1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Gallardo-Dodd CJ, Kutter C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum Genomics 2024; 18:109. [PMID: 39334294 PMCID: PMC11437681 DOI: 10.1186/s40246-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Biological systems encompass intricate networks governed by RNA-protein interactions that play pivotal roles in cellular functions. RNA and proteins constituting 1.1% and 18% of the mammalian cell weight, respectively, orchestrate vital processes from genome organization to translation. To date, disentangling the functional fraction of the human genome has presented a major challenge, particularly for noncoding regions, yet recent discoveries have started to unveil a host of regulatory functions for noncoding RNAs (ncRNAs). While ncRNAs exist at different sizes, structures, degrees of evolutionary conservation and abundances within the cell, they partake in diverse roles either alone or in combination. However, certain ncRNA subtypes, including those that have been described or remain to be discovered, are poorly characterized given their heterogeneous nature. RNA activity is in most cases coordinated through interactions with RNA-binding proteins (RBPs). Extensive efforts are being made to accurately reconstruct RNA-RBP regulatory networks, which have provided unprecedented insight into cellular physiology and human disease. In this review, we provide a comprehensive view of RNAs and RBPs, focusing on how their interactions generate functional signals in living cells, particularly in the context of post-transcriptional regulatory processes and cancer.
Collapse
Affiliation(s)
- Carlos J Gallardo-Dodd
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
3
|
Francette AM, Arndt KM. Multiple direct and indirect roles of the Paf1 complex in transcription elongation, splicing, and histone modifications. Cell Rep 2024; 43:114730. [PMID: 39244754 PMCID: PMC11498942 DOI: 10.1016/j.celrep.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The polymerase-associated factor 1 (Paf1) complex (Paf1C) is a conserved protein complex with critical functions during eukaryotic transcription. Previous studies showed that Paf1C is multi-functional, controlling specific aspects of transcription ranging from RNA polymerase II (RNAPII) processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and the extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
4
|
Francette AM, Arndt KM. Multiple direct and indirect roles of Paf1C in elongation, splicing, and histone post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591159. [PMID: 38712269 PMCID: PMC11071476 DOI: 10.1101/2024.04.25.591159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Paf1C is a highly conserved protein complex with critical functions during eukaryotic transcription. Previous studies have shown that Paf1C is multi-functional, controlling specific aspects of transcription, ranging from RNAPII processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M. Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Lead contact
| |
Collapse
|
5
|
Zhou L, Li K, Hunt AG. Natural variation in the plant polyadenylation complex. FRONTIERS IN PLANT SCIENCE 2024; 14:1303398. [PMID: 38317838 PMCID: PMC10839035 DOI: 10.3389/fpls.2023.1303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Messenger RNA polyadenylation, the process wherein the primary RNA polymerase II transcript is cleaved and a poly(A) tract added, is a key step in the expression of genes in plants. Moreover, it is a point at which gene expression may be regulated by determining the functionality of the mature mRNA. Polyadenylation is mediated by a complex (the polyadenylation complex, or PAC) that consists of between 15 and 20 subunits. While the general functioning of these subunits may be inferred by extending paradigms established in well-developed eukaryotic models, much remains to be learned about the roles of individual subunits in the regulation of polyadenylation in plants. To gain further insight into this, we conducted a survey of variability in the plant PAC. For this, we drew upon a database of naturally-occurring variation in numerous geographic isolates of Arabidopsis thaliana. For a subset of genes encoding PAC subunits, the patterns of variability included the occurrence of premature stop codons in some Arabidopsis accessions. These and other observations lead us to conclude that some genes purported to encode PAC subunits in Arabidopsis are actually pseudogenes, and that others may encode proteins with dispensable functions in the plant. Many subunits of the PAC showed patterns of variability that were consistent with their roles as essential proteins in the cell. Several other PAC subunits exhibit patterns of variability consistent with selection for new or altered function. We propose that these latter subunits participate in regulatory interactions important for differential usage of poly(A) sites.
