newly identified and partially redundant eTudor domain-containing proteins, PID-4 and PID-5. PID-5 has an additional domain related to the X-prolyl aminopeptidase APP-1, and binds APP-1, implicating potential N-terminal proteolysis in RNAe. All three proteins are required for germline immortality, localize to perinuclear foci, affect size and appearance of RNA inheritance-linked Z granules, and are required for balancing of 22G RNA populations. Overall, our study identifies three new proteins with crucial functions in C. elegans small RNA silencing.
Collapse
Affiliation(s)
- Maria Placentino
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
| | | | - Jan Schreier
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
| | - Sabrina Dietz
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
- Quantitative Proteomics GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - Svenja Hellmann
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - Bruno FM de Albuquerque
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- Graduate Program in Areas of Basic and Applied BiologyUniversity of PortoPortoPortugal
| | - Falk Butter
- Quantitative Proteomics GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - René F Ketting
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- Institute of Developmental Biology and NeurobiologyJohannses Gutenberg UniversityMainzGermany
| |
Collapse
|
35
|
Tsai SY, Huang F. Acetyltransferase Enok regulates transposon silencing and piRNA cluster transcription. PLoS Genet 2021; 17:e1009349. [PMID: 33524038 PMCID: PMC7877743 DOI: 10.1371/journal.pgen.1009349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2021] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
The piRNA pathway is a highly conserved mechanism to repress transposon activation in the germline in Drosophila and mammals. This pathway starts from transcribing piRNA clusters to generate long piRNA precursors. The majority of piRNA clusters lack conventional promoters, and utilize heterochromatin- and HP1D/Rhino-dependent noncanonical mechanisms for transcription. However, information regarding the transcriptional regulation of piRNA clusters is limited. Here, we report that the Drosophila acetyltransferase Enok, which can activate transcription by acetylating H3K23, is critical for piRNA production from 54% of piRNA clusters including 42AB, the major piRNA source. Surprisingly, we found that Enok not only promotes rhino expression by acetylating H3K23, but also directly enhances transcription of piRNA clusters by facilitating Rhino recruitment. Taken together, our study provides novel insights into the regulation of noncanonical transcription at piRNA clusters and transposon silencing. Roughly half of our genome is composed of transposons. Activation of those transposons in the germline will result in severe DNA damages and infertility. The PIWI-interacting RNA (piRNA) pathway, which is highly conserved between mammals and flies, is a key mechanism to suppress transposon activation in the germline. Here, we identified the fly acetyltransferase Enok as a novel regulator functioning in the early steps of this pathway. We found that Enok can promote the expression of three genes involved in piRNA production by acetylating histone H3 lysine 23 (H3K23). We also demonstrated that Enok regulates the recruitment of Rhi, a factor critical for transcription initiation at piRNA-generating loci, to a subset of those loci, and therefore enhances their transcription. Our findings reveal an upstream regulator in the piRNA pathway and advance our understanding regarding the molecular mechanism of transposon silencing.
Collapse
Affiliation(s)
- Shih-Ying Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Redl S, de Jesus Domingues AM, Caspani E, Möckel S, Salvenmoser W, Mendez-Lago M, Ketting RF. Extensive nuclear gyration and pervasive non-genic transcription during primordial germ cell development in zebrafish. Development 2021; 148:dev193060. [PMID: 33298460 PMCID: PMC7847270 DOI: 10.1242/dev.193060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/02/2021] [Indexed: 12/02/2022]
Abstract
Primordial germ cells (PGCs) are the precursors of germ cells, which migrate to the genital ridge during early development. Relatively little is known about PGCs after their migration. We studied this post-migratory stage using microscopy and sequencing techniques, and found that many PGC-specific genes, including genes known to induce PGC fate in the mouse, are only activated several days after migration. At this same time point, PGC nuclei become extremely gyrated, displaying general broad opening of chromatin and high levels of intergenic transcription. This is accompanied by changes in nuage morphology, expression of large loci (PGC-expressed non-coding RNA loci, PERLs) that are enriched for retro-transposons and piRNAs, and a rise in piRNA biogenesis signatures. Interestingly, no nuclear Piwi protein could be detected at any time point, indicating that the zebrafish piRNA pathway is fully cytoplasmic. Our data show that the post-migratory stage of zebrafish PGCs holds many cues to both germ cell fate establishment and piRNA pathway activation.
