1
|
Ma K, Zhang Y, Zhao J, Zhou L, Li M. Endoplasmic reticulum stress: bridging inflammation and obesity-associated adipose tissue. Front Immunol 2024; 15:1381227. [PMID: 38638434 PMCID: PMC11024263 DOI: 10.3389/fimmu.2024.1381227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Min Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Song Z, Su M, Li X, Xie J, Han F, Yao J. A novel endoplasmic reticulum stress-related lncRNA signature for prognosis prediction and immune response evaluation in Stomach adenocarcinoma. BMC Gastroenterol 2023; 23:432. [PMID: 38066437 PMCID: PMC10709857 DOI: 10.1186/s12876-023-03001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a significant contributor to cancer-related mortality worldwide. Although previous research has identified endoplasmic reticulum stress (ERS) as a regulator of various tumor-promoting properties of cancer cells, the impact of ERS-related long non-coding RNAs (lncRNAs) on STAD prognosis has not yet been investigated. Therefore, our study aims to develop and validate an ERS-related lncRNA signature that can accurately predict the prognosis of STAD patients. METHODS We collected RNA expression profiles and clinical data of STAD patients from The Cancer Genome Atlas (TCGA) and identified ERS-related genes from the Molecular Signature Database (MSigDB). Co-expression analysis enabled us to identify ERS-related lncRNAs, and we applied univariate Cox, least absolute shrinkage, and selection operator (LASSO), and multivariate Cox regression analyses to construct a predictive signature comprising of 9 ERS-related lncRNAs. We assessed the prognostic accuracy of our signature using Kaplan-Meier survival analysis, and validated our predictive signature in an independent gene expression omnibus (GEO) cohort. We also performed tumor mutational burden (TMB) and tumor immune microenvironment (TIME) analyses. Enrichment analysis was used to investigate the functions and biological processes of the signature, and we identified two distinct STAD patient subgroups through consensus clustering. Finally, we performed drug sensitivity analysis and immunologic efficacy analysis to explore further insights. RESULTS The 9 ERS related-lncRNAs signature demonstrated satisfactory predictive performance as an independent prognostic marker and was significantly associated with STAD clinicopathological characteristics. Furthermore, patients in the high-risk group displayed a worse STAD prognosis than those in the low-risk group. Notably, gene set enrichment analysis (GSEA) revealed significant enrichment of extracellular matrix pathways in the high-risk group, indicating their involvement in STAD progression. Additionally, the high-risk group exhibited significantly lower TMB expression levels than the low-risk group. Consensus clustering revealed two distinct STAD patient subgroups, with Cluster 1 exhibiting higher immune cell infiltration and more active immune functions. Drug sensitivity analysis suggested that the low-risk group was more responsive to oxaliplatin, epirubicinl, and other drugs. CONCLUSION Our study highlights the crucial regulatory roles of ERS-related lncRNAs in STAD, with significant clinical implications. The 9-lncRNA signature we have constructed represents a reliable prognostic indicator that has the potential to inform more personalized treatment decisions for STAD patients. These findings shed new light on the pathogenesis of STAD and its underlying molecular mechanisms, offering opportunities for novel therapeutic strategies to be developed for STAD patients.
Collapse
Affiliation(s)
- Zhaoxiang Song
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengge Su
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyu Li
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlin Xie
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Han
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianning Yao
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Cai J, Zhang X, Chen P, Li Y, Liu S, Liu Q, Zhang H, Wu Z, Song K, Liu J, Shan B, Liu Y. The ER stress sensor inositol-requiring enzyme 1α in Kupffer cells promotes hepatic ischemia-reperfusion injury. J Biol Chem 2021; 298:101532. [PMID: 34953853 PMCID: PMC8760522 DOI: 10.1016/j.jbc.2021.101532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an inflammation-mediated process arising from ischemia/reperfusion-elicited stress in multiple cell types, causing liver damage during surgical procedures and often resulting in liver failure. Endoplasmic reticulum (ER) stress triggers the activation of the unfolded protein response (UPR) and is implicated in tissue injuries, including hepatic I/R injury. However, the cellular mechanism that links the UPR signaling to local inflammatory responses during hepatic I/R injury remains largely obscure. Here, we report that IRE1α, a critical ER-resident transmembrane signal transducer of the UPR, plays an important role in promoting Kupffer-cell-mediated liver inflammation and hepatic I/R injury. Utilizing a mouse model in which IRE1α is specifically ablated in myeloid cells, we found that abrogation of IRE1α markedly attenuated necrosis and cell death in the liver, accompanied by reduced neutrophil infiltration and liver inflammation following hepatic I/R injury. Mechanistic investigations in mice as well as in primary Kupffer cells revealed that loss of IRE1α in Kupffer cells not only blunted the activation of the NLRP3 inflammasome and IL-1β production, but also suppressed the expression of the inducible nitric oxide synthase (iNos) and proinflammatory cytokines. Moreover, pharmacological inhibition of IRE1α′s RNase activity was able to attenuate inflammasome activation and iNos expression in Kupffer cells, leading to alleviation of hepatic I/R injury. Collectively, these results demonstrate that Kupffer cell IRE1α mediates local inflammatory damage during hepatic I/R injury. Our findings suggest that IRE1α RNase activity may serve as a promising target for therapeutic treatment of ischemia/reperfusion-associated liver inflammation and dysfunction.
