1
|
Fullstone T, Rohm H, Kaltofen T, Hierlmayer S, Reichenbach J, Schweikert S, Knodel F, Loeffler AK, Mayr D, Jeschke U, Mahner S, Kessler M, Trillsch F, Rathert P. Identification of FLYWCH1 as a regulator of platinum-resistance in epithelial ovarian cancer. NAR Cancer 2025; 7:zcaf012. [PMID: 40191655 PMCID: PMC11970373 DOI: 10.1093/narcan/zcaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Platinum-based combination chemotherapy remains the backbone of first-line treatment for patients with advanced epithelial ovarian cancer (EOC). While most patients initially respond well to the treatment, patients with relapse ultimately develop platinum resistance. This study identified FLYWCH-type zinc finger-containing protein 1 (FLYWCH1) as an important regulator in the resistance development process. We showed that the loss of FLYWCH1 promotes platinum resistance in EOC cells, and the low FLYWCH1 expression is correlated with poor prognosis of EOC patients. In platinum-sensitive cells, FLYWCH1 colocalizes with H3K9me3, but this association is significantly reduced when cells acquire resistance. The suppression of FLYWCH1 induces gene expression changes resulting in the deregulation of pathways associated with resistance. In line with its connection to H3K9me3, FLYWCH1 induces gene silencing in a synthetic reporter assay and the suppression of FLYWCH1 alters H3K9me3 at promoter regions and repeat elements. The loss of FLYWCH1 leads to the derepression of LTR and Alu repeats, thereby increasing transcriptional plasticity and driving the resistance development process. Our data highlight the importance of FLYWCH1 in chromatin biology and acquisition of platinum resistance through transcriptional plasticity and propose FLYWCH1 as a potential biomarker for predicting treatment responses in EOC patients.
Collapse
MESH Headings
- Female
- Humans
- Drug Resistance, Neoplasm/genetics
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/drug therapy
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Cell Line, Tumor
- Histones/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/metabolism
- Platinum/pharmacology
- Prognosis
- Promoter Regions, Genetic
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Tabea L Fullstone
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Helene Rohm
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sophia Hierlmayer
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Juliane Reichenbach
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Schweikert
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Franziska Knodel
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ann-Kathrin Loeffler
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Doris Mayr
- Institute of Pathology, LMU Munich, 81377 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp Rathert
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Ishak CA, Marhon SA, Tchrakian N, Hodgson A, Loo Yau H, Gonzaga IM, Peralta M, Lungu IM, Gomez S, Liang SB, Shen SY, Chen R, Chen J, Chatterjee B, Wanniarachchi KN, Lee J, Zehrbach N, Hosseini A, Mehdipour P, Sun S, Solovyov A, Ettayebi I, Francis KE, He A, Wu T, Feng S, da Silva Medina T, Campos de Almeida F, Bayani J, Li J, MacDonald S, Wang Y, Garcia SS, Arthofer E, Diab N, Srivastava A, Austin PT, Sabatini PJB, Greenbaum BD, O'Brien CA, Shepherd TG, Tsao MS, Chiappinelli KB, Oza AM, Clarke BA, Rottapel R, Lheureux S, De Carvalho DD. Chronic Viral Mimicry Induction following p53 Loss Promotes Immune Evasion. Cancer Discov 2025; 15:793-817. [PMID: 39776167 DOI: 10.1158/2159-8290.cd-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE Our landmark discovery of viral mimicry characterized repetitive elements as immunogenic stimuli that cull cancer cells. If expressed repetitive elements cull cancer cells, why does every human cancer express repetitive elements? Our report offers an exciting advancement toward understanding this paradox and how to exploit this mechanism for cancer interception. See related commentary by Murayama and Cañadas, p. 670.
Collapse
Affiliation(s)
- Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Naïri Tchrakian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Anjelica Hodgson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Helen Loo Yau
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Isabela M Gonzaga
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Melanie Peralta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ilinca M Lungu
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Stephanie Gomez
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Sheng-Ben Liang
- Princess Margaret Cancer Biobank, University Health Network, Toronto, Canada
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jocelyn Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Biji Chatterjee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin N Wanniarachchi
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas Zehrbach
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amir Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Siyu Sun
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Solovyov
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ilias Ettayebi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kyle E Francis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aobo He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Taiyi Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Shengrui Feng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | - Jane Bayani
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Jason Li
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Spencer MacDonald
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yadong Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sarah S Garcia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Elisa Arthofer
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Noor Diab
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Aneil Srivastava
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Paul Tran Austin
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Peter J B Sabatini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Benjamin D Greenbaum
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Trevor G Shepherd
- Department of Obstetrics and Gynaecology, Western University, London, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Blaise A Clarke
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Stephanie Lheureux
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Grillo G, Boyarchuk E, Mihic S, Ivkovic I, Bertrand M, Jouneau A, Dahlet T, Dumas M, Weber M, Velasco G, Francastel C. ZBTB24 is a conserved multifaceted transcription factor at genes and centromeres that governs the DNA methylation state and expression of satellite repeats. Hum Mol Genet 2025; 34:161-177. [PMID: 39562305 PMCID: PMC11780882 DOI: 10.1093/hmg/ddae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Since its discovery as a causative gene of the Immunodeficiency with Centromeric instability and Facial anomalies syndrome, ZBTB24 has emerged as a key player in DNA methylation, immunity and development. By extensively analyzing ZBTB24 genomic functions in ICF-relevant mouse and human cellular models, we document here its multiple facets as a transcription factor, with key roles in immune response-related genes expression and also in early embryonic development. Using a constitutive Zbtb24 ICF-like mutant and an auxin-inducible degron system in mouse embryonic stem cells, we showed that ZBTB24 is recruited to centromeric satellite DNA where it is required to establish and maintain the correct DNA methylation patterns through the recruitment of DNMT3B. The ability of ZBTB24 to occupy centromeric satellite DNA is conserved in human cells. Together, our results unveiled an essential and underappreciated role for ZBTB24 at mouse and human centromeric satellite repeat arrays by controlling their DNA methylation and transcription status.
Collapse
Affiliation(s)
- Giacomo Grillo
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Ekaterina Boyarchuk
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
- UMR7216, Genome engineering in epigenetics platform (GENIE), Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Seed Mihic
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Ivana Ivkovic
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Mathilde Bertrand
- Bioinformatics and Biostatistics Core Facility, iCONICS, Institut du Cerveau (ICM), Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, 47 bd de l'hôpital, Paris F-75013, France
| | - Alice Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Bâtiment 230, Domaine de Vilvert, Jouy-en-Josas 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 7 av. du Général de Gaulle, Maisons-Alfort 94700, France
| | - Thomas Dahlet
- University of Strasbourg, 4 rue Blaise Pascal, Strasbourg 67081, France
- CNRS UMR7242, Biotechnology and Cell Signaling, 300 bd Sébastien Brant, Illkirch 67412, France
| | - Michael Dumas
- University of Strasbourg, 4 rue Blaise Pascal, Strasbourg 67081, France
- CNRS UMR7242, Biotechnology and Cell Signaling, 300 bd Sébastien Brant, Illkirch 67412, France
| | - Michael Weber
- University of Strasbourg, 4 rue Blaise Pascal, Strasbourg 67081, France
- CNRS UMR7242, Biotechnology and Cell Signaling, 300 bd Sébastien Brant, Illkirch 67412, France
| | - Guillaume Velasco
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| | - Claire Francastel
- UMR7216 Epigénétique et Destin Cellulaire, CNRS, Université de Paris Cité, Epigenetics and Cell Fate, Lamarck building, 35 rue Hélène Brion, Paris F-75013, France
| |
Collapse
|
5
|
Chavan A, Skrutl L, Uliana F, Pfister M, Brändle F, Tirian L, Baptista D, Handler D, Burke D, Sintsova A, Beltrao P, Brennecke J, Jagannathan M. Multi-tissue characterization of the constitutive heterochromatin proteome in Drosophila identifies a link between satellite DNA organization and transposon repression. PLoS Biol 2025; 23:e3002984. [PMID: 39813297 PMCID: PMC11734925 DOI: 10.1371/journal.pbio.3002984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized. Here, we use 2 satellite DNA-binding proteins, D1 and Prod, as baits to characterize the chromocenter-associated proteome in Drosophila embryos, ovaries, and testes through quantitative mass spectrometry. We identify D1- and Prod-associated proteins, including known heterochromatin proteins as well as proteins previously unlinked to satellite DNA or chromocenters, thereby laying the foundation for a comprehensive understanding of cellular functions enabled by satellite DNA repeats and their associated proteins. Interestingly, we find that multiple components of the transposon-silencing piRNA pathway are associated with D1 and Prod in embryos. Using genetics, transcriptomics, and small RNA profiling, we show that flies lacking D1 during embryogenesis exhibit transposon expression and gonadal atrophy as adults. We further demonstrate that this gonadal atrophy can be rescued by mutating the checkpoint kinase, Chk2, which mediates germ cell arrest in response to transposon mobilization. Thus, we reveal that a satellite DNA-binding protein functions during embryogenesis to silence transposons, in a manner that is heritable across later stages of development.