Collapse
Affiliation(s)
| | | | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
6
|
Li C, Xu J, Zhang Y, Ding Y, Zhou X, Su Z, Qu C, Liang J, Han Y, Wang D, Shi Y, Li CJ, Liu GE, Kang X. Alternative polyadenylation landscape of longissimus dorsi muscle with high and low intramuscular fat content in cattle. J Anim Sci 2024; 102:skae357. [PMID: 39565284 PMCID: PMC11641427 DOI: 10.1093/jas/skae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024] Open
Abstract
Intramuscular fat content is one of the most important factors affecting beef quality. However, the role of alternative polyadenylation (APA) in intramuscular fat deposition remains unclear. We compared APA events in muscle samples from high and low intramuscular fat (IMF) cattle, based on RNA-seq data. A total of 363 significant APAs were identified. Notably, the number of shortened 3'UTR events exceeded the number of lengthened 3'UTR events, and genes associated with shortened 3'UTR events were enriched in fatty acid metabolism-related pathways. Most APA events had alternative 3'UTR (aUTR) lengths of 200 to 300 bp. As the 3'UTR lengthened, the aUTR also lengthened (R2 = 0.79). These findings indicate that genes with longer 3'UTRs are more likely to be regulated by APA in the muscle of cattle with high IMF. To determine whether the identified APA events drove alterations in the expression of fat deposition-related genes, we analyzed the relationship between APA events and differentially expressed genes and identified several genes critical for fat deposition (e.g., PFKL and SLC1A5). Since miRNAs usually bind to the 3'UTR region of protein-coding genes and affect gene expression, we constructed an miRNA-APA network to detect several key miRNAs that may regulate fat deposition. We identified 10 important miRNAs that affect changes in IMF content, which may be gained (gained miRNA-binding sites) or lost (lost miRNA-binding sites) owing to 187 differential APA events. Our study characterized the APA profiles of cattle with high and low intramuscular fat content and provided further insights into the relationship between APA, miRNA, and fat deposition.
Collapse
Affiliation(s)
- Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Junjie Xu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yanfeng Zhang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yanling Ding
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xiaonan Zhou
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Zonghua Su
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Chang Qu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Jiahao Liang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yurun Han
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Dingxiang Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuangang Shi
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Xiaolong Kang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
7
|
Carminati M, Rodríguez-Molina JB, Manav MC, Bellini D, Passmore LA. A direct interaction between CPF and RNA Pol II links RNA 3' end processing to transcription. Mol Cell 2023; 83:4461-4478.e13. [PMID: 38029752 PMCID: PMC10783616 DOI: 10.1016/j.molcel.2023.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Transcription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3' end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3' end processing machinery is coupled to transcription remains unclear. Here, we combine in vitro reconstitution, structural studies, and genome-wide analyses to show that yeast CPF physically and functionally interacts with RNA Pol II. Surprisingly, CPF-mediated dephosphorylation promotes the formation of an RNA Pol II stalk-to-stalk homodimer in vitro. This dimer is compatible with transcription but not with the binding of transcription elongation factors. Disruption of the dimerization interface in cells causes transcription defects, including altered RNA Pol II abundance on protein-coding genes, tRNA genes, and intergenic regions. We hypothesize that RNA Pol II dimerization may provide a mechanistic basis for the allosteric model of transcription termination.
Collapse
Affiliation(s)
| | | | - M Cemre Manav
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
8
|
Shen P, Ye K, Xiang H, Zhang Z, He Q, Zhang X, Cai MC, Chen J, Sun Y, Lin L, Qi C, Zhang M, Cheung LWT, Shi T, Yin X, Li Y, Di W, Zang R, Tan L, Zhuang G. Therapeutic targeting of CPSF3-dependent transcriptional termination in ovarian cancer. SCIENCE ADVANCES 2023; 9:eadj0123. [PMID: 37992178 PMCID: PMC10664987 DOI: 10.1126/sciadv.adj0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Transcriptional dysregulation is a recurring pathogenic hallmark and an emerging therapeutic vulnerability in ovarian cancer. Here, we demonstrated that ovarian cancer exhibited a unique dependency on the regulatory machinery of transcriptional termination, particularly, cleavage and polyadenylation specificity factor (CPSF) complex. Genetic abrogation of multiple CPSF subunits substantially hampered neoplastic cell viability, and we presented evidence that their indispensable roles converged on the endonuclease CPSF3. Mechanistically, CPSF perturbation resulted in lengthened 3'-untranslated regions, diminished intronic polyadenylation and widespread transcriptional readthrough, and consequently suppressed oncogenic pathways. Furthermore, we reported the development of specific CPSF3 inhibitors building upon the benzoxaborole scaffold, which exerted potent antitumor activity. Notably, CPSF3 blockade effectively exacerbated genomic instability by down-regulating DNA damage repair genes and thus acted in synergy with poly(adenosine 5'-diphosphate-ribose) polymerase inhibition. These findings establish CPSF3-dependent transcriptional termination as an exploitable driving mechanism of ovarian cancer and provide a promising class of boron-containing compounds for targeting transcription-addicted human malignancies.
