1
|
Zheng C, Liang H, Dai L, Yu J, Long C. Dissecting the CRISPR Cas1-Cas2 Protospacer Binding and Selection Mechanism by Using Molecular Dynamics Simulations. J Phys Chem B 2024; 128:3563-3574. [PMID: 38573978 DOI: 10.1021/acs.jpcb.3c07320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Cas1 and Cas2 are highly conserved proteins among the clustered regularly interspaced short palindromic repeat Cas (CRISPR-Cas) systems and play a crucial role in protospacer selection and integration. According to the double-forked CRISPR Cas1-Cas2 complex, we conducted extensive all-atom molecular dynamics simulations to investigate the protospacer DNA binding and recognition. Our findings revealed that single-point amino acid mutations in Cas1 or in Cas2 had little impact on the binding of the protospacer, both in the binding and precatalytic states. In contrast, multiple-point amino acid mutations, particularly G74A, P80L, and V89A mutations on Cas2 and Cas2' proteins (m-multiple1 system), significantly affected the protospacer binding and selection. Notably, mutations on Cas2 and Cas2' led to an increased number of hydrogen bonds (#HBs) between Cas2&Cas2' and the dsDNA in the m-multiple1 system compared with the wild-type system. And the strong electrostatic interactions between Cas1-Cas2 and the protospacer DNA (psDNA) in the m-multiple1 system again suggested the increase in the binding affinity of protospacer acquisition. Specifically, mutations in Cas2 and Cas2' can remotely make the protospacer adjacent motif complementary (PAMc) sequences better in recognition by the two active sites, while multiple mutations K211E, P202Q, P212L, R138L, V134A, A286T, P282H, and P294H on Cas1a/Cas1b&Cas1a'/Cas1b' (m-multiple2 system) decrease the #HBs and the electrostatic interactions and make the PAMc worse in recognition compared with the wild-type system.
Collapse
Affiliation(s)
- Chuanbo Zheng
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Hongqiong Liang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Liqiang Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697, United States
| | - Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
2
|
Wang JY, Pausch P, Doudna JA. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat Rev Microbiol 2022; 20:641-656. [PMID: 35562427 DOI: 10.1038/s41579-022-00739-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
CRISPR-Cas systems provide resistance against foreign mobile genetic elements and have a wide range of genome editing and biotechnological applications. In this Review, we examine recent advances in understanding the molecular structures and mechanisms of enzymes comprising bacterial RNA-guided CRISPR-Cas immune systems and deployed for wide-ranging genome editing applications. We explore the adaptive and interference aspects of CRISPR-Cas function as well as open questions about the molecular mechanisms responsible for genome targeting. These structural insights reflect close evolutionary links between CRISPR-Cas systems and mobile genetic elements, including the origins and evolution of CRISPR-Cas systems from DNA transposons, retrotransposons and toxin-antitoxin modules. We discuss how the evolution and structural diversity of CRISPR-Cas systems explain their functional complexity and utility as genome editing tools.
Collapse
Affiliation(s)
- Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Patrick Pausch
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| |
Collapse
|
3
|
Zuma LK, Gasa NL, Makhoba XH, Pooe OJ. Protein PEGylation: Navigating Recombinant Protein Stability, Aggregation, and Bioactivity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8929715. [PMID: 35924267 PMCID: PMC9343206 DOI: 10.1155/2022/8929715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022]
Abstract
Enzymes play a powerful role as catalysts with high specificity and activity under mild environmental conditions. Significant hurdles, such as reduced solubility, reduced shelf-life, aggregate formation, and toxicity, are still ongoing struggles that scientists come across when purifying recombinant proteins. Over the past three decades, PEGylation techniques have been utilized to significantly overcome low solubility; increased protein stability, shelf-life, and bioactivity; and prevented protein aggregate formation. This review seeks to highlight the impact of PEG-based formulations that are significantly utilized to obtain favourable protein physiochemical properties. The authors further discuss other techniques that can be employed such as coexpression studies and nanotechnology-based skills to obtaining favourable protein physiochemical properties.