Collapse
Affiliation(s)
- Ankita Chavan
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Life Sciences Zürich Graduate School, Zürich, Switzerland
- Bringing Materials to Life Consortium, Zürich, Switzerland
| | - Lena Skrutl
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Life Sciences Zürich Graduate School, Zürich, Switzerland
| | - Federico Uliana
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Bringing Materials to Life Consortium, Zürich, Switzerland
| | | | - Franziska Brändle
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Life Sciences Zürich Graduate School, Zürich, Switzerland
| | - Laszlo Tirian
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | | | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - David Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Anna Sintsova
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Madhav Jagannathan
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Bringing Materials to Life Consortium, Zürich, Switzerland
| |
Collapse
|
6
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Pericentromeric satellite RNAs as flexible protein partners in the regulation of nuclear structure. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1868. [PMID: 38973000 DOI: 10.1002/wrna.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pericentromeric heterochromatin is mainly composed of satellite DNA sequences. Although being historically associated with transcriptional repression, some pericentromeric satellite DNA sequences are transcribed. The transcription events of pericentromeric satellite sequences occur in highly flexible biological contexts. Hence, the apparent randomness of pericentromeric satellite transcription incites the discussion about the attribution of biological functions. However, pericentromeric satellite RNAs have clear roles in the organization of nuclear structure. Silencing pericentromeric heterochromatin depends on pericentromeric satellite RNAs, that, in a feedback mechanism, contribute to the repression of pericentromeric heterochromatin. Moreover, pericentromeric satellite RNAs can also act as scaffolding molecules in condensate subnuclear structures (e.g., nuclear stress bodies). Since the formation/dissociation of nuclear condensates provides cell adaptability, pericentromeric satellite RNAs can be an epigenetic platform for regulating (sub)nuclear structure. We review current knowledge about pericentromeric satellite RNAs that, irrespective of the meaning of biological function, should be functionally addressed in regular and disease settings. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Mariana Lopes
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra Louzada
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- RISE-Health: Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal
- CACTMAD: Trás-os-Montes and Alto Douro Academic Clinic Center,University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
8
|
Khanduja JS, Joh RI, Perez MM, Paulo JA, Palmieri CM, Zhang J, Gulka AOD, Haas W, Gygi SP, Motamedi M. RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly. Cell 2024; 187:3262-3283.e23. [PMID: 38815580 PMCID: PMC11227895 DOI: 10.1016/j.cell.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 11/10/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.
Collapse
Affiliation(s)
- Jasbeer S Khanduja
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Richard I Joh
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Monica M Perez
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christina M Palmieri
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jingyu Zhang
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alex O D Gulka
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Willhelm Haas
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Krantz Family Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
9
|
Zocher S, McCloskey A, Karasinsky A, Schulte R, Friedrich U, Lesche M, Rund N, Gage FH, Hetzer MW, Toda T. Lifelong persistence of nuclear RNAs in the mouse brain. Science 2024; 384:53-59. [PMID: 38574132 PMCID: PMC7615865 DOI: 10.1126/science.adf3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/02/2024] [Indexed: 04/06/2024]
Abstract
Genomic DNA that resides in the nuclei of mammalian neurons can be as old as the organism itself. The life span of nuclear RNAs, which are critical for proper chromatin architecture and transcription regulation, has not been determined in adult tissues. In this work, we identified and characterized nuclear RNAs that do not turn over for at least 2 years in a subset of postnatally born cells in the mouse brain. These long-lived RNAs were stably retained in nuclei in a neural cell type-specific manner and were required for the maintenance of heterochromatin. Thus, the life span of neural cells may depend on both the molecular longevity of DNA for the storage of genetic information and also the extreme stability of RNA for the functional organization of chromatin.
Collapse
Affiliation(s)
- Sara Zocher
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
| | - Asako McCloskey
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Kura Oncology, Inc., 5510 Morehouse Dr., San Diego, CA 92121, USA
| | - Anne Karasinsky
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
| | - Roberta Schulte
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ulrike Friedrich
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Nicole Rund
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martin W. Hetzer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden 01307, Germany
- Laboratory of Neural Epigenomics, Institute of Medical Physics and Micro-tissue Engineering, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
10
|
Ghimire P, Motamedi M, Joh R. Mathematical model for the role of multiple pericentromeric repeats on heterochromatin assembly. PLoS Comput Biol 2024; 20:e1012027. [PMID: 38598558 PMCID: PMC11034663 DOI: 10.1371/journal.pcbi.1012027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.
Collapse
Affiliation(s)
- Puranjan Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mo Motamedi
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, Boston, Massachusetts, United States of America
| | - Richard Joh
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond Virginia, United States of America
| |
Collapse
|
11
|
Ruzanov P, Evdokimova V, Pachva MC, Minkovich A, Zhang Z, Langman S, Gassmann H, Thiel U, Orlic-Milacic M, Zaidi SH, Peltekova V, Heisler LE, Sharma M, Cox ME, McKee TD, Zaidi M, Lapouble E, McPherson JD, Delattre O, Radvanyi L, Burdach SE, Stein LD, Sorensen PH. Oncogenic ETS fusions promote DNA damage and proinflammatory responses via pericentromeric RNAs in extracellular vesicles. J Clin Invest 2024; 134:e169470. [PMID: 38530366 PMCID: PMC11060741 DOI: 10.1172/jci169470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.
Collapse
Affiliation(s)
- Peter Ruzanov
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Manideep C. Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alon Minkovich
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sofya Langman
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | | | - Syed H. Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vanya Peltekova
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Manju Sharma
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Michael E. Cox
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Trevor D. McKee
- STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Pathomics Inc., Toronto, Ontario, Canada
| | - Mark Zaidi
- Pathomics Inc., Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eve Lapouble
- Unité Génétique Somatique (UGS), Institut Curie, Centre Hospitalier Paris, France
| | - John D. McPherson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Olivier Delattre
- Unité Génétique Somatique (UGS), Institut Curie, Centre Hospitalier Paris, France
- Diversity and Plasticity of Childhood tumors, INSERM U830, Institut Curie Research Center, PSL Research University, Paris, France
| | - Laszlo Radvanyi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stefan E.G. Burdach
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- CCC München Comprehensive Cancer Center, DKTK German Cancer Consortium, Munich, Germany
- Institute of Pathology, Translation Pediatric Cancer Research Action, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lincoln D. Stein
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Brenner LM, Meyer F, Yang H, Köhler AR, Bashtrykov P, Guo M, Jeltsch A, Lungu C, Olayioye MA. Repeat DNA methylation is modulated by adherens junction signaling. Commun Biol 2024; 7:286. [PMID: 38454140 PMCID: PMC10920906 DOI: 10.1038/s42003-024-05990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Through its involvement in gene transcription and heterochromatin formation, DNA methylation regulates how cells interact with their environment. Nevertheless, the extracellular signaling cues that modulate the distribution of this central chromatin modification are largely unclear. DNA methylation is highly abundant at repetitive elements, but its investigation in live cells has been complicated by methodological challenges. Utilizing a CRISPR/dCas9 biosensor that reads DNA methylation of human α-satellite repeats in live cells, we here uncover a signaling pathway linking the chromatin and transcriptional state of repetitive elements to epithelial adherens junction integrity. Specifically, we find that in confluent breast epithelial cell monolayers, α-satellite repeat methylation is reduced by comparison to low density cultures. This is coupled with increased transcriptional activity at repeats. Through comprehensive perturbation experiments, we identify the junctional protein E-cadherin, which links to the actin cytoskeleton, as a central molecular player for signal relay into the nucleus. Furthermore, we find that this pathway is impaired in cancer cells that lack E-cadherin and are not contact-inhibited. This suggests that the molecular connection between cell density and repetitive element methylation could play a role in the maintenance of epithelial tissue homeostasis.