Collapse
Affiliation(s)
- Jie Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Xiaoge Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Peng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Yang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Songzi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Qian Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Hanyong Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuyin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism; Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
5
|
Yang F, Yuan C, Wu D, Zhang J, Zhou X. IRE1α Expedites the Progression of Castration-Resistant Prostate Cancers via the Positive Feedback Loop of IRE1α/IL-6/AR. Front Oncol 2021; 11:671141. [PMID: 34295814 PMCID: PMC8290131 DOI: 10.3389/fonc.2021.671141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/03/2021] [Indexed: 01/23/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the lethal form of prostate cancer (PCa), and the underlying molecular mechanism has not been fully elucidated. Inositol requiring enzyme 1 alpha (IRE1α), a key regulator of unfolded protein response (UPR), is intimately associated with PCa progression. However, whether IRE1α is implicated in CRPC development remains unknown. Here, we showed that IRE1α expression was significantly increased in CRPC tissues and high-grade PCa tissues. Overexpression of IRE1α promoted PCa cell proliferation under the androgen deficiency condition in vitro and in vivo. Mechanistically, increased IRE1α expression induced IL-6 secretion via the IRE1α/XBP-1s signal pathway. IRE1α-induced IL-6 activated androgen receptor (AR), and the activation of AR by IL-6, in turn, promoted IRE1α expression. IRE1α formed a positive feedback loop with IL-6 and AR to promote prostate cancer cell proliferation under the androgen-deficient condition. In clinical PCa samples, high IRE1α expression correlated with elevated IL-6 and increased PSA expression. Our findings demonstrated a novel mechanism of CRPC progression and suggest targeting IRE1α may be a potential target for the prevention and treatment of CRPC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Air Force Medical University, Xi'an, China.,Department of Urology, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Chong Yuan
- Department of Clinical Laboratory, XiJing Hospital, The Air Force Military Medical University, Xi'an, China
| | - Dan Wu
- Department of Microbiology and Immunology, Medical School of Yan'an University, Yan'an, China
| | - Jing Zhang
- Experimental Teaching Center of Basic Medicine, The Air Force Military Medical University, Xi'an, China
| | - Xingchun Zhou
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Air Force Medical University, Xi'an, China.,Department of Urology, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|
6
|
Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity. Crit Rev Biochem Mol Biol 2021; 56:455-481. [PMID: 34182855 DOI: 10.1080/10409238.2021.1925219] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over accumulation of lipids in adipose tissue disrupts metabolic homeostasis by affecting cellular processes. Endoplasmic reticulum (ER) stress is one such process affected by obesity. Biochemical and physiological alterations in adipose tissue due to obesity interfere with adipose ER functions causing ER stress. This is in line with increased irregularities in other cellular processes such as inflammation and autophagy, affecting overall metabolic integrity within adipocytes. Additionally, microRNAs (miRNAs), which can post-transcriptionally regulate genes, are differentially modulated in obesity. A better understanding and identification of such miRNAs could be used as novel therapeutic targets to fight against diseases. In this review, we discuss ways in which ER stress participates as a common molecular process in the pathogenesis of obesity-associated metabolic disorders. Moreover, our review discusses detailed underlying mechanisms through which ER stress and miRNAs contribute to metabolic alteration in adipose tissue in obesity. Hence, identifying mechanistic involvement of miRNAs-ER stress cross-talk in regulating adipose function during obesity could be used as a potential therapeutic approach to combat chronic diseases, including obesity.