Collapse
Affiliation(s)
- Lindiwe Khumbuzile Zuma
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Westville, 3629 KwaZulu-Natal, South Africa
| | - Nothando Lovedale Gasa
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Westville, 3629 KwaZulu-Natal, South Africa
| | - Xolani Henry Makhoba
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice, 5700 Eastern Cape, South Africa
| | - Ofentse Jacob Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Westville, 3629 KwaZulu-Natal, South Africa
| |
Collapse
|
4
|
Wu WY, Jackson SA, Almendros C, Haagsma AC, Yilmaz S, Gort G, van der Oost J, Brouns SJJ, Staals RHJ. Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types. CRISPR J 2022; 5:536-547. [PMID: 35833800 PMCID: PMC9419969 DOI: 10.1089/crispr.2021.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adaptation of clustered regularly interspaced short palindromic repeats (CRISPR) arrays is a crucial process responsible for the unique, adaptive nature of CRISPR-Cas immune systems. The acquisition of new CRISPR spacers from mobile genetic elements has previously been studied for several types of CRISPR-Cas systems. In this study, we used a high-throughput sequencing approach to characterize CRISPR adaptation of the type V-A system from Francisella novicida and the type V-B system from Alicyclobacillus acidoterrestris. In contrast to other class 2 CRISPR-Cas systems, we found that for the type V-A and V-B systems, the Cas12 nucleases are dispensable for spacer acquisition, with only Cas1 and Cas2 (type V-A) or Cas4/1 and Cas2 (type V-B) being necessary and sufficient. Whereas the catalytic activity of Cas4 is not essential for adaptation, Cas4 activity is required for correct protospacer adjacent motif selection in both systems and for prespacer trimming in type V-A. In addition, we provide evidence for acquisition of RecBCD-produced DNA fragments by both systems, but with spacers derived from foreign DNA being incorporated preferentially over those derived from the host chromosome. Our work shows that several spacer acquisition mechanisms are conserved between diverse CRISPR-Cas systems, but also highlights unexpected nuances between similar systems that generally contribute to a bias of gaining immunity against invading genetic elements.
Collapse
Affiliation(s)
- Wen Y Wu
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cristóbal Almendros
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Anna C Haagsma
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Suzan Yilmaz
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Gerrit Gort
- Biometris, Wageningen University and Research, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Ambroa A, Blasco L, López M, Pacios O, Bleriot I, Fernández-García L, González de Aledo M, Ortiz-Cartagena C, Millard A, Tomás M. Genomic Analysis of Molecular Bacterial Mechanisms of Resistance to Phage Infection. Front Microbiol 2022; 12:784949. [PMID: 35250902 PMCID: PMC8891609 DOI: 10.3389/fmicb.2021.784949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
To optimize phage therapy, we need to understand how bacteria evolve against phage attacks. One of the main problems of phage therapy is the appearance of bacterial resistance variants. The use of genomics to track antimicrobial resistance is increasingly developed and used in clinical laboratories. For that reason, it is important to consider, in an emerging future with phage therapy, to detect and avoid phage-resistant strains that can be overcome by the analysis of metadata provided by whole-genome sequencing. Here, we identified genes associated with phage resistance in 18 Acinetobacter baumannii clinical strains belonging to the ST-2 clonal complex during a decade (Ab2000 vs. 2010): 9 from 2000 to 9 from 2010. The presence of genes putatively associated with phage resistance was detected. Genes detected were associated with an abortive infection system, restriction-modification system, genes predicted to be associated with defense systems but with unknown function, and CRISPR-Cas system. Between 118 and 171 genes were found in the 18 clinical strains. On average, 26% of these genes were detected inside genomic islands in the 2000 strains and 32% in the 2010 strains. Furthermore, 38 potential CRISPR arrays in 17 of 18 of the strains were found, as well as 705 proteins associated with CRISPR-Cas systems. A moderately higher presence of these genes in the strains of 2010 in comparison with those of 2000 was found, especially those related to the restriction-modification system and CRISPR-Cas system. The presence of these genes in genomic islands at a higher rate in the strains of 2010 compared with those of 2000 was also detected. Whole-genome sequencing and bioinformatics could be powerful tools to avoid drawbacks when a personalized therapy is applied. In this study, it allows us to take care of the phage resistance in A. baumannii clinical strains to prevent a failure in possible phage therapy.