Collapse
Affiliation(s)
- Lisa-Marie Brenner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Anja R Köhler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Nobelstraße 15, 70569, Stuttgart, Germany.
| |
Collapse
|
13
|
Miglierina E, Ordanoska D, Le Noir S, Laffleur B. RNA processing mechanisms contribute to genome organization and stability in B cells. Oncogene 2024; 43:615-623. [PMID: 38287115 PMCID: PMC10890934 DOI: 10.1038/s41388-024-02952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
RNA processing includes post-transcriptional mechanisms controlling RNA quality and quantity to ensure cellular homeostasis. Noncoding (nc) RNAs that are regulated by these dynamic processes may themselves fulfill effector and/or regulatory functions, and recent studies demonstrated the critical role of RNAs in organizing both chromatin and genome architectures. Furthermore, RNAs can threaten genome integrity when accumulating as DNA:RNA hybrids, but could also facilitate DNA repair depending on the molecular context. Therefore, by qualitatively and quantitatively fine-tuning RNAs, RNA processing contributes directly or indirectly to chromatin states, genome organization, and genome stability. B lymphocytes represent a unique model to study these interconnected mechanisms as they express ncRNAs transcribed from key specific sequences before undergoing physiological genetic remodeling processes, including V(D)J recombination, somatic hypermutation, and class switch recombination. RNA processing actors ensure the regulation and degradation of these ncRNAs for efficient DNA repair and immunoglobulin gene remodeling while failure leads to B cell development alterations, aberrant DNA repair, and pathological translocations. This review highlights how RNA processing mechanisms contribute to genome architecture and stability, with emphasis on their critical roles during B cell development, enabling physiological DNA remodeling while preventing lymphomagenesis.
Collapse
Affiliation(s)
- Emma Miglierina
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France
| | - Delfina Ordanoska
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France
| | - Sandrine Le Noir
- UMR CNRS 7276, Inserm 1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B cell Nuclear Architecture, Immunoglobulin genes and Oncogenes, Limoges, France
| | - Brice Laffleur
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France.
| |
Collapse
|
14
|
Fonseca-Carvalho M, Veríssimo G, Lopes M, Ferreira D, Louzada S, Chaves R. Answering the Cell Stress Call: Satellite Non-Coding Transcription as a Response Mechanism. Biomolecules 2024; 14:124. [PMID: 38254724 PMCID: PMC10813801 DOI: 10.3390/biom14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Organisms are often subjected to conditions that promote cellular stress. Cell responses to stress include the activation of pathways to defend against and recover from the stress, or the initiation of programmed cell death to eliminate the damaged cells. One of the processes that can be triggered under stress is the transcription and variation in the number of copies of satellite DNA sequences (satDNA), which are involved in response mechanisms. Satellite DNAs are highly repetitive tandem sequences, mainly located in the centromeric and pericentromeric regions of eukaryotic chromosomes, where they form the constitutive heterochromatin. Satellite non-coding RNAs (satncRNAs) are important regulators of cell processes, and their deregulation has been associated with disease. Also, these transcripts have been associated with stress-response mechanisms in varied eukaryotic species. This review intends to explore the role of satncRNAs when cells are subjected to adverse conditions. Studying satDNA transcription under various stress conditions and deepening our understanding of where and how these sequences are involved could be a key factor in uncovering important facts about the functions of these sequences.
Collapse
Affiliation(s)
- Marisa Fonseca-Carvalho
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Mariana Lopes
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.F.-C.); (G.V.); (M.L.); (D.F.); (S.L.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
15
|
Baumann C, Zhang X, Viveiros MM, De La Fuente R. Pericentric major satellite transcription is essential for meiotic chromosome stability and spindle pole organization. Open Biol 2023; 13:230133. [PMID: 37935356 PMCID: PMC10645078 DOI: 10.1098/rsob.230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
In somatic cells, mitotic transcription of major satellite non-coding RNAs is tightly regulated and essential for heterochromatin formation and the maintenance of genome integrity. We recently demonstrated that major satellite transcripts are expressed, and chromatin-bound during mouse oocyte meiosis. Pericentric satellite RNAs are also expressed in human oocytes. However, the specific biological function(s) during oocyte meiosis remain to be established. Here, we use validated locked nucleic acid gapmers for major satellite RNA depletion followed by live cell imaging, and superresolution analysis to determine the role of pericentric non-coding RNAs during female meiosis. Depletion of satellite RNA induces mesoscale changes in pericentric heterochromatin structure leading to chromosome instability, kinetochore attachment errors and abnormal chromosome alignment. Chromosome misalignment is associated with spindle defects, microtubule instability and, unexpectedly, loss of acentriolar microtubule organizing centre (aMTOC) tethering to spindle poles. Pericentrin fragmentation and failure to assemble ring-like aMTOCs with loss of associated polo-like kinase 1 provide critical insight into the mechanisms leading to impaired spindle pole integrity. Inhibition of transcription or RNA splicing phenocopies the chromosome alignment errors and spindle defects, suggesting that pericentric transcription during oocyte meiosis is required to regulate heterochromatin structure, chromosome segregation and maintenance of spindle organization.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| |
Collapse
|
16
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
17
|
Feliciello I, Ugarković Đ. Alpha Satellite DNA in Targeted Drug Therapy for Prostate Cancer. Int J Mol Sci 2023; 24:15585. [PMID: 37958565 PMCID: PMC10648476 DOI: 10.3390/ijms242115585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Prostate cancer is the most common solid cancer in men and, despite the development of many new therapies, metastatic castration-resistant prostate cancer still remains a deadly disease. Therefore, novel concepts for the treatment of metastatic prostate cancer are needed. In our opinion, the role of the non-coding part of the genome, satellite DNA in particular, has been underestimated in relation to diseases such as cancer. Here, we hypothesise that this part of the genome should be considered as a potential target for the development of new drugs. Specifically, we propose a novel concept directed at the possible treatment of metastatic prostate cancer that is mostly based on epigenetics. Namely, metastatic prostate cancer is characterized by the strongly induced transcription of alpha satellite DNA located in pericentromeric heterochromatin and, according to our hypothesis, the stable controlled transcription of satellite DNA might be important in terms of the control of disease development. This can be primarily achieved through the epigenetic regulation of pericentromeric heterochromatin by using specific enzymes as well as their activators/inhibitors that could act as potential anti-prostate cancer drugs. We believe that our concept is innovative and should be considered in the potential treatment of prostate cancer in combination with other more conventional therapies.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Medical School, Department of Clinical Medicine and Surgery, Universiy of Naples Federico II, 80131 Naples, Italy
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
18
|
Ninomiya K, Yamazaki T, Hirose T. Satellite RNAs: emerging players in subnuclear architecture and gene regulation. EMBO J 2023; 42:e114331. [PMID: 37526230 PMCID: PMC10505914 DOI: 10.15252/embj.2023114331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.
Collapse
Affiliation(s)
- Kensuke Ninomiya
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | | | - Tetsuro Hirose
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| |
Collapse
|
19
|
Yin Y, Shen X. Noncoding RNA-chromatin association: Functions and mechanisms. FUNDAMENTAL RESEARCH 2023; 3:665-675. [PMID: 38933302 PMCID: PMC11197541 DOI: 10.1016/j.fmre.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2024] Open
Abstract
Pervasive transcription of the mammalian genome produces hundreds of thousands of noncoding RNAs (ncRNAs). Numerous studies have suggested that some of these ncRNAs regulate multiple cellular processes and play important roles in physiological and pathological processes. Notably, a large subset of ncRNAs is enriched on chromatin and participates in regulating gene expression and the dynamics of chromatin structure and status. In this review, we summarize recent advances in the functional study of chromatin-associated ncRNAs and mechanistic insights into how these ncRNAs associate with chromatin. We also discuss the potential future challenges which still need to be overcome in this field.
Collapse
Affiliation(s)
- Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Witus SR, Tuttle LM, Li W, Zelter A, Wang M, Kermoade KE, Wilburn DB, Davis TN, Brzovic PS, Zhao W, Klevit RE. BRCA1/BARD1 intrinsically disordered regions facilitate chromatin recruitment and ubiquitylation. EMBO J 2023; 42:e113565. [PMID: 37305927 PMCID: PMC10390874 DOI: 10.15252/embj.2023113565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.
