1
|
Xia L, He Y, Sui Y, Feng X, Qian X, Liu Y, Qi Z. UBL5 and Its Role in Viral Infections. Viruses 2024; 16:1922. [PMID: 39772229 PMCID: PMC11680113 DOI: 10.3390/v16121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Unlike other ubiquitin-like family members, UBL5 is structurally and functionally atypical, and a novel role in various biological processes and diseases has been discovered. UBL5 can stabilize the structure of the spliceosome, can promote post-transcriptional processing, and has been implicated in both DNA damage repair and protein unfolding reactions, as well as cellular mechanisms that are frequently exploited by viruses for their own proliferation during viral infections. In addition, UBL5 can inhibit viral infection by binding to the non-structural protein 3 of rice stripe virus and mediating its degradation. Therefore, UBL5 is an important link between viral infections and immunity, and its study will be beneficial for the prevention and treatment of viral infections in the future. However, a review of the current findings on the role of UBL5 in viral infection has not been undertaken. Therefore, in this review, we summarize the recent progress in understanding the functions of UBL5 and discuss its putative role in viral infections.
Collapse
Affiliation(s)
- Liancheng Xia
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| | - Yanhua He
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| | - Yifan Sui
- College of Basic Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (Y.S.); (X.F.)
| | - Xijia Feng
- College of Basic Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (Y.S.); (X.F.)
| | - Xijing Qian
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| | - Yangang Liu
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| | - Zhongtian Qi
- Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China; (L.X.); (Y.H.); (X.Q.)
| |
Collapse
|
2
|
Varikkapulakkal A, Pillai BR, Mishra SK. Psr1 phosphatase regulates pre-mRNA splicing through spliceosomal B complex factor Snu66. FEBS J 2024; 291:5455-5469. [PMID: 39484844 DOI: 10.1111/febs.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/11/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Regulated precursor messenger RNA (pre-mRNA) splicing modulates gene expression and promotes alternative splicing. The process is regulated by modifications of spliceosomal proteins and small nuclear RNAs (snRNAs). Here, we show that the protein phosphatase Psr1, known for its plasma membrane localisation and function in general stress response in Saccharomyces cerevisiae, also plays a regulatory role in pre-mRNA splicing. Independently of its presence at the plasma membrane, Psr1 binds and dephosphorylates the core splicing factor Snu66. The enzyme is not an integral component of the spliceosome. Psr1 deletion in yeast, or tethering of its catalytic mutant to Snu66, results in splicing defects of introns with non-canonical 5' splice sites (ss). While the Psr1 binding site on Snu66 is distinct from the Hub1 interaction domains (HIND), Hub1 displaces Psr1 from Snu66. Thus, Psr1 phosphatase plays a regulatory role in pre-mRNA splicing by modulating Snu66 functions.
Collapse
Affiliation(s)
| | - Balashankar R Pillai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| |
Collapse
|
3
|
Anil AT, Pandian R, Mishra SK. Introns with branchpoint-distant 3' splice sites: Splicing mechanism and regulatory roles. Biophys Chem 2024; 314:107307. [PMID: 39173313 DOI: 10.1016/j.bpc.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
The two transesterification reactions of pre-mRNA splicing require highly complex yet well-controlled rearrangements of small nuclear RNAs and proteins (snRNP) in the spliceosome. The efficiency and accuracy of these reactions are critical for gene expression, as almost all human genes pass through pre-mRNA splicing. Key parameters that determine the splicing outcome are the length of the intron, the strengths of its splicing signals and gaps between them, and the presence of splicing controlling elements. In particular, the gap between the branchpoint (BP) and the 3' splice site (ss) of introns is a major determinant of the splicing efficiency. This distance falls within a small range across the introns of an organism. The constraints exist possibly because BP and 3'ss are recognized by BP-binding proteins, U2 snRNP and U2 accessory factors (U2AF) in a coordinated manner. Furthermore, varying distances between the two signals may also affect the second transesterification reaction since the intervening RNA needs to be accurately positioned within the complex RNP machinery. Splicing such pre-mRNAs requires cis-acting elements in the RNA and many trans-acting splicing regulators. Regulated pre-mRNA splicing with BP-distant 3'ss adds another layer of control to gene expression and promotes alternative splicing.