Collapse
Affiliation(s)
- Antón Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - María López
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Infectious Diseases Network Biomedical Research Center (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Olga Pacios
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Laura Fernández-García
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Manuel González de Aledo
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Concha Ortiz-Cartagena
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - María Tomás
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) the Behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Infectious Diseases Network Biomedical Research Center (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
6
|
Wang X, Yuan Q, Zhang W, Ji S, Lv Y, Ren K, Lu M, Xiao Y. Sequence specific integration by the family 1 casposase from Candidatus Nitrosopumilus koreensis AR1. Nucleic Acids Res 2021; 49:9938-9952. [PMID: 34428286 PMCID: PMC8464041 DOI: 10.1093/nar/gkab725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Casposase, a homolog of Cas1 integrase, is encoded by a superfamily of mobile genetic elements known as casposons. While family 2 casposase has been well documented in both function and structure, little is known about the other three casposase families. Here, we studied the family 1 casposase lacking the helix-turn-helix (HTH) domain from Candidatus Nitrosopumilus koreensis AR1 (Ca. N. koreensis). The determinants for integration by Ca. N. koreensis casposase were extensively investigated, and it was found that a 13-bp target site duplication (TSD) sequence, a minimal 3-bp leader and three different nucleotides of the TSD sequences are indispensable for target specific integration. Significantly, the casposase can site-specifically integrate a broad range of terminal inverted repeat (TIR)-derived oligonucleotides ranging from 7-nt to ∼4000-bp, and various oligonucleotides lacking the 5′-TTCTA-3′ motif at the 3′ end of TIR sequence can be integrated efficiently. Furthermore, similar to some Cas1 homologs, the casposase utilizes a 5′-ATAA-3′ motif in the TSD as a molecular ruler to dictate nucleophilic attack at 9-bp downstream of the end of the ruler during the spacer-side integration. By characterizing the family 1 Ca. N. koreensis casposase, we have extended our understanding on mechanistic similarities and evolutionary connections between casposons and the adaptation elements of CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Xiaoke Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Qinling Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Wenxuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Suyu Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Yang Lv
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Kejing Ren
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing210009, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing210009, China
| |
Collapse
|
7
|
Maikova A, Boudry P, Shiriaeva A, Vasileva A, Boutserin A, Medvedeva S, Semenova E, Severinov K, Soutourina O. Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation. mBio 2021; 12:e0213621. [PMID: 34425703 PMCID: PMC8406132 DOI: 10.1128/mbio.02136-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with efficient protection against foreign nucleic acid invaders. We have recently demonstrated the defensive interference function of a CRISPR-Cas system from Clostridioides (Clostridium) difficile, a major human enteropathogen, and showed that it could be harnessed for efficient genome editing in this bacterium. However, molecular details are still missing on CRISPR-Cas function for adaptation and sequence requirements for both interference and new spacer acquisition in this pathogen. Despite accumulating knowledge on the individual CRISPR-Cas systems in various prokaryotes, no data are available on the adaptation process in bacterial type I-B CRISPR-Cas systems. Here, we report the first experimental evidence that the C. difficile type I-B CRISPR-Cas system acquires new spacers upon overexpression of its adaptation module. The majority of new spacers are derived from a plasmid expressing Cas proteins required for adaptation or from regions of the C. difficile genome where generation of free DNA termini is expected. Results from protospacer-adjacent motif (PAM) library experiments