Collapse
Affiliation(s)
- Samuel R Witus
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Lisa M Tuttle
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Wenjing Li
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Alex Zelter
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Meiling Wang
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | | | - Damien B Wilburn
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOHUSA
| | - Trisha N Davis
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Peter S Brzovic
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | - Weixing Zhao
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Rachel E Klevit
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
21
|
Ponomartsev N, Zilov D, Gushcha E, Travina A, Sergeev A, Enukashvily N. Overexpression of Pericentromeric HSAT2 DNA Increases Expression of EMT Markers in Human Epithelial Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24086918. [PMID: 37108080 PMCID: PMC10138405 DOI: 10.3390/ijms24086918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Pericentromeric tandemly repeated DNA of human satellites 1, 2, and 3 (HS1, HS2, and HS3) is actively transcribed in some cells. However, the functionality of the transcription remains obscure. Studies in this area have been hampered by the absence of a gapless genome assembly. The aim of our study was to map a transcript that we have previously described as HS2/HS3 on chromosomes using a newly published gapless genome assembly T2T-CHM13, and create a plasmid overexpressing the transcript to assess the influence of HS2/HS3 transcription on cancer cells. We report here that the sequence of the transcript is tandemly repeated on nine chromosomes (1, 2, 7, 9, 10, 16, 17, 22, and Y). A detailed analysis of its genomic localization and annotation in the T2T-CHM13 assembly revealed that the sequence belonged to HSAT2 (HS2) but not to the HS3 family of tandemly repeated DNA. The transcript was found on both strands of HSAT2 arrays. The overexpression of the HSAT2 transcript increased the transcription of the genes encoding the proteins involved in the epithelial-to-mesenchymal transition, EMT (SNAI1, ZEB1, and SNAI2), and the genes that mark cancer-associated fibroblasts (VIM, COL1A1, COL11A1, and ACTA2) in cancer cell lines A549 and HeLa. Co-transfection of the overexpression plasmid and antisense nucleotides eliminated the transcription of EMT genes observed after HSAT2 overexpression. Antisense oligonucleotides also decreased transcription of the EMT genes induced by tumor growth factor beta 1 (TGFβ1). Thus, our study suggests HSAT2 lncRNA transcribed from the pericentromeric tandemly repeated DNA is involved in EMT regulation in cancer cells.
Collapse
Affiliation(s)
- Nikita Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Danil Zilov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg 191002, Russia
| | - Ekaterina Gushcha
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexandra Travina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexander Sergeev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natella Enukashvily
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
22
|
Yang LL, Li YC, Xia TJ, Li S, Feng X, Li C, Xie FY, Ou XH, Ma JY. Dynamic of centromere associated RNAs and the centromere loading of DNA repair proteins in growing oocytes. Front Genet 2023; 14:1131698. [PMID: 37035744 PMCID: PMC10080056 DOI: 10.3389/fgene.2023.1131698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Mammalian centromeres are generally composed of dispersed repeats and the satellites such as α-satellites in human and major/minor satellites in mouse. Transcription of centromeres by RNA polymerase II is evolutionary conserved and critical for kinetochore assembly. In addition, it has been found that the transcribed satellite RNAs can bind DNA repair proteins such as MRE11 and PRKDC, and excessively expressed satellite RNAs could induce genome instability and facilitate tumorigenesis. During the maturation of female oocyte, centromeres are critical for accurate segregation of homologous chromosomes and sister chromatids. However, the dynamics of oocyte centromere transcription and whether it associated with DNA repair proteins are unknown. In this study, we found the transcription of centromeres is active in growing oocytes but it is silenced when oocytes are fully grown. DNA repair proteins like Mlh1, Mre11 and Prkdc are found associated with the minor satellites and this association can be interfered by RNA polymerase II inhibitor α-amanitin. When the growing oocyte is in vitro matured, Mlh1/Mre11/Prkdc foci would release from centromeres to the ooplasm. If the oocytes are treated with Mre11 inhibitor Mirin, the meiosis resumption of growing oocytes with Mre11 foci can be suppressed. These data revealed the dynamic of centromeric transcription in oocytes and its potential association with DNA repair proteins, which provide clues about how oocytes maintain centromere stability and assemble kinetochores.
Collapse
Affiliation(s)
- Lin-Li Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yan-Chu Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tian-Jin Xia
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Sen Li
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chao Li
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yun Xie
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Xiang-Hong Ou, ; Jun-Yu Ma,
| | - Jun-Yu Ma
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Fertilization Preservation Lab, Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Xiang-Hong Ou, ; Jun-Yu Ma,
| |
Collapse
|
23
|
Shukla S, Lazarchuk P, Pavlova MN, Sidorova JM. Genome-wide survey of D/E repeats in human proteins uncovers their instability and aids in identifying their role in the chromatin regulator ATAD2. iScience 2022; 25:105464. [PMCID: PMC9672403 DOI: 10.1016/j.isci.2022.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
D/E repeats are stretches of aspartic and/or glutamic acid residues found in over 150 human proteins. We examined genomic stability of D/E repeats and functional characteristics of D/E repeat-containing proteins vis-à-vis the proteins with poly-Q or poly-A repeats, which are known to undergo pathologic expansions. Mining of tumor sequencing data revealed that D/E repeat-coding regions are similar to those coding poly-Qs and poly-As in increased incidence of trinucleotide insertions/deletions but differ in types and incidence of substitutions. D/E repeat-containing proteins preferentially function in chromatin metabolism and are the more likely to be nuclear and interact with core histones, the longer their repeats are. One of the longest D/E repeats of unknown function is in ATAD2, a bromodomain family ATPase frequently overexpressed in tumors. We demonstrate that D/E repeat deletion in ATAD2 suppresses its binding to nascent and mature chromatin and to the constitutive pericentromeric heterochromatin, where ATAD2 represses satellite transcription. Many human proteins contain runs of aspartic/glutamic acid residues (D/E repeats) D/E repeats show increased incidence of in-frame insertions/deletions in tumors Nuclear and histone-interacting proteins often have long D/E repeats D/E repeat of the oncogene ATAD2 controls its binding to pericentric chromatin
Collapse
Affiliation(s)
- Shalabh Shukla
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
- Corresponding author
| |
Collapse
|
24
|
Panatta E, Butera A, Mammarella E, Pitolli C, Mauriello A, Leist M, Knight RA, Melino G, Amelio I. Metabolic regulation by p53 prevents R-loop-associated genomic instability. Cell Rep 2022; 41:111568. [DOI: 10.1016/j.celrep.2022.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022] Open
|
25
|
Repetitive Sequence Transcription in Breast Cancer. Cells 2022; 11:cells11162522. [PMID: 36010599 PMCID: PMC9406339 DOI: 10.3390/cells11162522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Repetitive sequences represent about half of the human genome. They are actively transcribed and play a role during development and in epigenetic regulation. The altered activity of repetitive sequences can lead to genomic instability and they can contribute to the establishment or the progression of degenerative diseases and cancer transformation. In this work, we analyzed the expression profiles of DNA repetitive sequences in the breast cancer specimens of the HMUCC cohort. Satellite expression is generally upregulated in breast cancers, with specific families upregulated per histotype: in HER2-enriched cancers, they are the human satellite II (HSATII), in luminal A and B, they are part of the ALR family and in triple-negative, they are part of SAR and GSAT families, together with a perturbation in the transcription from endogenous retroviruses and their LTR sequences. We report that the background expression of repetitive sequences in healthy tissues of cancer patients differs from the tissues of non-cancerous controls. To conclude, peculiar patterns of expression of repetitive sequences are reported in each specimen, especially in the case of transcripts arising from satellite repeats.
Collapse
|
26
|
A classical revival: Human satellite DNAs enter the genomics era. Semin Cell Dev Biol 2022; 128:2-14. [PMID: 35487859 DOI: 10.1016/j.semcdb.2022.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
The classical human satellite DNAs, also referred to as human satellites 1, 2 and 3 (HSat1, HSat2, HSat3, or collectively HSat1-3), occur on most human chromosomes as large, pericentromeric tandem repeat arrays, which together constitute roughly 3% of the human genome (100 megabases, on average). Even though HSat1-3 were among the first human DNA sequences to be isolated and characterized at the dawn of molecular biology, they have remained almost entirely missing from the human genome reference assembly for 20 years, hindering studies of their sequence, regulation, and potential structural roles in the nucleus. Recently, the Telomere-to-Telomere Consortium produced the first truly complete assembly of a human genome, paving the way for new studies of HSat1-3 with modern genomic tools. This review provides an account of the history and current understanding of HSat1-3, with a view towards future studies of their evolution and roles in health and disease.