Collapse
|
7
|
Michailidou Z, Gomez-Salazar M, Alexaki VI. Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease. J Innate Immun 2021; 14:4-30. [PMID: 33849008 DOI: 10.1159/000515117] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.
Collapse
Affiliation(s)
- Zoi Michailidou
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Mario Gomez-Salazar
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Ando Y, Kuroda A, Kusama K, Matsutani T, Matsuda A, Tamura K. Impact of serine protease inhibitor alpha1-antitrypsin on expression of endoplasmic reticulum stress-induced proinflammatory factors in adipocytes. Biochem Biophys Rep 2021; 26:100967. [PMID: 33732904 PMCID: PMC7937654 DOI: 10.1016/j.bbrep.2021.100967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity-induced endoplasmic reticulum (ER) stress contributes to low-grade chronic inflammation in adipose tissue and may cause metabolic disorders such as diabetes mellitus and dyslipidemia. Identification of high serpina A1 (alpha-1 antitrypsin, A1AT) expression in mouse adipose tissue and adipocytes prompted us to explore the role of A1AT in the inflammatory response of adipocytes under ER stress. We aimed to determine the role of A1AT expression in adipocytes with ER stress during regulation of adipocyte homeostasis and inflammation. To this end, we chemically induced ER stress in A1AT small interfering RNA-transfected differentiating adipocytes using thapsigargin. Induction of CCAAT-enhancer-binding protein homologous protein (CHOP), an ER stress marker, by thapsigargin was lower in A1AT-deficient SW872 adipocytes. Thapsigargin or the proinflammatory cytokine tumor necrosis factor (TNF)α increased basal expression of cytokines such as interleukin (IL)-1β and IL-8 in both SW872 and primary omental adipocytes. This thapsigargin- or TNFα-induced expression of proinflammatory genes was increased by A1AT deficiency. These findings indicate that adipose A1AT may suppress the ER stress response to block excessive expression of proinflammatory factors, which suggests that A1AT protects against adipose tissue dysfunction associated with ER stress activation. Bip and CHOP expression responded to chemical ER stressor fluctuates in A1AT-silenced adipocytes. Chemical ER stressor- and TNFα-induced proinflammatory factor expression is increased by silencing of adipose A1AT expression. A1AT may protect against adipose tissue dysfunction through ER stress activation.
Collapse
Affiliation(s)
- Yukari Ando
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Akito Kuroda
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| | - Takeshi Matsutani
- Department of Gastrointestinal Surgery, Nihon Medical School, Musashi Kosugi Hospital, 1-396, Nakahara, Kawasaki, Kanagawa, 211-8533, Japan
| | - Akihisa Matsuda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5, Bunkyo, Tokyo, 113-8603, Japan
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy & Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
9
|
Díaz-Bulnes P, Saiz ML, López-Larrea C, Rodríguez RM. Crosstalk Between Hypoxia and ER Stress Response: A Key Regulator of Macrophage Polarization. Front Immunol 2020; 10:2951. [PMID: 31998288 PMCID: PMC6961549 DOI: 10.3389/fimmu.2019.02951] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
Macrophage activation and polarization are closely linked with metabolic rewiring, which is required to sustain their biological functions. These metabolic alterations allow the macrophages to adapt to the microenvironment changes associated with inflammation or tissue damage (hypoxia, nutrient imbalance, oxidative stress, etc.) and to fulfill their highly energy-demanding proinflammatory and anti-microbial functions. This response is integrated via metabolic sensors that coordinate these metabolic fluxes with their functional requirements. Here we review how the metabolic and phenotypic plasticity of macrophages are intrinsically connected with the hypoxia stress sensors and the unfolded protein response in the endoplasmic reticulum, and how these molecular pathways participate in the maladaptive polarization of macrophages in human pathology and chronic inflammation.