Collapse
Affiliation(s)
- Anupa T Anil
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India
| | - Rakesh Pandian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India.
| |
Collapse
|
4
|
Senn KA, Hoskins AA. Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1866. [PMID: 38972853 PMCID: PMC11585973 DOI: 10.1002/wrna.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Katherine Anne Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Kumari S, Rehman A, Chandra P, Singh KK. Functional role of SAP18 protein: From transcriptional repression to splicing regulation. Cell Biochem Funct 2023; 41:738-751. [PMID: 37486712 DOI: 10.1002/cbf.3830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Sin3 associated protein 18 (SAP18) is an evolutionary conserved protein, originally discovered in a complex with the transcriptional regulatory protein, Sin3. Subsequent investigations revealed SAP18 as an integral splicing component of the exon junction complex (EJC)-associated apoptosis-and splicing-associated protein (ASAP)/PNN-RNPS1-SAP18 (PSAP) complex. In association with Sin3, SAP18 contributes toward transcriptional repression of genes implicated in embryonic development, stress response, human immunodeficiency virus type 1 replication, and tumorigenesis. As a part of EJC, SAP18 mediates alternative splicing events and suppresses the cryptic splice sites present within flanking regions of exon-exon junctions. In this review, we provide a thorough discussion on SAP18, focussing on its conserved dual role in transcriptional regulation and messenger RNA splicing. Recent research on the involvement of SAP18 in the emergence of cancer and human disorders has also been highlighted. The potential of SAP18 as a therapeutic target is also discussed in these recent studies, particularly related to malignancies of the myeloid lineage.
Collapse
Affiliation(s)
- Sweta Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ayushi Rehman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Pratap Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kusum K Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
6
|
Phetruen T, van Dam B, Chanarat S. Andrographolide Induces ROS-Mediated Cytotoxicity, Lipid Peroxidation, and Compromised Cell Integrity in Saccharomyces cerevisiae. Antioxidants (Basel) 2023; 12:1765. [PMID: 37760068 PMCID: PMC10525756 DOI: 10.3390/antiox12091765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Andrographolide, a bioactive compound found in Andrographis paniculata, has gained significant attention for its potential therapeutic properties. Despite its promising benefits, the understanding of its side effects and underlying mechanisms remains limited. Here, we investigated the impact of andrographolide in Saccharomyces cerevisiae and observed that andrographolide induced cytotoxicity, particularly when oxidative phosphorylation was active. Furthermore, andrographolide affected various cellular processes, including vacuole fragmentation, endoplasmic reticulum stress, lipid droplet accumulation, reactive oxygen species levels, and compromised cell integrity. Moreover, we unexpectedly observed that andrographolide induced the precipitation of biomolecules secreted from yeast cells, adding an additional source of stress. Overall, this study provides insights into the cellular effects and potential mechanisms of andrographolide in yeast, shedding light on its side effects and underlying cytotoxicity pathways.
Collapse
Affiliation(s)
| | | | - Sittinan Chanarat
- Laboratory of Molecular Cell Biology, Department of Biochemistry, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Wang W, Hawkridge AM, Ma Y, Zhang B, Mangrum JB, Hassan ZH, He T, Blat S, Guo C, Zhou H, Liu J, Wang XY, Fang X. Ubiquitin-like protein 5 is a novel player in the UPR-PERK arm and ER stress-induced cell death. J Biol Chem 2023; 299:104915. [PMID: 37315790 PMCID: PMC10339194 DOI: 10.1016/j.jbc.2023.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023] Open
Abstract
Biological functions of the highly conserved ubiquitin-like protein 5 (UBL5) are not well understood. In Caenorhabditis elegans, UBL5 is induced under mitochondrial stress to mount the mitochondrial unfolded protein response (UPR). However, the role of UBL5 in the more prevalent endoplasmic reticulum (ER) stress-UPR in the mammalian system is unknown. In the present work, we demonstrated that UBL5 was an ER stress-responsive protein, undergoing rapid depletion in mammalian cells and livers of mice. The ER stress-induced UBL5 depletion was mediated by proteasome-dependent yet ubiquitin-independent proteolysis. Activation of the protein kinase R-like ER kinase arm of the UPR was essential and sufficient for inducing UBL5 degradation. RNA-Seq analysis of UBL5-regulated transcriptome revealed that multiple death pathways were activated in UBL5-silenced cells. In agreement with this, UBL5 knockdown induced severe apoptosis in culture and suppressed tumorigenicity of cancer cells in vivo. Furthermore, overexpression of UBL5 protected specifically against ER stress-induced apoptosis. These results identify UBL5 as a physiologically relevant survival regulator that is proteolytically depleted by the UPR-protein kinase R-like ER kinase pathway, linking ER stress to cell death.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Adam M Hawkridge
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yibao Ma
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bei Zhang