and plasmid conjugation efficiency assays indicate that C. difficile CRISPR-Cas requires the YCN consensus PAM for efficient interference. We revealed a functional link between the adaptation and interference machineries, since newly adapted spacers are derived from sequences associated with a CCN PAM, which fits the interference consensus. The definition of functional PAMs and establishment of relative activity levels of each of the multiple C. difficile CRISPR arrays in present study are necessary for further CRISPR-based biotechnological and medical applications involving this organism. IMPORTANCE CRISPR-Cas systems provide prokaryotes with adaptive immunity for defense against foreign nucleic acid invaders, such as viruses or phages and plasmids. The CRISPR-Cas systems are highly diverse, and detailed studies of individual CRISPR-Cas subtypes are important for our understanding of various aspects of microbial adaptation strategies and for the potential applications. The significance of our work is in providing the first experimental evidence for type I-B CRISPR-Cas system adaptation in the emerging human enteropathogen Clostridioides difficile. This bacterium needs to survive in phage-rich gut communities, and its active CRISPR-Cas system might provide efficient antiphage defense by acquiring new spacers that constitute memory for further invader elimination. Our study also reveals a functional link between the adaptation and interference CRISPR machineries. The definition of all possible functional trinucleotide motifs upstream protospacers within foreign nucleic acid sequences is important for CRISPR-based genome editing in this pathogen and for developing new drugs against C. difficile infections.
Collapse
Affiliation(s)
- Anna Maikova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Pierre Boudry
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anna Shiriaeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Aleksandra Vasileva
- Institute of Gene Biology, Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Russian Academy of Sciences, Moscow, Russia
| | - Anaïs Boutserin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sofia Medvedeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ekaterina Semenova
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
8
|
Long C, Dai L, E C, Da LT, Yu J. Allosteric regulation in CRISPR/Cas1-Cas2 protospacer acquisition mediated by DNA and Cas2. Biophys J 2021; 120:3126-3137. [PMID: 34197800 PMCID: PMC8390960 DOI: 10.1016/j.bpj.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022] Open
Abstract
Cas1 and Cas2 are highly conserved proteins across clustered-regularly-interspaced-short-palindromic-repeat-Cas systems and play a significant role in protospacer acquisition. Based on crystal structure of twofold symmetric Cas1-Cas2 in complex with dual-forked protospacer DNA (psDNA), we conducted all-atom molecular dynamics simulations to study the psDNA binding, recognition, and response to cleavage on the protospacer-adjacent-motif complementary sequence, or PAMc, of Cas1-Cas2. In the simulation, we noticed that two active sites of Cas1 and Cas1’ bind asymmetrically to two identical PAMc on the psDNA captured from the crystal structure. For the modified psDNA containing only one PAMc, as that to be recognized by Cas1-Cas2 in general, our simulations show that the non-PAMc association site of Cas1-Cas2 remains destabilized until after the stably bound PAMc being cleaved at the corresponding association site. Thus, long-range correlation appears to exist upon the PAMc cleavage between the two active sites (∼10 nm apart) on Cas1-Cas2, which can be allosterically mediated by psDNA and Cas2 and Cas2’ in bridging. To substantiate such findings, we conducted repeated runs and further simulated Cas1-Cas2 in complex with synthesized psDNA sequences psL and psH, which have been measured with low and high frequency in acquisition, respectively. Notably, such intersite correlation becomes even more pronounced for the Cas1-Cas2 in complex with psH but remains low for the Cas1-Cas2 in complex with psL. Hence, our studies demonstrate that PAMc recognition and cleavage at one active site of Cas1-Cas2 may allosterically regulate non-PAMc association or even cleavage at the other site, and such regulation can be mediated by noncatalytic Cas2 and DNA protospacer to possibly support the ensued psDNA acquisition.