Collapse
|
27
|
Tamaki S, Suzuki K, Abe I, Endo Y, Kakizawa N, Watanabe F, Saito M, Tsujinaka S, Miyakura Y, Ohta S, Tago K, Yanagisawa K, Konishi F, Rikiyama T. Overexpression of satellite RNAs in heterochromatin induces chromosomal instability and reflects drug sensitivity in mouse cancer cells. Sci Rep 2022; 12:10999. [PMID: 35768614 PMCID: PMC9243030 DOI: 10.1038/s41598-022-15071-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Overexpression of satellite RNAs in heterochromatin induces chromosomal instability (CIN) through the DNA damage response and cell cycle checkpoint activation. Although satellite RNAs may be therapeutic targets, the associated mechanisms underlying drug sensitivity are unknown. Here, we determined whether satellite RNAs reflect drug sensitivity to the topoisomerase I inhibitor camptothecin (CPT) via CIN induction. We constructed retroviral vectors expressing major satellite and control viruses, infected microsatellite stable mouse colon cancer cells (CT26) and MC38 cells harboring microsatellite instability, and assessed drug sensitivity after 48 h. Cells overexpressing satellite RNAs showed clear features of abnormal segregation, including micronuclei and anaphase bridging, and elevated levels of the DNA damage marker γH2AX relative to controls. Additionally, overexpression of satellite RNAs enhanced MC38 cell susceptibility to CPT [half-maximal inhibitory concentration: 0.814 μM (control) vs. 0.332 μM (MC38 cells with a major satellite), p = 0.003] but not that of CT26. These findings imply that MC38 cells, which are unlikely to harbor CIN, are more susceptible to CIN-induced CPT sensitivity than CT26 cells, which are characterized by CIN. Furthermore, CPT administration upregulated p53 levels but not those of p21, indicating that overexpression of major satellite transcripts likely induces CPT-responsive cell death rather than cellular senescence.
Collapse
Affiliation(s)
- Sawako Tamaki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan.
| | - Iku Abe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Yuhei Endo
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Nao Kakizawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Masaaki Saito
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Shingo Tsujinaka
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Yasuyuki Miyakura
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Satoshi Ohta
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Ken Yanagisawa
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Fumio Konishi
- Nerima Hikarigaoka Hospital, 2-11-1, Hikarigaoka, Nerima-ku, Tokyo, 179-0072, Japan
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| |
Collapse
|
28
|
Ugarković Đ, Sermek A, Ljubić S, Feliciello I. Satellite DNAs in Health and Disease. Genes (Basel) 2022; 13:genes13071154. [PMID: 35885937 PMCID: PMC9324158 DOI: 10.3390/genes13071154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tandemly repeated satellite DNAs are major components of centromeres and pericentromeric heterochromatin which are crucial chromosomal elements responsible for accurate chromosome segregation. Satellite DNAs also contribute to genome evolution and the speciation process and are important for the maintenance of the entire genome inside the nucleus. In addition, there is increasing evidence for active and tightly regulated transcription of satellite DNAs and for the role of their transcripts in diverse processes. In this review, we focus on recent discoveries related to the regulation of satellite DNA expression and the role of their transcripts, either in heterochromatin establishment and centromere function or in gene expression regulation under various biological contexts. We discuss the role of satellite transcripts in the stress response and environmental adaptation as well as consequences of the dysregulation of satellite DNA expression in cancer and their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| |
Collapse
|
29
|
Chomiak AA, Guo Y, Kopsidas CA, McDaniel DP, Lowe CC, Pan H, Zhou X, Zhou Q, Doughty ML, Feng Y. Nde1 is required for heterochromatin compaction and stability in neocortical neurons. iScience 2022; 25:104354. [PMID: 35601919 PMCID: PMC9121328 DOI: 10.1016/j.isci.2022.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The NDE1 gene encodes a scaffold protein essential for brain development. Although biallelic NDE1 loss of function (LOF) causes microcephaly with profound mental retardation, NDE1 missense mutations and copy number variations are associated with multiple neuropsychiatric disorders. However, the etiology of the diverse phenotypes resulting from NDE1 aberrations remains elusive. Here we demonstrate Nde1 controls neurogenesis through facilitating H4K20 trimethylation-mediated heterochromatin compaction. This mechanism patterns diverse chromatin landscapes and stabilizes constitutive heterochromatin of neocortical neurons. We demonstrate that NDE1 can undergo dynamic liquid-liquid phase separation, partitioning to the nucleus and interacting with pericentromeric and centromeric satellite repeats. Nde1 LOF results in nuclear architecture aberrations and DNA double-strand breaks, as well as instability and derepression of pericentromeric satellite repeats in neocortical neurons. These findings uncover a pivotal role of NDE1/Nde1 in establishing and protecting neuronal heterochromatin. They suggest that heterochromatin instability predisposes a wide range of brain dysfunction.
Collapse
Affiliation(s)
- Alison A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Qiong Zhou
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Martin L. Doughty
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
30
|
Rajurkar M, Parikh AR, Solovyov A, You E, Kulkarni AS, Chu C, Xu KH, Jaicks C, Taylor MS, Wu C, Alexander KA, Good CR, Szabolcs A, Gerstberger S, Tran AV, Xu N, Ebright RY, Van Seventer EE, Vo KD, Tai EC, Lu C, Joseph-Chazan J, Raabe MJ, Nieman LT, Desai N, Arora KS, Ligorio M, Thapar V, Cohen L, Garden PM, Senussi Y, Zheng H, Allen JN, Blaszkowsky LS, Clark JW, Goyal L, Wo JY, Ryan DP, Corcoran RB, Deshpande V, Rivera MN, Aryee MJ, Hong TS, Berger SL, Walt DR, Burns KH, Park PJ, Greenbaum BD, Ting DT. Reverse Transcriptase Inhibition Disrupts Repeat Element Life Cycle in Colorectal Cancer. Cancer Discov 2022; 12:1462-1481. [PMID: 35320348 PMCID: PMC9167735 DOI: 10.1158/2159-8290.cd-21-1117] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Altered RNA expression of repetitive sequences and retrotransposition are frequently seen in colorectal cancer, implicating a functional importance of repeat activity in cancer progression. We show the nucleoside reverse transcriptase inhibitor 3TC targets activities of these repeat elements in colorectal cancer preclinical models with a preferential effect in p53-mutant cell lines linked with direct binding of p53 to repeat elements. We translate these findings to a human phase II trial of single-agent 3TC treatment in metastatic colorectal cancer with demonstration of clinical benefit in 9 of 32 patients. Analysis of 3TC effects on colorectal cancer tumorspheres demonstrates accumulation of immunogenic RNA:DNA hybrids linked with induction of interferon response genes and DNA damage response. Epigenetic and DNA-damaging agents induce repeat RNAs and have enhanced cytotoxicity with 3TC. These findings identify a vulnerability in colorectal cancer by targeting the viral mimicry of repeat elements. SIGNIFICANCE Colorectal cancers express abundant repeat elements that have a viral-like life cycle that can be therapeutically targeted with nucleoside reverse transcriptase inhibitors (NRTI) commonly used for viral diseases. NRTIs induce DNA damage and interferon response that provide a new anticancer therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Mihir Rajurkar
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Aparna R. Parikh
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Alexander Solovyov
- Computational Oncology, Department of Epidemiology and Biostatistics; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eunae You
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | | | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Katherine H. Xu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Christopher Jaicks
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Martin S. Taylor
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Connie Wu
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Katherine A. Alexander
- Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Charly R. Good
- Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Annamaria Szabolcs
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Stefanie Gerstberger
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Antuan V. Tran
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Nova Xu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Richard Y. Ebright
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | | | - Kevin D. Vo
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Eric C. Tai
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Chenyue Lu
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | | | - Michael J. Raabe
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Linda T. Nieman
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Niyati Desai
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Kshitij S. Arora
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Matteo Ligorio
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Vishal Thapar
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
| | - Limor Cohen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Padric M. Garden
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jill N. Allen
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Lawrence S. Blaszkowsky
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Jeffrey W. Clark
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Lipika Goyal
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Jennifer Y. Wo
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - David P. Ryan
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Ryan B. Corcoran
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Vikram Deshpande
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Miguel N. Rivera
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Martin J. Aryee
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Theodore S. Hong
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| | - Shelley L. Berger
- Epigenetics Institute, Departments of Cell and Developmental Biology, Genetics, and Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - David R. Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School; Boston, MA, USA
| | - Kathleen H. Burns
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School; Boston, MA, USA
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics; Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David T. Ting
- Mass General Cancer Center, Harvard Medical School; Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
31
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
32
|
Vourc’h C, Dufour S, Timcheva K, Seigneurin-Berny D, Verdel A. HSF1-Activated Non-Coding Stress Response: Satellite lncRNAs and Beyond, an Emerging Story with a Complex Scenario. Genes (Basel) 2022; 13:genes13040597. [PMID: 35456403 PMCID: PMC9032817 DOI: 10.3390/genes13040597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, the heat shock response is orchestrated by a transcription factor named Heat Shock Factor 1 (HSF1). HSF1 is mostly characterized for its role in activating the expression of a repertoire of protein-coding genes, including the heat shock protein (HSP) genes. Remarkably, a growing set of reports indicate that, upon heat shock, HSF1 also targets various non-coding regions of the genome. Focusing primarily on mammals, this review aims at reporting the identity of the non-coding genomic sites directly bound by HSF1, and at describing the molecular function of the long non-coding RNAs (lncRNAs) produced in response to HSF1 binding. The described non-coding genomic targets of HSF1 are pericentric Satellite DNA repeats, (sub)telomeric DNA repeats, Short Interspersed Nuclear Element (SINE) repeats, transcriptionally active enhancers and the NEAT1 gene. This diverse set of non-coding genomic sites, which already appears to be an integral part of the cellular response to stress, may only represent the first of many. Thus, the study of the evolutionary conserved heat stress response has the potential to emerge as a powerful cellular context to study lncRNAs, produced from repeated or unique DNA regions, with a regulatory function that is often well-documented but a mode of action that remains largely unknown.