Collapse
Affiliation(s)
- Peiye Shen
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Zhang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mei-Chun Cai
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfei Chen
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunheng Sun
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Lin
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Meiying Zhang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lydia W. T. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tingyan Shi
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Yin
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wen Di
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongyu Zang
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Li J, Querl L, Coban I, Salinas G, Krebber H. Surveillance of 3' mRNA cleavage during transcription termination requires CF IB/Hrp1. Nucleic Acids Res 2023; 51:8758-8773. [PMID: 37351636 PMCID: PMC10484732 DOI: 10.1093/nar/gkad530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
CF IB/Hrp1 is part of the cleavage and polyadenylation factor (CPF) and cleavage factor (CF) complex (CPF-CF), which is responsible for 3' cleavage and maturation of pre-mRNAs. Although Hrp1 supports this process, its presence is not essential for the cleavage event. Here, we show that the main function of Hrp1 in the CPF-CF complex is the nuclear mRNA quality control of proper 3' cleavage. As such, Hrp1 acts as a nuclear mRNA retention factor that hinders transcripts from leaving the nucleus until processing is completed. Only after proper 3' cleavage, which is sensed through contacting Rna14, Hrp1 recruits the export receptor Mex67, allowing nuclear export. Consequently, its absence results in the leakage of elongated mRNAs into the cytoplasm. If cleavage is defective, the presence of Hrp1 on the mRNA retains these elongated transcripts until they are eliminated by the nuclear exosome. Together, we identify Hrp1 as the key quality control factor for 3' cleavage.
Collapse
Affiliation(s)
- Jing Li
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Luisa Querl
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Ivo Coban
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Gabriela Salinas
- NGS-Serviceeinrichtung für Integrative Genomik (NIG), Institut für Humangenetik, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
10
|
Swale C, Hakimi MA. 3'-end mRNA processing within apicomplexan parasites, a patchwork of classic, and unexpected players. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1783. [PMID: 36994829 DOI: 10.1002/wrna.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 03/31/2023]
Abstract
The 3'-end processing of mRNA is a co-transcriptional process that leads to the formation of a poly-adenosine tail on the mRNA and directly controls termination of the RNA polymerase II juggernaut. This process involves a megadalton complex composed of cleavage and polyadenylation specificity factors (CPSFs) that are able to recognize cis-sequence elements on nascent mRNA to then carry out cleavage and polyadenylation reactions. Recent structural and biochemical studies have defined the roles played by different subunits of the complex and provided a comprehensive mechanistic understanding of this machinery in yeast or metazoans. More recently, the discovery of small molecule inhibitors of CPSF function in Apicomplexa has stimulated interest in studying the specificities of this ancient eukaryotic machinery in these organisms. Although its function is conserved in Apicomplexa, the CPSF complex integrates a novel reader of the N6-methyladenosine (m6A). This feature, inherited from the plant kingdom, bridges m6A metabolism directly to 3'-end processing and by extension, to transcription termination. In this review, we will examine convergence and divergence of CPSF within the apicomplexan parasites and explore the potential of small molecule inhibition of this machinery within these organisms. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Mohamed-Ali Hakimi
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
11
|
Absmeier E, Chandrasekaran V, O'Reilly FJ, Stowell JAW, Rappsilber J, Passmore LA. Specific recognition and ubiquitination of translating ribosomes by mammalian CCR4-NOT. Nat Struct Mol Biol 2023; 30:1314-1322. [PMID: 37653243 PMCID: PMC7615087 DOI: 10.1038/s41594-023-01075-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Translation affects messenger RNA stability and, in yeast, this is mediated by the Ccr4-Not deadenylation complex. The details of this process in mammals remain unclear. Here, we use cryogenic electron microscopy (cryo-EM) and crosslinking mass spectrometry to show that mammalian CCR4-NOT specifically recognizes ribosomes that are stalled during translation elongation in an in vitro reconstituted system with rabbit and human components. Similar to yeast, mammalian CCR4-NOT inserts a helical bundle of its CNOT3 subunit into the empty E site of the ribosome. Our cryo-EM structure shows that CNOT3 also locks the L1 stalk in an open conformation to inhibit further translation. CCR4-NOT is required for stable association of the nonconstitutive subunit CNOT4, which ubiquitinates the ribosome, likely to signal stalled translation elongation. Overall, our work shows that human CCR4-NOT not only detects but also enforces ribosomal stalling to couple translation and mRNA decay.
Collapse
Affiliation(s)
- Eva Absmeier
- MRC Laboratory of Molecular Biology (LMB), Cambridge, UK
- Freie University of Berlin, Berlin, Germany
| | | | | | | | - Juri Rappsilber
- Technical University of Berlin, Chair of Bioanalytics, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
12
|
Ensinck I, Maman A, Albihlal WS, Lassandro M, Salzano G, Sideri T, Howell SA, Calvani E, Patel H, Bushkin G, Ralser M, Snijders AP, Skehel M, Casañal A, Schwartz S, van Werven FJ. The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. eLife 2023; 12:RP87860. [PMID: 37490041 PMCID: PMC10393049 DOI: 10.7554/elife.87860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
N6-methyladenosine (m6A), the most abundant mRNA modification, is deposited in mammals/insects/plants by m6A methyltransferase complexes (MTC) comprising a catalytic subunit and at least five additional proteins. The yeast MTC is critical for meiosis and was known to comprise three proteins, of which two were conserved. We uncover three novel MTC components (Kar4/Ygl036w-Vir1/Dyn2). All MTC subunits, except for Dyn2, are essential for m6A deposition and have corresponding mammalian MTC orthologues. Unlike the mammalian bipartite MTC, the yeast MTC is unipartite, yet multifunctional. The mRNA interacting module, comprising Ime4, Mum2, Vir1, and Kar4, exerts the MTC's m6A-independent function, while Slz1 enables the MTC catalytic function in m6A deposition. Both functions are critical for meiotic progression. Kar4 also has a mechanistically separate role from the MTC during mating. The yeast MTC constituents play distinguishable m6A-dependent, MTC-dependent, and MTC-independent functions, highlighting their complexity and paving the path towards dissecting multi-layered MTC functions in mammals.