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John B Mangrum
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zaneera H Hassan
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Tianhai He
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sofiya Blat
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human & Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA; Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA; Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
8
|
Sengupta S, Pick E. The Ubiquitin-like Proteins of Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13050734. [PMID: 37238603 DOI: 10.3390/biom13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In this review, we present a comprehensive list of the ubiquitin-like modifiers (Ubls) of Saccharomyces cerevisiae, a common model organism used to study fundamental cellular processes that are conserved in complex multicellular organisms, such as humans. Ubls are a family of proteins that share structural relationships with ubiquitin, and which modify target proteins and lipids. These modifiers are processed, activated and conjugated to substrates by cognate enzymatic cascades. The attachment of substrates to Ubls alters the various properties of these substrates, such as function, interaction with the environment or turnover, and accordingly regulate key cellular processes, including DNA damage, cell cycle progression, metabolism, stress response, cellular differentiation, and protein homeostasis. Thus, it is not surprising that Ubls serve as tools to study the underlying mechanism involved in cellular health. We summarize current knowledge on the activity and mechanism of action of the S. cerevisiae Rub1, Smt3, Atg8, Atg12, Urm1 and Hub1 modifiers, all of which are highly conserved in organisms from yeast to humans.
Collapse
Affiliation(s)
- Swarnab Sengupta
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa Mount Carmel, Haifa 3498838, Israel
| | - Elah Pick
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa Mount Carmel, Haifa 3498838, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 3600600, Israel
| |
Collapse
|
9
|
Kolathur KK, Sharma P, Kadam NY, Shahi N, Nishitha A, Babu K, Mishra SK. The ubiquitin-like protein Hub1/UBL-5 functions in pre-mRNA splicing in Caenorhabditis elegans. FEBS Lett 2023; 597:448-457. [PMID: 36480405 PMCID: PMC7615767 DOI: 10.1002/1873-3468.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The ubiquitin-like protein Hub1/UBL-5 associates with proteins non-covalently. Hub1 promotes alternative splicing and splicing of precursor mRNAs with weak introns in yeast and mammalian cells; however, its splicing function has remained elusive in multicellular organisms. Here, we demonstrate the splicing function of Hub1/UBL-5 in the free-living nematode Caenorhabditis elegans. Hub1/UBL-5 binds to the HIND-containing splicing factors Snu66/SART-1 and PRP-38 and associates with other spliceosomal proteins. C. elegans hub1/ubl-5 mutants die at the Larval 3 stage and show splicing defects for selected targets, similar to the mutants in yeast and mammalian cells. UBL-5 complemented growth and splicing defects in Schizosaccharomyces pombe hub1 mutants, confirming its functional conservation. Thus, UBL-5 is important for C. elegans development and plays a conserved pre-mRNA splicing function.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), India
| | - Pallavi Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Nagesh Y Kadam
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Navneet Shahi
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Ane Nishitha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| |
Collapse
|
10
|
Anil AT, Choudhary K, Pandian R, Gupta P, Thakran P, Singh A, Sharma M, Mishra SK. Splicing of branchpoint-distant exons is promoted by Cactin, Tls1 and the ubiquitin-fold-activated Sde2. Nucleic Acids Res 2022; 50:10000-10014. [PMID: 36095128 PMCID: PMC9508853 DOI: 10.1093/nar/gkac769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/13/2022] Open
Abstract
Intron diversity facilitates regulated gene expression and alternative splicing. Spliceosomes excise introns after recognizing their splicing signals: the 5'-splice site (5'ss), branchpoint (BP) and 3'-splice site (3'ss). The latter two signals are recognized by U2 small nuclear ribonucleoprotein (snRNP) and its accessory factors (U2AFs), but longer spacings between them result in weaker splicing. Here, we show that excision of introns with a BP-distant 3'ss (e.g. rap1 intron 2) requires the ubiquitin-fold-activated splicing regulator Sde2 in Schizosaccharomyces pombe. By monitoring splicing-specific ura4 reporters in a collection of S. pombe mutants, Cay1 and Tls1 were identified as additional regulators of this process. The role of Sde2, Cay1 and Tls1 was further confirmed by increasing BP-3'ss spacings in a canonical tho5 intron. We also examined BP-distant exons spliced independently of these factors and observed that RNA secondary structures possibly bridged the gap between the two signals. These proteins may guide the 3'ss towards the spliceosome's catalytic centre by folding the RNA between the BP and 3'ss. Orthologues of Sde2, Cay1 and Tls1, although missing in the intron-poor Saccharomyces cerevisiae, are present in intron-rich eukaryotes, including humans. This type of intron-specific pre-mRNA splicing appears to have evolved for regulated gene expression and alternative splicing of key heterochromatin factors.