Collapse
Affiliation(s)
- Claire Vourc’h
- Université de Grenoble Alpes (UGA), 38700 La Tronche, France
- Correspondence: (C.V.); (A.V.)
| | - Solenne Dufour
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Kalina Timcheva
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - Daphné Seigneurin-Berny
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
| | - André Verdel
- Institute for Advanced Biosciences (IAB), Centre de Recherche UGA/Inserm U 1209/CNRS UMR 5309, Site Santé-Allée des Alpes, 38700 La Tronche, France; (S.D.); (K.T.); (D.S.-B.)
- Correspondence: (C.V.); (A.V.)
| |
Collapse
|
33
|
Enukashvily NI, Semenova N, Chubar AV, Ostromyshenskii DI, Gushcha EA, Gritsaev S, Bessmeltsev SS, Rugal VI, Prikhodko EM, Kostroma I, Zherniakova A, Kotova AV, Belik LA, Shumeev A, Maslennikova II, Ivolgin DI. Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment. Int J Mol Sci 2022; 23:ijms23063359. [PMID: 35328779 PMCID: PMC8951104 DOI: 10.3390/ijms23063359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) ‘educated’ by tumor cells are an essential component of the multiple myeloma (MM) tumor microenvironment (TME) involved in tumor progression. Transcription of tandemly repeated (TR) non-coding DNA is often activated in many tumors and is required for tumor progression and cancer cells genome reorganization. The aim of the work was to study functional properties including the TR DNA transcription profile of MSC from the hematopoietic niche of treated MM patients. Healthy donors (HD) and patients after bortezomib-based treatment (with partial or complete response, PoCR, and non-responders, NR) were enrolled in the study. Their trephine biopsies were examined histologically to evaluate the hematopoietic niche. MSC cultures obtained from the biopsies were used for evaluation of the proliferation rate, osteogenic differentiation, presence of tumor MSC markers, resistance to bortezomib, and pericentromeric TR DNA transcription level. The MSC ‘education’ by multiple myeloma cells was mimicked in co-culture experiments with or without bortezomib. The TR DNA transcription profile was accessed. The histological examination revealed the persistence of the tumor microenvironment (especially of the vasculature) in treated patients. In co-culture experiments, MSC of bortezomib-treated patients were more resistant to bortezomib and protected cancer MM cells of the RPMI8226 cell line more effectively than HD-MSC did. The MSC obtained from PoCR and NR samples differed in their functional properties (proliferation capacity, osteogenic potential, and cancer-associated fibroblasts markers). Transcriptome analysis revealed activation of the TR transcription in cells of non-hematopoietic origin from NR patients’ bone marrow. The pericentromeric TR DNA of HS2/HS3 families was among the most upregulated in stromal MSC but not in cancer cells. The highest level of transcription was observed in NR-MSC. Transcription of HS2/HS3 was not detected in healthy donors MSC unless they were co-cultured with MM cancer cells and acquired cancer-associated phenotype. Treatment with TNFα downregulated HS2/HS3 transcription in MSC and upregulated in MM cells. Our results suggest that the hematopoietic niche retains the cancer-associated phenotype after treatment. Pericentromeric non-coding DNA transcription is associated with the MSC cancer-associated phenotype in patients with ineffective or partially effective multiple myeloma treatment.
Collapse
Affiliation(s)
- Natella I. Enukashvily
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
- Cell Technologies Lab, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia; (I.I.M.); (D.I.I.)
- Correspondence: (N.I.E.); (N.S.)
| | - Natalia Semenova
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
- Correspondence: (N.I.E.); (N.S.)
| | - Anna V. Chubar
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Dmitry I. Ostromyshenskii
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Ekaterina A. Gushcha
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Sergei Gritsaev
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Stanislav S. Bessmeltsev
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Viktor I. Rugal
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Egor M. Prikhodko
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
- Faculty of Clinical Propaedeutics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
| | - Ivan Kostroma
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Anastasia Zherniakova
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Anastasia V. Kotova
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Liubov A. Belik
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Alexander Shumeev
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
| | - Irina I. Maslennikova
- Cell Technologies Lab, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia; (I.I.M.); (D.I.I.)
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
| | - Dmitry I. Ivolgin
- Cell Technologies Lab, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia; (I.I.M.); (D.I.I.)
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
| |
Collapse
|
34
|
Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2022; 10:813457. [PMID: 35300412 PMCID: PMC8921524 DOI: 10.3389/fcell.2022.813457] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene, which is mainly involved in the repair of DNA damage, cell cycle regulation, maintenance of genome stability, and other important physiological processes. Mutations or defects in the BRCA1 gene significantly increase the risk of breast, ovarian, prostate, and other cancers in carriers. In this review, we summarized the molecular functions and regulation of BRCA1 and discussed recent insights into the detection and treatment of BRCA1 mutated breast cancer.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Witus SR, Zhao W, Brzovic PS, Klevit RE. BRCA1/BARD1 is a nucleosome reader and writer. Trends Biochem Sci 2022; 47:582-595. [DOI: 10.1016/j.tibs.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
|
36
|
Kim S, Hwang S. G-Quadruplex Matters in Tissue-Specific Tumorigenesis by BRCA1 Deficiency. Genes (Basel) 2022; 13:genes13030391. [PMID: 35327946 PMCID: PMC8948836 DOI: 10.3390/genes13030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
How and why distinct genetic alterations, such as BRCA1 mutation, promote tumorigenesis in certain tissues, but not others, remain an important issue in cancer research. The underlying mechanisms may reveal tissue-specific therapeutic vulnerabilities. Although the roles of BRCA1, such as DNA damage repair and stalled fork stabilization, obviously contribute to tumor suppression, these ubiquitously important functions cannot explain tissue-specific tumorigenesis by BRCA1 mutations. Recent advances in our understanding of the cancer genome and fundamental cellular processes on DNA, such as transcription and DNA replication, have provided new insights regarding BRCA1-associated tumorigenesis, suggesting that G-quadruplex (G4) plays a critical role. In this review, we summarize the importance of G4 structures in mutagenesis of the cancer genome and cell type-specific gene regulation, and discuss a recently revealed molecular mechanism of G4/base excision repair (BER)-mediated transcriptional activation. The latter adequately explains the correlation between the accumulation of unresolved transcriptional regulatory G4s and multi-level genomic alterations observed in BRCA1-associated tumors. In summary, tissue-specific tumorigenesis by BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory G4s and the role of BRCA1 in resolving it. This mechanism would provide an integrated understanding of the initiation and development of BRCA1-associated tumors.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Sungnam 13496, Korea
- Correspondence:
| |
Collapse
|
37
|
Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4. Nat Commun 2022; 13:1001. [PMID: 35194019 PMCID: PMC8863982 DOI: 10.1038/s41467-022-28554-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
RNA interference is required for post-transcriptional silencing, but also has additional roles in transcriptional silencing of centromeres and genome stability. However, these roles have been controversial in mammals. Strikingly, we found that Dicer-deficient embryonic stem cells have strong proliferation and chromosome segregation defects as well as increased transcription of centromeric satellite repeats, which triggers the interferon response. We conducted a CRISPR-Cas9 genetic screen to restore viability and identified transcriptional activators, histone H3K9 methyltransferases, and chromosome segregation factors as suppressors, resembling Dicer suppressors identified in independent screens in fission yeast. The strongest suppressors were mutations in the transcriptional co-activator Brd4, which reversed the strand-specific transcription of major satellite repeats suppressing the interferon response, and in the histone acetyltransferase Elp3. We show that identical mutations in the second bromodomain of Brd4 rescue Dicer-dependent silencing and chromosome segregation defects in both mammalian cells and fission yeast. This remarkable conservation demonstrates that RNA interference has an ancient role in transcriptional silencing and in particular of satellite repeats, which is essential for cell cycle progression and proper chromosome segregation. Our results have pharmacological implications for cancer and autoimmune diseases characterized by unregulated transcription of satellite repeats. While RNA interference is conserved across species, small RNA pathways are very diverse. In this study, Gutbrod et al. find that non-canonical roles of Dicer in genome stability are in fact deeply conserved from yeast to humans.