Collapse
Affiliation(s)
- Paula Díaz-Bulnes
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Laura Saiz
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain.,Immunology Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ramón M Rodríguez
- Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
10
|
Huang S, Xing Y, Liu Y. Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease. J Biol Chem 2019; 294:18726-18741. [PMID: 31666338 DOI: 10.1074/jbc.rev119.007036] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inositol-requiring enzyme 1 (IRE1) is an endoplasmic reticulum (ER)-resident transmembrane protein that senses ER stress and is evolutionarily conserved from yeast to humans. IRE1 possesses both Ser/Thr protein kinase and endoribonuclease (RNase) activities within its cytoplasmic domain and is activated through autophosphorylation and dimerization/oligomerization. It mediates a critical arm of the unfolded protein response to manage ER stress provoked by lumenal overload of unfolded/misfolded proteins. Emerging lines of evidence have revealed that in mammals, IRE1α functions as a multifunctional signal transducer that responds to metabolic cues and nutrient stress conditions, exerting profound and broad effects on metabolic homeostasis. In this review, we cover recent advances in our understanding of how IRE1α integrates a variety of metabolic and stress signals and highlight its tissue-specific or context-dependent metabolic activities. We also discuss how dysregulation of this metabolic stress sensor during handling of excessive nutrients in cells contributes to the progression of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Shijia Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuying Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Liu J, Chen Y, Huang Q, Liu W, Ji X, Hu F, Zhu Y, Zhang L, Dong G. IRAK2 counterbalances oncogenic Smurf1 in colon cancer cells by dictating ER stress. Cell Signal 2018; 48:69-80. [DOI: 10.1016/j.cellsig.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/13/2023]
|
12
|
Early weight loss outcomes from a newly established hospital-affiliated specialized obesity care delivery model in Central Florida. Int J Obes (Lond) 2018; 43:132-138. [PMID: 29795471 DOI: 10.1038/s41366-018-0092-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/28/2018] [Accepted: 03/25/2018] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE We evaluated weight loss outcomes in a newly established hospital-affiliated, physician-directed multidisciplinary, and personalized obesity care model. METHODS Fifty established patients in a specialized obesity medicine practice underwent intensive lifestyle intervention ±adjunctive pharmacotherapy (46/50) for >6 consecutive months and when required, psychological intervention. We identified demographics, obesity-related comorbidities, anthropometric changes over time, and laboratory screen. Psychosocial status was determined using Beck Depression Inventory-II (BDI-II), Brownell-Stunkard Weight-Loss Readiness Test, and Impact of Weight on Quality of Life-Lite (IWQOL). RESULTS Patient characteristics (mean ± SD) were: 70% female; age 47.0 ± 16.4 y; weight 111.55 ± 32.8 kg; BMI 39.3 ± 8.8 kg/m2; % body fat 45.5 ± 6.3. Patients had attempted at least one diet prior to seeking tertiary obesity care and averaged 2.5 major co-morbidities. In regards to health status, 74% were insulin resistant [HOMA]; 12% had Type 2 DM (HbA1c > 6.5%); 46% were hypertensive; 48% had dyslipidemia, 38% were vitamin D deficient; 44% were depressed (BDI-II). Weight loss at 3 and 6 months averaged -4.18 and -7.88 kg and percentage changes in BMI a respective -4.39 and -7.74% (p < 0.0001). Forty percentage were early responders (ER), having lost ≥ 5% of their initial weight 3 months into the program. Total weight loss for ER vs. non-responders (NR) at 3 months was -7.90 and -1.71 kg, respectively (p < 0.0001) and mean % BMI changes from baseline were a respective -7.77 and -1.88%. CONCLUSIONS Organized hospital-affiliated specialized obesity care delivery models can be successful in personalized obesity treatment. These types of medical programs for complicated obesity are likely to reduce impediments to addressing obesity effectively.
Collapse
|
13
|
Differential Regulation of Toll-Like Receptor-Mediated Cytokine Production by Unfolded Protein Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9827312. [PMID: 29849928 PMCID: PMC5941770 DOI: 10.1155/2018/9827312] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/01/2018] [Indexed: 12/11/2022]
Abstract
The ability of the host immune response is largely mediated by the proinflammatory cytokine production. Physiological and pathological conditions of endoplasmic reticulum (ER) trigger unfolded protein response and contribute to the development or pathology of inflammatory diseases. Under ER stress, unfolded protein response (UPR) signaling pathways participate in upregulating inflammatory cytokine production via NF-kappaB, MAPK, and GSK-3β. Moreover, it has been suggested that ER stress crosstalks with toll-like receptor (TLR) signaling pathway to promote the production of proinflammatory cytokines. In addition, TLR stimulation can lead to UPR activation to promote inflammation. In this review, we will cover how proinflammatory cytokine production by UPR signaling can be induced or amplified in the presence or absence of TLR activation.
Collapse
|