Collapse
Affiliation(s)
- Anupa T Anil
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Karan Choudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Rakesh Pandian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Praver Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Poonam Thakran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Arashdeep Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| |
Collapse
|
11
|
Phothichaisri W, Chankhamhaengdecha S, Janvilisri T, Nuadthaisong J, Phetruen T, Fagan RP, Chanarat S. Potential Role of the Host-Derived Cell-Wall Binding Domain of Endolysin CD16/50L as a Molecular Anchor in Preservation of Uninfected Clostridioides difficile for New Rounds of Phage Infection. Microbiol Spectr 2022; 10:e0236121. [PMID: 35377223 PMCID: PMC9045149 DOI: 10.1128/spectrum.02361-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Endolysin is a phage-encoded cell-wall hydrolase which degrades the peptidoglycan layer of the bacterial cell wall. The enzyme is often expressed at the late stage of the phage lytic cycle and is required for progeny escape. Endolysins of bacteriophage that infect Gram-positive bacteria often comprises two domains: a peptidoglycan hydrolase and a cell-wall binding domain (CBD). Although the catalytic domain of endolysin is relatively well-studied, the precise role of CBD is ambiguous and remains controversial. Here, we focus on the function of endolysin CBD from a recently isolated Clostridioides difficile phage. We found that the CBD is not required for lytic activity, which is strongly prevented by the surface layer of C. difficile. Intriguingly, hidden Markov model analysis suggested that the endolysin CBD is likely derived from the CWB2 motif of C. difficile cell-wall proteins but possesses a higher binding affinity to bacterial cell-wall polysaccharides. Moreover, the CBD forms a homodimer, formation of which is necessary for interaction with the surface saccharides. Importantly, endolysin diffusion and sequential cytolytic assays showed that CBD of endolysin is required for the enzyme to be anchored to post-lytic cell-wall remnants, suggesting its physiological roles in limiting diffusion of the enzyme, preserving neighboring host cells, and thereby enabling the phage progeny to initiate new rounds of infection. Taken together, this study provides an insight into regulation of endolysin through CBD and can potentially be applied for endolysin treatment against C. difficile infection. IMPORTANCE Endolysin is a peptidoglycan hydrolase encoded in a phage genome. The enzyme is attractive due to its potential use as antibacterial treatment. To utilize endolysin for the therapeutic propose, understanding of the fundamental role of endolysin becomes important. Here, we investigate the function of cell-wall binding domain (CBD) of an endolysin from a C. difficile phage. The domain is homologous to a cell-wall associating module of bacterial cell-wall proteins, likely acquired during phage-host coevolution. The interaction of CBD to bacterial cell walls reduces enzyme diffusion and thereby limits cell lysis of the neighboring bacteria. Our findings indicate that the endolysin is trapped to the cell-wall residuals through CBD and might serve as an advantage for phage replication. Thus, employing a CBD-less endolysin might be a feasible strategy for using endolysin for the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jirayu Nuadthaisong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Robert P. Fagan
- School of Biosciences, Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Varikkapulakkal A, Ghosh A, Mishra SK. Broader roles of the ubiquitin-like protein Hub1 indicated by its yeast two-hybrid interactors. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000519. [PMID: 35098049 PMCID: PMC8790634 DOI: 10.17912/micropub.biology.000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/20/2021] [Accepted: 01/19/2022] [Indexed: 11/06/2022]
Abstract
The conserved ubiquitin-like protein Hub1/UBL5 functions in RNA splicing, DNA repair and mitochondrial unfolding responses. It binds proteins specific to these pathways and modifies their functional properties. However, the identities of other Hub1 substrates remain unknown. We have found unreported interactors of Saccharomyces cerevisiae Hub1 from a yeast two-hybrid (Y2H) screen. Proteins containing SIMs (small ubiquitin-like modifier SUMO-interaction motifs) and ferulic acid decarboxylase Fdc1 are identified as potential Hub1 interactors. Further experiments are required to establish these interactions and their physiological relevance, nevertheless, data presented here point towards larger and intriguing roles of Hub1.