Collapse
|
38
|
Alpha Satellite RNA Levels Are Upregulated in the Blood of Patients with Metastatic Castration-Resistant Prostate Cancer. Genes (Basel) 2022; 13:genes13020383. [PMID: 35205427 PMCID: PMC8871578 DOI: 10.3390/genes13020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
The aberrant overexpression of alpha satellite DNA is characteristic of many human cancers including prostate cancer; however, it is not known whether the change in the alpha satellite RNA amount occurs in the peripheral tissues of cancer patients, such as blood. Here, we analyse the level of intracellular alpha satellite RNA in the whole blood of cancer prostate patients at different stages of disease and compare it with the levels found in healthy controls. Our results reveal a significantly increased level of intracellular alpha satellite RNA in the blood of metastatic cancers patients, particularly those with metastatic castration-resistant prostate cancer relative to controls. In the blood of patients with localised tumour, no significant change relative to the controls was detected. Our results show a link between prostate cancer pathogenesis and blood intracellular alpha satellite RNA levels. We discuss the possible mechanism which could lead to the increased level of blood intracellular alpha satellite RNA at a specific metastatic stage of prostate cancer. Additionally, we analyse the clinically accepted prostate cancer biomarker PSA in all samples and discuss the possibility that alpha satellite RNA can serve as a novel prostate cancer diagnostic blood biomarker.
Collapse
|
39
|
Pan W, Ruan J. En Route to Completion: What Is An Ideal Reference Genome? GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1-3. [PMID: 34509700 PMCID: PMC9510861 DOI: 10.1016/j.gpb.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Weihua Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
40
|
Chatterjee M, Sengupta S. Human Satellite III long non-coding RNA imparts survival benefits to cancer cells. Cell Biol Int 2022; 46:611-627. [PMID: 35005799 DOI: 10.1002/cbin.11761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/06/2021] [Accepted: 12/26/2021] [Indexed: 11/07/2022]
Abstract
Long non-coding RNAs (lncRNAs) are heterogeneous group of transcripts that lack coding potential and have essential roles in gene regulations. Recent days have seen an increasing association of non-coding RNAs with human diseases, especially cancers. One interesting group of non-coding RNAs strongly linked to cancers are heterochromatic repetitive Satellite RNAs. Satellite RNAs are transcribed from pericentromeric heterochromatic region of the human chromosomes. Satellite II RNA, most extensively studied, is upregulated in wide variety of epithelial cancer. Similarly, alpha satellite is over expressed in BRCA1- deficient tumors. Though much is known about alpha satellites and SatII repeats, little is known about Satellite III (SatIII) lncRNAs in human cancers. SatIII repeats, though transcriptionally silent in normal conditions is actively transcribed under condition of stress, mainly heat shock. In the present study, we show that colon and breast cancer cells aberrantly transcribes SatIII, in a Heat shock factor I (HSF1)-independent manner. Our study also reveals that, overexpression of SatIII RNA favours cancer cell survival by overriding chemo drug-induced cell death. Interestingly, knockdown of SatIII sensitizes cells towards chemotherapeutic drugs. This sensitization is possibly mediated by restoration of p53 protein expression that facilitates cell death. Heat shock however helps SatIII to continue with its pro-cell survival function. Our results, therefore suggest SatIII to be an important regulator of human cancers. Induction of SatIII is not only a response to the oncogenic stress but also facilitates cancer progression by a distinct pathway that is different from heat stress pathway. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sonali Sengupta
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
41
|
Vojvoda Zeljko T, Ugarković Đ, Pezer Ž. Differential enrichment of H3K9me3 at annotated satellite DNA repeats in human cell lines and during fetal development in mouse. Epigenetics Chromatin 2021; 14:47. [PMID: 34663449 PMCID: PMC8524813 DOI: 10.1186/s13072-021-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Trimethylation of histone H3 on lysine 9 (H3K9me3) at satellite DNA sequences has been primarily studied at (peri)centromeric regions, where its level shows differences associated with various processes such as development and malignant transformation. However, the dynamics of H3K9me3 at distal satellite DNA repeats has not been thoroughly investigated. RESULTS We exploit the sets of publicly available data derived from chromatin immunoprecipitation combined with massively parallel DNA sequencing (ChIP-Seq), produced by the The Encyclopedia of DNA Elements (ENCODE) project, to analyze H3K9me3 at assembled satellite DNA repeats in genomes of human cell lines and during mouse fetal development. We show that annotated satellite elements are generally enriched for H3K9me3, but its level in cancer cell lines is on average lower than in normal cell lines. We find 407 satellite DNA instances with differential H3K9me3 enrichment between cancer and normal cells including a large 115-kb cluster of GSATII elements on chromosome 12. Differentially enriched regions are not limited to satellite DNA instances, but instead encompass a wider region of flanking sequences. We found no correlation between the levels of H3K9me3 and noncoding RNA at corresponding satellite DNA loci. The analysis of data derived from multiple tissues identified 864 instances of satellite DNA sequences in the mouse reference genome that are differentially enriched between fetal developmental stages. CONCLUSIONS Our study reveals significant differences in H3K9me3 level at a subset of satellite repeats between biological states and as such contributes to understanding of the role of satellite DNA repeats in epigenetic regulation during development and carcinogenesis.
Collapse
Affiliation(s)
| | | | - Željka Pezer
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
42
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
43
|
The BRCA1/BARD1 ubiquitin ligase and its substrates. Biochem J 2021; 478:3467-3483. [PMID: 34591954 DOI: 10.1042/bcj20200864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022]
Abstract
Mutations in breast cancer type 1 susceptibility protein (BRCA1) and its heterodimeric binding partner BARD1 confer a high risk for the development of breast and ovarian cancers. The sole enzymatic function of the BRCA1/BARD1 complex is as a RING-type E3 ubiquitin (Ub) ligase, leading to the deposition of Ub signals onto a variety of substrate proteins. Distinct types of Ub signals deposited by BRCA1/BARD1 (i.e. degradative vs. non-degradative; mono-Ub vs. poly-Ub chains) on substrate proteins mediate aspects of its function in DNA double-stranded break repair, cell-cycle regulation, and transcriptional regulation. While cancer-predisposing mutations in both subunits lead to the inactivation of BRCA1/BARD1 ligase activity, controversy remains as to whether its Ub ligase activity directly inhibits tumorigenesis. Investigation of BRCA1/BARD1 substrates using rigorous, well-validated mutants and experimental systems will ultimately clarify the role of its ligase activity in cancer and possibly establish prognostic and diagnostic metrics for patients with mutations. In this review, we discuss the Ub ligase function of BRCA1/BARD1, highlighting experimental approaches, mechanistic considerations, and reagents that are useful in the study of substrate ubiquitylation. We also discuss the current understanding of two well-established BRCA1/BARD1 substrates (nucleosomal H2A and estrogen receptor α) and several recently discovered substrates (p50, NF2, Oct1, and LARP7). Lessons from the current body of work should provide a road map to researchers examining novel substrates and biological functions attributed to BRCA1/BARD1 Ub ligase activity.