Collapse
Affiliation(s)
- Stefan Redl
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Edoardo Caspani
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, 55128 Mainz, Germany
| | - Stefanie Möckel
- Flow Cytometry Core Facility, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Willi Salvenmoser
- Institute of Zoology, Evolution and Developmental Biology, University of Innsbruck, Technikerstraβe 25, 6020 Innsbruck, Austria
| | - Maria Mendez-Lago
- Genomics Core Facility, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| |
Collapse
|
37
|
Castillo-González C, Shippen DE. Change and HOAP for the best. eLife 2020; 9:e64945. [PMID: 33350935 PMCID: PMC7755383 DOI: 10.7554/elife.64945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
HOAP is a telomere-binding protein that has a conserved role in Drosophila, but it also needs to evolve quickly to restrict telomeric retrotransposons.
Collapse
Affiliation(s)
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
38
|
Sukthaworn S, Panyim S, Udomkit A. Homologues of Piwi control transposable elements and development of male germline in Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110807. [PMID: 32971288 DOI: 10.1016/j.cbpa.2020.110807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
PIWI belongs to the Argonaute protein family, which is a major protein component in RNA silencing pathway. Piwi proteins play roles in the control of transposons and germline development. They have been widely studied in vertebrates and flies, while very little is known in crustacean so far. We have previously identified and characterized a cDNA encoding Piwi protein (PmPiwi1) in the black tiger shrimp Penaeus monodon. In this study, a cDNA encoding another Piwi protein namely PmPiwi2 was identified by rapid amplification of cDNA ends (RACEs). PmPiwi2 was expressed solely in shrimp testis and ovary, indicating its potential role in germ cell development. Similar to PmPiwi1, PmPiwi2 also plays a part in the control of transposons as PmPiwi2-knockdown shrimp showed a significant increase in the expression of gypsy2 retrotransposon and mariner element in the testis. In addition, a reduction of sperm numbers in the spermatophore of PmPiwi2-knockdown shrimp suggests that PmPiwi2 is required for spermatogenesis similar to PmPiwi1. This study further demonstrated that apoptotic cell death was strongly detected in spermatogonia and spermatocyte cells of both PmPiwi-knockdown shrimp and thus, could be the cause of reduced sperm count. Investigation of sperm morphology showed a remarkably high proportion of abnormal sperms in the spermatophore of the PmPiwi1-knockdown shrimp, while PmPiwi2-knockdown shrimp had comparable percentage of abnormal sperms to the control shrimp. Consistently, the expression of KIFC1, a gene that is necessary for spermiogenesis was significantly reduced upon PmPiwi1 silencing, but not in the PmPiwi2-knockdown shrimp. Our results suggested that while both PmPiwis are required for the development of spermatid, only PmPiwi1 is possibly involved in the final stage of sperm maturation.
Collapse
Affiliation(s)
- Suchitraporn Sukthaworn
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Sciences, Mahidol University, Rama VI Road, Phayathai, Bangkok 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
39
|
Cacchione S, Cenci G, Raffa GD. Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. J Mol Biol 2020; 432:4305-4321. [PMID: 32512004 DOI: 10.1016/j.jmb.2020.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023]
Abstract
The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Giovanni Cenci
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy; Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy.