Collapse
Affiliation(s)
- Amjadudheen Varikkapulakkal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Anuraag Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India,
Correspondence to: Shravan Kumar Mishra ()
| |
Collapse
|
13
|
Chanarat S. UBL5/Hub1: An Atypical Ubiquitin-Like Protein with a Typical Role as a Stress-Responsive Regulator. Int J Mol Sci 2021; 22:ijms22179384. [PMID: 34502293 PMCID: PMC8431670 DOI: 10.3390/ijms22179384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022] Open
Abstract
Members of the ubiquitin-like protein family are known for their ability to modify substrates by covalent conjugation. The highly conserved ubiquitin relative UBL5/Hub1, however, is atypical because it lacks a carboxy-terminal di-glycine motif required for conjugation, and the whole E1-E2-E3 enzyme cascade is likely absent. Though the conjugation-mediated role of UBL5/Hub1 is controversial, it undoubtedly functions by interacting non-covalently with its partners. Several interactors of UBL5/Hub1 identified to date have suggested broad stress-responsive functions of the protein, for example, stress-induced control of pre-mRNA splicing, Fanconi anemia pathway of DNA damage repair, and mitochondrial unfolded protein response. While having an atypical mode of function, UBL5/Hub1 is still a stress protein that regulates feedback to various stimuli in a similar manner to other ubiquitin-like proteins. In this review, I discuss recent progress in understanding the functions of UBL5/Hub1 and the fundamental questions which remain to be answered.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
14
|
Capella M, Martín Caballero L, Pfander B, Braun S, Jentsch S. ESCRT recruitment by the S. cerevisiae inner nuclear membrane protein Heh1 is regulated by Hub1-mediated alternative splicing. J Cell Sci 2020; 133:jcs250688. [PMID: 33262311 DOI: 10.1242/jcs.250688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Misassembled nuclear pore complexes (NPCs) are removed by sealing off the surrounding nuclear envelope (NE), which is conducted by the endosomal sorting complexes required for transport (ESCRT) machinery. Recruitment of ESCRT proteins to the NE is mediated by the interaction between the ESCRT member Chm7 and the inner nuclear membrane protein Heh1, which belongs to the conserved LEM family. Increased ESCRT recruitment results in excessive membrane scission at damage sites but its regulation remains poorly understood. Here, we show that Hub1-mediated alternative splicing of HEH1 pre-mRNA, resulting in production of its shorter form Heh1-S, is critical for the integrity of the NE in Saccharomyces cerevisiae ESCRT-III mutants lacking Hub1 or Heh1-S display severe growth defects and accumulate improperly assembled NPCs. This depends on the interaction of Chm7 with the conserved MSC domain, which is only present in the longer variant Heh1-L. Heh1 variants assemble into heterodimers, and we demonstrate that a unique splice segment in Heh1-S suppresses growth defects associated with the uncontrolled interaction between Heh1-L and Chm7. Together, our findings reveal that Hub1-mediated splicing generates Heh1-S to regulate ESCRT recruitment to the NE.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Matías Capella
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
| | - Lucía Martín Caballero
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Boris Pfander
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Stefan Jentsch
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
15
|
Fang S, Hou X, Qiu K, He R, Feng X, Liang X. The occurrence and function of alternative splicing in fungi. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Hurtig JE, Kim M, Orlando-Coronel LJ, Ewan J, Foreman M, Notice LA, Steiger MA, van Hoof A. Origin, conservation, and loss of alternative splicing events that diversify the proteome in Saccharomycotina budding yeasts. RNA (NEW YORK, N.Y.) 2020; 26:1464-1480. [PMID: 32631843 PMCID: PMC7491326 DOI: 10.1261/rna.075655.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 05/03/2023]