Collapse
|
44
|
Morris JR. Is it a wrap? Nucleosome interactions of the BRCA1-binding partner, BARD1, steal the scene. Nat Struct Mol Biol 2021; 28:708-710. [PMID: 34518696 DOI: 10.1038/s41594-021-00658-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
45
|
Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer. Proc Natl Acad Sci U S A 2021; 118:2025647118. [PMID: 34426493 PMCID: PMC8536346 DOI: 10.1073/pnas.2025647118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cellular senescence causes a dramatic alteration of chromatin organization and changes the gene expression profile of proinflammatory factors, thereby contributing to various age-related pathologies through the senescence-associated secretory phenotype (SASP). Chromatin organization and global gene expression are maintained by the CCCTC-binding factor (CTCF); however, the molecular mechanism underlying CTCF regulation and its association with SASP gene expression remains unclear. We discovered that noncoding RNA (ncRNA) derived from normally silenced pericentromeric repetitive sequences directly impairs the DNA binding of CTCF. This CTCF disturbance increases the accessibility of chromatin and activates the transcription of SASP-like inflammatory genes, promoting malignant transformation. Notably, pericentromeric ncRNA was transferred into surrounding cells via small extracellular vesicles acting as a tumorigenic SASP factor. Because CTCF blocks the expression of pericentromeric ncRNA in young cells, the down-regulation of CTCF during cellular senescence triggers the up-regulation of this ncRNA and SASP-related inflammatory gene expression. In this study, we show that pericentromeric ncRNA provokes chromosomal alteration by inhibiting CTCF, leading to a SASP-like inflammatory response in a cell-autonomous and non-cell-autonomous manner and thus may contribute to the risk of tumorigenesis during aging.
Collapse
|
46
|
Dvorkina T, Kunyavskaya O, Bzikadze AV, Alexandrov I, Pevzner PA. CentromereArchitect: inference and analysis of the architecture of centromeres. Bioinformatics 2021; 37:i196-i204. [PMID: 34252949 PMCID: PMC8336445 DOI: 10.1093/bioinformatics/btab265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Motivation Recent advances in long-read sequencing technologies led to rapid progress in centromere assembly in the last year and, for the first time, opened a possibility to address the long-standing questions about the architecture and evolution of human centromeres. However, since these advances have not been yet accompanied by the development of the centromere-specific bioinformatics algorithms, even the fundamental questions (e.g. centromere annotation by deriving the complete set of human monomers and high-order repeats), let alone more complex questions (e.g. explaining how monomers and high-order repeats evolved) about human centromeres remain open. Moreover, even though there was a four-decade-long series of studies aimed at cataloging all human monomers and high-order repeats, the rigorous algorithmic definitions of these concepts are still lacking. Thus, the development of a centromere annotation tool is a prerequisite for follow-up personalized biomedical studies of centromeres across the human population and evolutionary studies of centromeres across various species. Results We describe the CentromereArchitect, the first tool for the centromere annotation in a newly sequenced genome, apply it to the recently generated complete assembly of a human genome by the Telomere-to-Telomere consortium, generate the complete set of human monomers and high-order repeats for ‘live’ centromeres, and reveal a vast set of hybrid monomers that may represent the focal points of centromere evolution. Availability and implementation CentromereArchitect is publicly available on https://github.com/ablab/stringdecomposer/tree/ismb2021 Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tatiana Dvorkina
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Olga Kunyavskaya
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Andrey V Bzikadze
- Graduate Program in Bioinformatics and Systems Biology, University of California, San Diego, CA 92093, USA
| | - Ivan Alexandrov
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California, San Diego, CA 92093, USA
| |
Collapse
|
47
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
48
|
Role of Histone Methylation in Maintenance of Genome Integrity. Genes (Basel) 2021; 12:genes12071000. [PMID: 34209979 PMCID: PMC8307007 DOI: 10.3390/genes12071000] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Packaging of the eukaryotic genome with histone and other proteins forms a chromatin structure that regulates the outcome of all DNA mediated processes. The cellular pathways that ensure genomic stability detect and repair DNA damage through mechanisms that are critically dependent upon chromatin structures established by histones and, particularly upon transient histone post-translational modifications. Though subjected to a range of modifications, histone methylation is especially crucial for DNA damage repair, as the methylated histones often form platforms for subsequent repair protein binding at damaged sites. In this review, we highlight and discuss how histone methylation impacts the maintenance of genome integrity through effects related to DNA repair and repair pathway choice.
Collapse
|
49
|
Onishi-Seebacher M, Erikson G, Sawitzki Z, Ryan D, Greve G, Lübbert M, Jenuwein T. Repeat to gene expression ratios in leukemic blast cells can stratify risk prediction in acute myeloid leukemia. BMC Med Genomics 2021; 14:166. [PMID: 34174884 PMCID: PMC8234671 DOI: 10.1186/s12920-021-01003-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Repeat elements constitute a large proportion of the human genome and recent evidence indicates that repeat element expression has functional roles in both physiological and pathological states. Specifically for cancer, transcription of endogenous retrotransposons is often suppressed to attenuate an anti-tumor immune response, whereas aberrant expression of heterochromatin-derived satellite RNA has been identified as a tumor driver. These insights demonstrate separate functions for the dysregulation of distinct repeat subclasses in either the attenuation or progression of human solid tumors. For hematopoietic malignancies, such as Acute Myeloid Leukemia (AML), only very few studies on the expression/dysregulation of repeat elements were done. METHODS To study the expression of repeat elements in AML, we performed total-RNA sequencing of healthy CD34 + cells and of leukemic blast cells from primary AML patient material. We also developed an integrative bioinformatic approach that can quantify the expression of repeat transcripts from all repeat subclasses (SINE/ALU, LINE, ERV and satellites) in relation to the expression of gene and other non-repeat transcripts (i.e. R/G ratio). This novel approach can be used as an instructive signature for repeat element expression and has been extended to the analysis of poly(A)-RNA sequencing datasets from Blueprint and TCGA consortia that together comprise 120 AML patient samples. RESULTS We identified that repeat element expression is generally down-regulated during hematopoietic differentiation and that relative changes in repeat to gene expression can stratify risk prediction of AML patients and correlate with overall survival probabilities. A high R/G ratio identifies AML patient subgroups with a favorable prognosis, whereas a low R/G ratio is prevalent in AML patient subgroups with a poor prognosis. CONCLUSIONS We developed an integrative bioinformatic approach that defines a general model for the analysis of repeat element dysregulation in physiological and pathological development. We find that changes in repeat to gene expression (i.e. R/G ratios) correlate with hematopoietic differentiation and can sub-stratify AML patients into low-risk and high-risk subgroups. Thus, the definition of a R/G ratio can serve as a valuable biomarker for AML and could also provide insights into differential patient response to epigenetic drug treatment.
Collapse
Affiliation(s)
- M Onishi-Seebacher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Novartis Institute for Biomedical Research (NIBR), Basel, Switzerland
| | - G Erikson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Z Sawitzki
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB) and University of Freiburg, Freiburg, Germany
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - D Ryan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - G Greve
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - T Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
50
|
Duda KJ, Ching RW, Jerabek L, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Perrera V, Richter F, Mittler G, Fritz K, Helm M, Knuckles P, Bühler M, Jenuwein T. m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Res 2021; 49:5568-5587. [PMID: 33999208 PMCID: PMC8191757 DOI: 10.1093/nar/gkab364] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.
Collapse
Affiliation(s)
- Katarzyna J Duda
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Reagan W Ching
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Lisa Jerabek
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Nicholas Shukeir
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Galina Erikson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Bettina Engist
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Valentina Perrera
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Florian Richter
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg – University, Mainz 55128, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Katharina Fritz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg – University, Mainz 55128, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg – University, Mainz 55128, Germany
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland and University of Basel, Basel 4051, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland and University of Basel, Basel 4051, Switzerland
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| |
Collapse
|