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
40
|
Epigenetic Requirements for Triggering Heterochromatinization and Piwi-Interacting RNA Production from Transgenes in the Drosophila Germline. Cells 2020; 9:cells9040922. [PMID: 32290057 PMCID: PMC7226800 DOI: 10.3390/cells9040922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
Transgenes containing a fragment of the I retrotransposon represent a powerful model of piRNA cluster de novo formation in the Drosophila germline. We revealed that the same transgenes located at different genomic loci form piRNA clusters with various capacity of small RNA production. Transgenic piRNA clusters are not established in piRNA pathway mutants. However, in the wild-type context, the endogenous ancestral I-related piRNAs heterochromatinize and convert the I-containing transgenes into piRNA-producing loci. Here, we address how the quantitative level of piRNAs influences the heterochromatinization and piRNA production. We show that a minimal amount of maternal piRNAs from ancestral I-elements is sufficient to form the transgenic piRNA clusters. Supplemental piRNAs stemming from active I-element copies do not stimulate additional chromatin changes or piRNA production from transgenes. Therefore, chromatin changes and piRNA production are initiated by a minimum threshold level of complementary piRNAs, suggesting a selective advantage of prompt cell response to the lowest level of piRNAs. It is noteworthy that the weak piRNA clusters do not transform into strong ones after being targeted by abundant I-specific piRNAs, indicating the importance of the genomic context for piRNA cluster establishment. Analysis of ovarian transcription profiles suggests that regions facilitating convergent transcription favor the formation of transgenic piRNA clusters.
Collapse
|
41
|
Stolyarenko AD. Nuclear Argonaute Piwi Gene Mutation Affects rRNA by Inducing rRNA Fragment Accumulation, Antisense Expression, and Defective Processing in Drosophila Ovaries. Int J Mol Sci 2020; 21:ijms21031119. [PMID: 32046213 PMCID: PMC7037970 DOI: 10.3390/ijms21031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3′-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophilamelanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.
Collapse
Affiliation(s)
- Anastasia D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia
| |
Collapse
|
42
|
SATO K, SIOMI MC. The piRNA pathway in Drosophila ovarian germ and somatic cells. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:32-42. [PMID: 31932527 PMCID: PMC6974405 DOI: 10.2183/pjab.96.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/28/2019] [Indexed: 05/30/2023]
Abstract
RNA silencing refers to gene silencing pathways mediated by small non-coding RNAs, including microRNAs. Piwi-interacting RNAs (piRNAs) constitute the largest class of small non-coding RNAs in animal gonads, which repress transposons to protect the germline genome from the selfish invasion of transposons. Deterioration of the system causes DNA damage, leading to severe defects in gametogenesis and infertility. Studies using Drosophila ovaries show that piRNAs originate from specific genomic loci, termed piRNA clusters, and that in piRNA biogenesis, cluster transcripts are processed into mature piRNAs via three distinct pathways: initiator or responder for ping-pong piRNAs and trailing for phased piRNAs. piRNAs then assemble with PIWI members of the Argonaute family of proteins to form piRNA-induced RNA silencing complexes (piRISCs), the core engine of the piRNA-mediated silencing pathway. Upon piRISC assembly, the PIWI member, Piwi, is translocated to the nucleus and represses transposons co-transcriptionally by inducing local heterochromatin formation at target transposon loci.
Collapse
Affiliation(s)
- Kaoru SATO
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C. SIOMI
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Ninova M, Fejes Tóth K, Aravin AA. The control of gene expression and cell identity by H3K9 trimethylation. Development 2019; 146:dev181180. [PMID: 31540910 PMCID: PMC6803365 DOI: 10.1242/dev.181180] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Histone 3 lysine 9 trimethylation (H3K9me3) is a conserved histone modification that is best known for its role in constitutive heterochromatin formation and the repression of repetitive DNA elements. More recently, it has become evident that H3K9me3 is also deposited at certain loci in a tissue-specific manner and plays important roles in regulating cell identity. Notably, H3K9me3 can repress genes encoding silencing factors, pointing to a fundamental principle of repressive chromatin auto-regulation. Interestingly, recent studies have shown that H3K9me3 deposition requires protein SUMOylation in different contexts, suggesting that the SUMO pathway functions as an important module in gene silencing and heterochromatin formation. In this Review, we discuss the role of H3K9me3 in gene regulation in various systems and the molecular mechanisms that guide the silencing machinery to target loci.