Abstract
Many eukaryotes use RNA processing, including alternative splicing, to express multiple gene products from the same gene. The budding yeast Saccharomyces cerevisiae has been successfully used to study the mechanism of splicing and the splicing machinery, but alternative splicing in yeast is relatively rare and has not been extensively studied. Alternative splicing of SKI7/HBS1 is widely conserved, but yeast and a few other eukaryotes have replaced this one alternatively spliced gene with a pair of duplicated, unspliced genes as part of a whole genome doubling (WGD). We show that other examples of alternative splicing known to have functional consequences are widely conserved within Saccharomycotina. A common mechanism by which alternative splicing has disappeared is by replacement of an alternatively spliced gene with duplicate unspliced genes. This loss of alternative splicing does not always take place soon after duplication, but can take place after sufficient time has elapsed for speciation. Saccharomycetaceae that diverged before WGD use alternative splicing more frequently than S. cerevisiae, suggesting that WGD is a major reason for infrequent alternative splicing in yeast. We anticipate that WGDs in other lineages may have had the same effect. Having observed that two functionally distinct splice-isoforms are often replaced by duplicated genes allowed us to reverse the reasoning. We thereby identify several splice isoforms that are likely to produce two functionally distinct proteins because we find them replaced by duplicated genes in related species. We also identify some alternative splicing events that are not conserved in closely related species and unlikely to produce functionally distinct proteins.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Minseon Kim
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Luisa J Orlando-Coronel
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Jellisa Ewan
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Michelle Foreman
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Lee-Ann Notice
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| | - Michelle A Steiger
- Department of Chemistry and Biochemistry, University of St. Thomas, Houston, Texas 77006, USA
| | - Ambro van Hoof
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center-Houston, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Chen B, Lin L, Lu Y, Peng J, Zheng H, Yang Q, Rao S, Wu G, Li J, Chen Z, Song B, Chen J, Yan F. Ubiquitin-Like protein 5 interacts with the silencing suppressor p3 of rice stripe virus and mediates its degradation through the 26S proteasome pathway. PLoS Pathog 2020; 16:e1008780. [PMID: 32866188 PMCID: PMC7485977 DOI: 10.1371/journal.ppat.1008780] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 09/11/2020] [Accepted: 07/06/2020] [Indexed: 02/03/2023] Open
Abstract
Ubiquitin like protein 5 (UBL5) interacts with other proteins to regulate their function but differs from ubiquitin and other UBLs because it does not form covalent conjugates. Ubiquitin and most UBLs mediate the degradation of target proteins through the 26S proteasome but it is not known if UBL5 can also do that. Here we found that the UBL5s of rice and Nicotiana benthamiana interacted with rice stripe virus (RSV) p3 protein. Silencing of NbUBL5s in N. benthamiana facilitated RSV infection, while UBL5 overexpression conferred resistance to RSV in both N. benthamiana and rice. Further analysis showed that NbUBL5.1 impaired the function of p3 as a suppressor of silencing by degrading it through the 26S proteasome. NbUBL5.1 and OsUBL5 interacted with RPN10 and RPN13, the receptors of ubiquitin in the 26S proteasome. Furthermore, silencing of NbRPN10 or NbRPN13 compromised the degradation of p3 mediated by NbUBL5.1. Together, the results suggest that UBL5 mediates the degradation of RSV p3 protein through the 26S proteasome, a previously unreported plant defense strategy against RSV infection.