Collapse
Affiliation(s)
- Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Liqiang Dai
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, China; Beijing Computational Science Research Center, Beijing, China
| | - Chao E
- Beijing Computational Science Research Center, Beijing, China
| | - Lin-Tai Da
- Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai, China
| | - Jin Yu
- Departments of Physics and Astronomy and Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California.
| |
Collapse
|
9
|
Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex. Nat Commun 2021; 12:2571. [PMID: 33958590 PMCID: PMC8102632 DOI: 10.1038/s41467-021-22900-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
CRISPR-Cas systems provide adaptive immunity in bacteria and archaea, beginning with integration of foreign sequences into the host CRISPR genomic locus and followed by transcription and maturation of CRISPR RNAs (crRNAs). In some CRISPR systems, a reverse transcriptase (RT) fusion to the Cas1 integrase and Cas6 maturase creates a single protein that enables concerted sequence integration and crRNA production. To elucidate how the RT-integrase organizes distinct enzymatic activities, we present the cryo-EM structure of a Cas6-RT-Cas1-Cas2 CRISPR integrase complex. The structure reveals a heterohexamer in which the RT directly contacts the integrase and maturase domains, suggesting functional coordination between all three active sites. Together with biochemical experiments, our data support a model of sequential enzymatic activities that enable CRISPR sequence acquisition from RNA and DNA substrates. These findings highlight an expanded capacity of some CRISPR systems to acquire diverse sequences that direct CRISPR-mediated interference.
Collapse
|
10
|
Yim SS, McBee RM, Song AM, Huang Y, Sheth RU, Wang HH. Robust direct digital-to-biological data storage in living cells. Nat Chem Biol 2021; 17:246-253. [PMID: 33432236 PMCID: PMC7904632 DOI: 10.1038/s41589-020-00711-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
DNA has been the predominant information storage medium for biology and holds great promise as a next-generation high-density data medium in the digital era. Currently, the vast majority of DNA-based data storage approaches rely on in vitro DNA synthesis. As such, there are limited methods to encode digital data into the chromosomes of living cells in a single step. Here, we describe a new electrogenetic framework for direct storage of digital data in living cells. Using an engineered redox-responsive CRISPR adaptation system, we encoded binary data in 3-bit units into CRISPR arrays of bacterial cells by electrical stimulation. We demonstrate multiplex data encoding into barcoded cell populations to yield meaningful information storage and capacity up to 72 bits, which can be maintained over many generations in natural open environments. This work establishes a direct digital-to-biological data storage framework and advances our capacity for information exchange between silicon- and carbon-based entities.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ross M McBee
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alan M Song
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Ravi U Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Harrington LB, Ma E, Chen JS, Witte IP, Gertz D, Paez-Espino D, Al-Shayeb B, Kyrpides NC, Burstein D, Banfield JF, Doudna JA. A scoutRNA Is Required for Some Type V CRISPR-Cas Systems. Mol Cell 2020; 79:416-424.e5. [PMID: 32645367 PMCID: PMC8196889 DOI: 10.1016/j.molcel.2020.06.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/02/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas12c/d proteins share limited homology with Cas12a and Cas9 bacterial CRISPR RNA (crRNA)-guided nucleases used widely for genome editing and DNA detection. However, Cas12c (C2c3)- and Cas12d (CasY)-catalyzed DNA cleavage and genome editing activities have not been directly observed. We show here that a short-complementarity untranslated RNA (scoutRNA), together with crRNA, is required for Cas12d-catalyzed DNA cutting. The scoutRNA differs in secondary structure from previously described tracrRNAs used by CRISPR-Cas9 and some Cas12 enzymes, and in Cas12d-containing systems, scoutRNA includes a conserved five-nucleotide sequence that is essential for activity. In addition to supporting crRNA-directed DNA recognition, biochemical and cell-based experiments establish scoutRNA as an essential cofactor for Cas12c-catalyzed pre-crRNA maturation. These results define scoutRNA as a third type of transcript encoded by a subset of CRISPR-Cas genomic loci and explain how Cas12c/d systems avoid requirements for host factors including ribonuclease III for bacterial RNA-mediated adaptive immunity.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/genetics
- Bacteria/immunology
- Bacteria/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli/metabolism
- Genome, Bacterial/immunology
- Nucleic Acid Conformation
- Phylogeny
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Sequence Alignment
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Lucas B Harrington
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Enbo Ma
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Janice S Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Isaac P Witte
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dov Gertz
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David Paez-Espino
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nikos C Kyrpides
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Burstein
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA; School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94114, USA.