Collapse
Affiliation(s)
- Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
Kneuss E, Munafò M, Eastwood EL, Deumer US, Preall JB, Hannon GJ, Czech B. Specialization of the Drosophila nuclear export family protein Nxf3 for piRNA precursor export. Genes Dev 2019; 33:1208-1220. [PMID: 31416967 PMCID: PMC6719614 DOI: 10.1101/gad.328690.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a conserved small RNA-based immune system that protects animal germ cell genomes from the harmful effects of transposon mobilization. In Drosophila ovaries, most piRNAs originate from dual-strand clusters, which generate piRNAs from both genomic strands. Dual-strand clusters use noncanonical transcription mechanisms. Although transcribed by RNA polymerase II, cluster transcripts lack splicing signatures and poly(A) tails. mRNA processing is important for general mRNA export mediated by nuclear export factor 1 (Nxf1). Although UAP56, a component of the transcription and export complex, has been implicated in piRNA precursor export, it remains unknown how dual-strand cluster transcripts are specifically targeted for piRNA biogenesis by export from the nucleus to cytoplasmic processing centers. Here we report that dual-strand cluster transcript export requires CG13741/Bootlegger and the Drosophila nuclear export factor family protein Nxf3. Bootlegger is specifically recruited to piRNA clusters and in turn brings Nxf3. We found that Nxf3 specifically binds to piRNA precursors and is essential for their export to piRNA biogenesis sites, a process that is critical for germline transposon silencing. Our data shed light on how dual-strand clusters compensate for a lack of canonical features of mature mRNAs to be specifically exported via Nxf3, ensuring proper piRNA production.
Collapse
Affiliation(s)
- Emma Kneuss
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Undine-Sophie Deumer
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Jonathan B Preall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
45
|
The Integrity of piRNA Clusters is Abolished by Insulators in the Drosophila Germline. Genes (Basel) 2019; 10:genes10030209. [PMID: 30862119 PMCID: PMC6471301 DOI: 10.3390/genes10030209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) control transposable element (TE) activity in the germline. piRNAs are produced from single-stranded precursors transcribed from distinct genomic loci, enriched by TE fragments and termed piRNA clusters. The specific chromatin organization and transcriptional regulation of Drosophila germline-specific piRNA clusters ensure transcription and processing of piRNA precursors. TEs harbour various regulatory elements that could affect piRNA cluster integrity. One of such elements is the suppressor-of-hairy-wing (Su(Hw))-mediated insulator, which is harboured in the retrotransposon gypsy. To understand how insulators contribute to piRNA cluster activity, we studied the effects of transgenes containing gypsy insulators on local organization of endogenous piRNA clusters. We show that transgene insertions interfere with piRNA precursor transcription, small RNA production and the formation of piRNA cluster-specific chromatin, a hallmark of which is Rhino, the germline homolog of the heterochromatin protein 1 (HP1). The mutations of Su(Hw) restored the integrity of piRNA clusters in transgenic strains. Surprisingly, Su(Hw) depletion enhanced the production of piRNAs by the domesticated telomeric retrotransposon TART, indicating that Su(Hw)-dependent elements protect TART transcripts from piRNA processing machinery in telomeres. A genome-wide analysis revealed that Su(Hw)-binding sites are depleted in endogenous germline piRNA clusters, suggesting that their functional integrity is under strict evolutionary constraints.