Collapse
Affiliation(s)
- Binghua Chen
- Center for Research and Development of Fine Chemicals, Guizhou University, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
| | - Qiankun Yang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
| | - Zhuo Chen
- Center for Research and Development of Fine Chemicals, Guizhou University, China
| | - Baoan Song
- Center for Research and Development of Fine Chemicals, Guizhou University, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, China
| |
Collapse
|
18
|
Chanarat S, Svasti J. Stress-induced upregulation of the ubiquitin-relative Hub1 modulates pre-mRNA splicing and facilitates cadmium tolerance in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118565. [PMID: 31666190 DOI: 10.1016/j.bbamcr.2019.118565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/09/2023]
|
19
|
Watanabe E, Mano S, Nishimura M, Yamada K. AtUBL5 regulates growth and development through pre-mRNA splicing in Arabidopsis thaliana. PLoS One 2019; 14:e0224795. [PMID: 31730612 PMCID: PMC6857937 DOI: 10.1371/journal.pone.0224795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-like proteins play important roles in the regulation of many biological processes. UBL5 (Ubiquitin-like protein 5)/Hub1 (Homologous to ubiquitin 1), a member of the ubiquitin family, acts as a ubiquitin-like modifier on a specific target, the spliceosomal protein Snu66, in yeast and human cells. The 22nd aspartic acid (Asp22) is involved in the attachment of Hub1 to the Hub1 interaction domain (HIND) of Snu66 in yeast to modulate spliceosomal activity. Hub1 differs from other modifiers which interact covalently with their targets. It modulates pre-mRNA splicing by binding to Snu66 non-covalently in both yeast and human cells. However, the molecular mechanisms of Hub1-mediated pre-mRNA splicing in plant systems remains unclear. To better understand the function of Hub1 in plants, we examined the role of this ubiquitin-like modifier in Arabidopsis thaliana, which has two Hub1 homologues. Arabidopsis UBL5/Hub1(UBL5) is highly conserved at the amino acid level, compared to eukaryotic homologues in both plants and animals. In this study, phenotypic analysis of A. thaliana with reduced UBL5 gene expression, generated by RNA interference of AtUBL5a and AtUBL5b were performed. Interestingly, knock down plants of AtUBL5 showed abnormalities in root elongation, plant development, and auxin response. AtUBL5b is highly expressed in the vascular tissue of the leaf, stem, and root tissue. Yeast two-hybrid analysis revealed that AtUBL5a and AtUBL5b interact with the putative splicing factor AtPRP38 through its C-terminal domain (AtPRP38C). Knock down of AtUBL5b resulted in a pattern of insufficient pre-mRNA splicing in several introns of AtCDC2, and in introns of IAA1, IAA4, and IAA5. Defects of pre-mRNA splicing in an AtPRP38 mutant resulted in an insufficient pre-mRNA splicing pattern in the intron of IAA1. Based on these results, we showed that AtUBL5b positively regulates plant root elongation and development through pre-mRNA splicing with AtPRP38C in A. thaliana.
Collapse
Affiliation(s)
- Etsuko Watanabe
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- * E-mail:
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
20
|
Talkish J, Igel H, Perriman RJ, Shiue L, Katzman S, Munding EM, Shelansky R, Donohue JP, Ares M. Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome. PLoS Genet 2019; 15:e1008249. [PMID: 31437148 PMCID: PMC6726248 DOI: 10.1371/journal.pgen.1008249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/04/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022] Open
Abstract
Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these “hungry spliceosome” conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of “intronization”, whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function. The protein coding information in eukaryotic genes is broken by intervening sequences called introns that are removed from RNA during transcription by a large protein-RNA complex called the spliceosome. Where introns come from and how the spliceosome contributes to genome evolution are open questions. In this study, we find more than 150 new places in the yeast genome that are recognized by the spliceosome and spliced out as introns. Since they appear to have arisen very recently in evolution by sequence drift and do not appear to contribute to gene expression or its regulation, we call these protointrons. Protointrons are found in both protein-coding and non-coding RNAs and are not efficiently removed by the splicing machinery. Although most protointrons are not conserved and will likely disappear as evolution proceeds, a few are spliced more efficiently, and are located where they might begin to play functional roles in gene expression, as predicted by the proposed process of intronization. The challenge now is to understand how spontaneously appearing splicing events like protointrons might contribute to the creation of new genes, new genetic controls, and new protein isoforms as genomes evolve.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Haller Igel
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Rhonda J. Perriman
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Lily Shiue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sol Katzman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Elizabeth M. Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Robert Shelansky
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Talkish J, Igel H, Perriman RJ, Shiue L, Katzman S, Munding EM, Shelansky R, Donohue JP, Ares M. Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome. PLoS Genet 2019; 15:e1008249. [PMID: 31437148 DOI: 10.1101/515197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/04/2019] [Accepted: 06/15/2019] [Indexed: 05/28/2023] Open
Abstract
Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these "hungry spliceosome" conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of "intronization", whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function.