| |
Collapse
|
12
|
Sasnauskas G, Siksnys V. CRISPR adaptation from a structural perspective. Curr Opin Struct Biol 2020; 65:17-25. [PMID: 32570107 DOI: 10.1016/j.sbi.2020.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Bacterial CRISPR-Cas systems provide adaptive immunity against viruses and other mobile genome elements. During the adaptation step cells become immunized by insertion of short fragments of foreign DNA, termed spacers, into the genomic region called a CRISPR array. Selection, processing and insertion of new spacers is an elaborate and precisely orchestrated reaction, which relies on the Cas1-Cas2 integrase complex and accessory proteins that vary among different types of CRISPR-Cas systems. This review focuses on CRISPR adaptation from the structural perspective, with the spotlight on adaptation proteins employed by type I and type II CRISPR-Cas systems.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, Vilnius 10257, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio Av. 7, Vilnius 10257, Lithuania.
| |
Collapse
|
13
|
Béguin P, Chekli Y, Sezonov G, Forterre P, Krupovic M. Sequence motifs recognized by the casposon integrase of Aciduliprofundum boonei. Nucleic Acids Res 2020; 47:6386-6395. [PMID: 31114911 PMCID: PMC6614799 DOI: 10.1093/nar/gkz447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Casposons are a group of bacterial and archaeal DNA transposons encoding a specific integrase, termed casposase, which is homologous to the Cas1 enzyme responsible for the integration of new spacers into CRISPR loci. Here, we characterized the sequence motifs recognized by the casposase from a thermophilic archaeon Aciduliprofundum boonei. We identified a stretch of residues, located in the leader region upstream of the actual integration site, whose deletion or mutagenesis impaired the concerted integration reaction. However, deletions of two-thirds of the target site were fully functional. Various single-stranded 6-FAM-labelled oligonucleotides derived from casposon terminal inverted repeats were as efficiently incorporated as duplexes into the target site. This result suggests that, as in the case of spacer insertion by the CRISPR Cas1–Cas2 integrase, casposon integration involves splaying of the casposon termini, with single-stranded ends being the actual substrates. The sequence critical for incorporation was limited to the five terminal residues derived from the 3′ end of the casposon. Furthermore, we characterize the casposase from Nitrosopumilus koreensis, a marine member of the phylum Thaumarchaeota, and show that it shares similar properties with the A. boonei enzyme, despite belonging to a different family. These findings further reinforce the mechanistic similarities and evolutionary connection between the casposons and the adaptation module of the CRISPR–Cas systems.