Collapse
|
46
|
Sukthaworn S, Panyim S, Udomkit A. Functional characterization of a cDNA encoding Piwi protein in Penaeus monodon and its potential roles in controlling transposon expression and spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol 2019; 229:60-68. [DOI: 10.1016/j.cbpa.2018.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023]
|
47
|
Almeida MV, Andrade-Navarro MA, Ketting RF. Function and Evolution of Nematode RNAi Pathways. Noncoding RNA 2019; 5:E8. [PMID: 30650636 PMCID: PMC6468775 DOI: 10.3390/ncrna5010008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Selfish genetic elements, like transposable elements or viruses, are a threat to genomic stability. A variety of processes, including small RNA-based RNA interference (RNAi)-like pathways, has evolved to counteract these elements. Amongst these, endogenous small interfering RNA and Piwi-interacting RNA (piRNA) pathways were implicated in silencing selfish genetic elements in a variety of organisms. Nematodes have several incredibly specialized, rapidly evolving endogenous RNAi-like pathways serving such purposes. Here, we review recent research regarding the RNAi-like pathways of Caenorhabditis elegans as well as those of other nematodes, to provide an evolutionary perspective. We argue that multiple nematode RNAi-like pathways share piRNA-like properties and together form a broad nematode toolkit that allows for silencing of foreign genetic elements.
Collapse
Affiliation(s)
| | - Miguel A Andrade-Navarro
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
- Faculty of Biology, Johannes Gutenberg Universität, 55122 Mainz, Germany.
| | - René F Ketting
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
48
|
Sato K, Siomi MC. Two distinct transcriptional controls triggered by nuclear Piwi-piRISCs in the Drosophila piRNA pathway. Curr Opin Struct Biol 2018; 53:69-76. [DOI: 10.1016/j.sbi.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/19/2018] [Indexed: 01/21/2023]
|
49
|
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet 2018; 52:131-157. [PMID: 30476449 PMCID: PMC10784713 DOI: 10.1146/annurev-genet-120417-031441] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Martin H Fabry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| |
Collapse
|
50
|
Radion E, Morgunova V, Ryazansky S, Akulenko N, Lavrov S, Abramov Y, Komarov PA, Glukhov SI, Olovnikov I, Kalmykova A. Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline. Epigenetics Chromatin 2018; 11:40. [PMID: 30001204 PMCID: PMC6043984 DOI: 10.1186/s13072-018-0210-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. RESULTS To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. The small RNA-seq data from strains carrying telomeric transgenes demonstrated that all transgenes belong to a class of dual-strand piRNA clusters; however, their capacity to produce piRNAs varies significantly. Rhino, a paralog of heterochromatic protein 1 (HP1) expressed exclusively in the germline, is associated with all telomeric transgenes, but its enrichment correlates with the abundance of transgenic piRNAs. It is likely that this heterogeneity is determined by the sequence peculiarities of telomeric retrotransposons. In contrast to the heterochromatic non-telomeric germline piRNA clusters, piRNA loss leads to a dramatic decrease in HP1, Rhino, and trimethylated histone H3 lysine 9 in telomeric regions. Therefore, the presence of piRNAs is required for the maintenance of telomere chromatin in the germline. Moreover, piRNA loss causes telomere translocation from the nuclear periphery toward the nuclear interior but does not affect telomere end capping. Analysis of the telomere-associated sequences (TASs) chromatin revealed strong tissue specificity. In the germline, TASs are enriched with HP1 and Rhino, in contrast to somatic tissues, where they are repressed by Polycomb group proteins. CONCLUSIONS piRNAs play an essential role in the assembly of telomeric chromatin, as well as in nuclear telomere positioning in the germline. Telomeric arrays and TASs belong to a unique type of Rhino-dependent piRNA clusters with transcripts that serve simultaneously as piRNA precursors and as their only targets. Telomeric chromatin is highly sensitive to piRNA loss, implying the existence of a novel developmental checkpoint that depends on telomere integrity in the germline.
Collapse
Affiliation(s)
- Elizaveta Radion
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergey Lavrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Yuri Abramov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Pavel A Komarov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.,Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Sergey I Glukhov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.
| |
Collapse
|