Collapse
Affiliation(s)
- Jason Talkish
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Haller Igel
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Rhonda J Perriman
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Lily Shiue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Sol Katzman
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Elizabeth M Munding
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Robert Shelansky
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - John Paul Donohue
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Manuel Ares
- Center for Molecular Biology of RNA, Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
22
|
Emerging Roles of Ubiquitin-like Proteins in Pre-mRNA Splicing. Trends Biochem Sci 2018; 43:896-907. [PMID: 30269981 DOI: 10.1016/j.tibs.2018.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Ubiquitin-like proteins (UBLs) belong to the protein family whose members share a globular beta-grasp fold structure. The archetypal member, ubiquitin, is known for its function in proteasome-mediated protein degradation. UBLs have been shown to play several crucial roles besides protein turnover, including DNA damage response, cell cycle control, cellular signaling, protein trafficking, and innate immunity activation. In the past few years, accumulating evidence illustrates that four UBLs, namely, ubiquitin, SUMO, Hub1, and Sde2, are involved in eukaryotic pre-mRNA splicing. They modify the spliceosomes and promote splicing by adding new surfaces for intermolecular interactions, thereby refining the outcome of gene expression. In this review article, we highlight recent discoveries with an emphasis on the emerging roles of UBLs in splicing regulation.
Collapse
|
23
|
Targeting the spliceosome for cutaneous squamous cell carcinoma therapy: a role for c-MYC and wild-type p53 in determining the degree of tumour selectivity. Oncotarget 2018; 9:23029-23046. [PMID: 29796170 PMCID: PMC5955416 DOI: 10.18632/oncotarget.25196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
We show that suppression of the spliceosome has potential for the treatment of cutaneous squamous cell carcinoma (cSCC). The small-molecule inhibitors of the spliceosome at the most advanced stage of development target the splicing factor SF3B1/SF3b155. The majority of cSCC cell lines are more sensitive than normal skin cells to death induced by the SF3B1 inhibitor pladienolide B. Knockdown of SF3B1 and a range of other splicing factors with diverse roles in the spliceosome can also selectively kill cSCC cells. We demonstrate that endogenous c-MYC participates in conferring sensitivity to spliceosome inhibition. c-MYC expression is elevated in cSCC lines and its knockdown reduces alterations in mRNA splicing and attenuates cell death caused by interference with the spliceosome. In addition, this study provides further support for a key role of the p53 pathway in the response to spliceosome disruption. SF3B1 inhibition causes wild-type p53 upregulation associated with altered mRNA splicing and reduced protein expression of both principal p53 negative regulators MDMX/MDM4 and MDM2. We observed that wild-type p53 can promote pladienolide B-induced death in tumour cells. However, p53 is commonly inactivated by mutation in cSCCs and p53 participates in killing normal skin cells at high concentrations of pladienolide B. This may limit the therapeutic window of SF3B1 inhibitors for cSCC. We provide evidence that, while suppression of SF3B1 has promise for treating cSCCs with mutant p53, inhibitors which target the spliceosome through SF3B1-independent mechanisms could have greater cSCC selectivity as a consequence of reduced p53 upregulation in normal cells.
Collapse
|
24
|
Mishra SK, Thakran P. Intron specificity in pre-mRNA splicing. Curr Genet 2018; 64:777-784. [PMID: 29299619 DOI: 10.1007/s00294-017-0802-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
The occurrence of spliceosomal introns in eukaryotic genomes is highly diverse and ranges from few introns in an organism to multiple introns per gene. Introns vary with respect to their lengths, strengths of splicing signals, and position in resident genes. Higher intronic density and diversity in genetically complex organisms relies on increased efficiency and accuracy of spliceosomes for pre-mRNA splicing. Since intron diversity is critical for functions in RNA stability, regulation of gene expression and alternative splicing, RNA-binding proteins, spliceosomal regulatory factors and post-translational modifications of splicing factors ought to make the splicing process intron-specific. We recently reported function and regulation of a ubiquitin fold harboring splicing regulator, Sde2, which following activation by ubiquitin-specific proteases facilitates excision of selected introns from a subset of multi-intronic genes in Schizosaccharomyces pombe (Thakran et al. EMBO J, https://doi.org/10.15252/embj.201796751 , 2017). By reviewing our findings with understandings of intron functions and regulated splicing processes, we propose possible functions and mechanism of intron-specific pre-mRNA splicing and suggest that this process is crucial to highlight importance of introns in eukaryotic genomes.
Collapse
Affiliation(s)
- Shravan Kumar Mishra
- Max Planck, DST Partner Group, Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Punjab, 140306, India.
| | - Poonam Thakran
- Max Planck, DST Partner Group, Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Punjab, 140306, India
| |
Collapse
|