Collapse
Affiliation(s)
- Pierre Béguin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Yankel Chekli
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| | - Guennadi Sezonov
- UMRS 1138 - Centre de Recherche des Cordeliers, Sorbonne Université, 15, rue de l'École de Médecine, 75006 Paris, France
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris- Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, Paris, France
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25-28 rue du Dr. Roux 75724 Paris cedex 15, France
| |
Collapse
|
14
|
Hickman AB, Kailasan S, Genzor P, Haase AD, Dyda F. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas. eLife 2020; 9:50004. [PMID: 31913120 PMCID: PMC6977970 DOI: 10.7554/elife.50004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Key to CRISPR-Cas adaptive immunity is maintaining an ongoing record of invading nucleic acids, a process carried out by the Cas1-Cas2 complex that integrates short segments of foreign genetic material (spacers) into the CRISPR locus. It is hypothesized that Cas1 evolved from casposases, a novel class of transposases. We show here that the Methanosarcina mazei casposase can integrate varied forms of the casposon end in vitro, and recapitulates several properties of CRISPR-Cas integrases including site-specificity. The X-ray structure of the casposase bound to DNA representing the product of integration reveals a tetramer with target DNA bound snugly between two dimers in which single-stranded casposon end binding resembles that of spacer 3'-overhangs. The differences between transposase and CRISPR-Cas integrase are largely architectural, and it appears that evolutionary change involved changes in protein-protein interactions to favor Cas2 binding over tetramerization; this in turn led to preferred integration of single spacers over two transposon ends.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Shweta Kailasan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Pavol Genzor
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Astrid D Haase
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
15
|
Yoganand KN, Muralidharan M, Nimkar S, Anand B. Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system. J Biol Chem 2019; 294:20039-20053. [PMID: 31748409 PMCID: PMC6937570 DOI: 10.1074/jbc.ra119.009438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes deploy CRISPR-Cas-based RNA-guided adaptive immunity to fend off mobile genetic elements such as phages and plasmids. During CRISPR adaptation, which is the first stage of CRISPR immunity, the Cas1-2 integrase complex captures invader-derived prespacer DNA and specifically integrates it at the leader-repeat junction as spacers. For this integration, several variants of CRISPR-Cas systems use Cas4 as an indispensable nuclease for selectively processing the protospacer adjacent motif (PAM) containing prespacers to a defined length. Surprisingly, however, a few CRISPR-Cas systems, such as type I-E, are bereft of Cas4. Despite the absence of Cas4, how the prespacers show impeccable conservation for length and PAM selection in type I-E remains intriguing. Here, using in vivo and in vitro integration assays, deep sequencing, and exonuclease footprinting, we show that Cas1-2/I-E-via the type I-E-specific extended C-terminal tail of Cas1-displays intrinsic affinity for PAM containing prespacers of variable length in Escherichia coli Although Cas1-2/I-E does not prune the prespacers, its binding protects the prespacer boundaries from exonuclease action. This ensures the pruning of exposed ends by exonucleases to aptly sized substrates for integration into the CRISPR locus. In summary, our work reveals that in a few CRISPR-Cas variants, such as type I-E, the specificity of PAM selection resides with Cas1-2, whereas the prespacer processing is co-opted by cellular non-Cas exonucleases, thereby offsetting the need for Cas4.
Collapse
Affiliation(s)
- Kakimani Nagarajan Yoganand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manasasri Muralidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddharth Nimkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Baskaran Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
16
|
Grainy J, Garrett S, Graveley BR, P Terns M. CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2. Nucleic Acids Res 2019; 47:7518-7531. [PMID: 31219587 PMCID: PMC6698737 DOI: 10.1093/nar/gkz548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Acquiring foreign spacer DNA into the CRISPR locus is an essential primary step of the CRISPR-Cas pathway in prokaryotes for developing host immunity to mobile genetic elements. Here, we investigate spacer integration in vitro using proteins from Pyrococcus furiosus and demonstrate that Cas1 and Cas2 are sufficient to accurately integrate spacers into a minimal CRISPR locus. Using high-throughput sequencing, we identified high frequency spacer integration occurring at the same CRISPR repeat border sites utilized in vivo, as well as at several non-CRISPR plasmid sequences which share features with repeats. Analysis of non-CRISPR integration sites revealed that Cas1 and Cas2 are directed to catalyze full-site spacer integration at specific DNA stretches where guanines and/or cytosines are 30 base pairs apart and the intervening sequence harbors several positionally conserved bases. Moreover, assaying a series of CRISPR repeat mutations, followed by sequencing of the integration products, revealed that the specificity of integration is primarily directed by sequences at the leader-repeat junction as well as an adenine-rich sequence block in the mid-repeat. Together, our results indicate that P. furiosus Cas1 and Cas2 recognize multiple sequence features distributed over a 30 base pair DNA region for accurate spacer integration at the CRISPR repeat.
Collapse
Affiliation(s)
- Julie Grainy
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Sandra Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Stem Cell Institute, UConn Health, Farmington, CT 06030, USA
| | - Michael P Terns
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Kim JG, Garrett S, Wei Y, Graveley BR, Terns MP. CRISPR DNA elements controlling site-specific spacer integration and proper repeat length by a Type II CRISPR-Cas system. Nucleic Acids Res 2019; 47:8632-8648. [PMID: 31392984 PMCID: PMC6895254 DOI: 10.1093/nar/gkz677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR–Cas systems provide heritable immunity against viruses by capturing short invader DNA sequences, termed spacers, and incorporating them into the CRISPR loci of the prokaryotic host genome. Here, we investigate DNA elements that control accurate spacer uptake in the type II-A CRISPR locus of Streptococcus thermophilus. We determined that purified Cas1 and Cas2 proteins catalyze spacer integration with high specificity for CRISPR repeat junctions. We show that 10 bp of the CRISPR leader sequence is critical for stimulating polarized integration preferentially at the repeat proximal to the leader. Spacer integration proceeds through a two-step transesterification reaction where the 3′ hydroxyl groups of the spacer target both repeat borders on opposite strands. The leader-proximal end of the repeat is preferentially targeted for the first site of integration through recognition of sequences spanning the leader-repeat junction. Subsequently, second-site integration at the leader-distal end of the repeat is specified by multiple determinants including a length-defining mechanism relying on a repeat element proximal to the second site of integration. Our results highlight the intrinsic ability of type II Cas1/Cas2 proteins to coordinate directional and site-specific spacer integration into the CRISPR locus to ensure precise duplication of the repeat required for CRISPR immunity.
Collapse
Affiliation(s)
- Jenny G Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sandra Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yunzhou Wei
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
Adaptation processes that build CRISPR immunity: creative destruction, updated. Essays Biochem 2019; 63:227-235. [PMID: 31186288 DOI: 10.1042/ebc20180073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023]
Abstract
Prokaryotes can defend themselves against invading mobile genetic elements (MGEs) by acquiring immune memory against them. The memory is a DNA database located at specific chromosomal sites called CRISPRs (clustered regularly interspaced short palindromic repeats) that store fragments of MGE DNA. These are utilised to target and destroy returning MGEs, preventing re-infection. The effectiveness of CRISPR-based immune defence depends on 'adaptation' reactions that capture and integrate MGE DNA fragments into CRISPRs. This provides the means for immunity to be delivered against MGEs in 'interference' reactions. Adaptation and interference are catalysed by Cas (CRISPR-associated) proteins, aided by enzymes well known for other roles in cells. We survey the molecular biology of CRISPR adaptation, highlighting entirely new developments that may help us to understand how MGE DNA is captured. We focus on processes in Escherichia coli, punctuated with reference to other prokaryotes that illustrate how common requirements for adaptation, DNA capture and integration, can be achieved in different ways. We also comment on how CRISPR adaptation enzymes, and their antecedents, can be utilised for biotechnology.
Collapse
|
19
|
Almendros C, Kieper SN, Brouns SJJ. CRISPR-Cas Systems Reduced to a Minimum. Mol Cell 2019; 73:641-642. [PMID: 30794791 DOI: 10.1016/j.molcel.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In two recent studies in Molecular Cell, Wright et al. (2019) report complete spacer integration by a Cas1 mini-integrase and Edraki et al. (2019) describe accurate genome editing by a small Cas9 ortholog with less stringent PAM requirements.
Collapse
Affiliation(s)
- Cristóbal Almendros
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Sebastian N Kieper
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Stan J J Brouns
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|