Collapse
Affiliation(s)
| | - Alexander Maman
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | | | | | | | | | | | | | | - Guy Bushkin
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Markus Ralser
- The Francis Crick InstituteLondonUnited Kingdom
- Charité Universitätsmedizin Berlin, Department of BiochemistryBerlinGermany
| | | | - Mark Skehel
- The Francis Crick InstituteLondonUnited Kingdom
| | | | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | |
Collapse
|
13
|
Rodríguez‐Molina JB, Turtola M. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation. FEBS Open Bio 2023; 13:1140-1153. [PMID: 36416579 PMCID: PMC10315857 DOI: 10.1002/2211-5463.13528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
During their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps. Here, we review the structure, molecular mechanism, and regulation of eukaryotic mRNA 3'-end processing machineries with a focus on the polyadenylation step. We concentrate on the CPAC and PABPs from mammals and the budding yeast, Saccharomyces cerevisiae, because these systems are the best-characterized at present. Comparison of their functions provides valuable insights into the principles of mRNA 3'-end processing.
Collapse
Affiliation(s)
| | - Matti Turtola
- Department of Life TechnologiesUniversity of TurkuFinland
| |
Collapse
|
14
|
Xing L, Zhang L, Zheng H, Zhang Z, Luo Y, Liu Y, Wang L. ZmmiR169q/ZmNF-YA8 is a module that homeostatically regulates primary root growth and salt tolerance in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1163228. [PMID: 37457348 PMCID: PMC10344899 DOI: 10.3389/fpls.2023.1163228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
In response to salt stress, plants alter the expression of manifold gene networks, enabling them to survive and thrive in the face of adversity. As a result, the growth and development of plant roots could be drastically altered, with significant inhibition of the growth of root meristematic zones. Although it is known that root growth is primarily regulated by auxins and cytokinins, the molecular regulatory mechanism by which salt stress stunts root meristems remains obscure. In this study, we found that the ZmmiR169q/ZmNF-YA8 module regulates the growth of maize taproots in response to salt stress. Salt stress downregulates ZmmiR169q expression, allowing for significant upregulation of ZmNF-YA8, which, in turn, activates ZmERF1B, triggering the upregulation of ASA1 and ASA2, two rate-limiting enzymes in the biosynthesis of tryptophan (Trp), leading to the accumulation of auxin in the root tip, thereby inhibiting root growth. The development of the maize root is stymied as meristem cell division and meristematic zone expansion are both stifled. This study reveals the ZmmiR169q/ZmNF-YA8 module's involvement in maintaining an equilibrium in bestowing plant salt tolerance and root growth and development under salt stress, providing new insights into the molecular mechanism underlying the homeostatic regulation of plant development in response to salt stress.
Collapse
Affiliation(s)
- Lijuan Xing
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongyan Zheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences (CAAS), Hainan, China
| | - Zhuoxia Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanzhong Luo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences (CAAS), Hainan, China
| |
Collapse
|
15
|
Abstract
Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.
Collapse
Affiliation(s)
- Vytautė Boreikaitė
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
16
|
Rodríguez-Molina JB, West S, Passmore LA. Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII. Mol Cell 2023; 83:404-415. [PMID: 36634677 PMCID: PMC7614299 DOI: 10.1016/j.molcel.2022.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Gene expression is controlled in a dynamic and regulated manner to allow for the consistent and steady expression of some proteins as well as the rapidly changing production of other proteins. Transcription initiation has been a major focus of study because it is highly regulated. However, termination of transcription also plays an important role in controlling gene expression. Transcription termination on protein-coding genes is intimately linked with 3' end cleavage and polyadenylation of transcripts, and it generally results in the production of a mature mRNA that is exported from the nucleus. Termination on many non-coding genes can also result in the production of a mature transcript. Termination is dynamically regulated-premature termination and transcription readthrough occur in response to a number of cellular signals, and these can have varied consequences on gene expression. Here, we review eukaryotic transcription termination by RNA polymerase II (RNAPII), focusing on protein-coding genes.
Collapse
Affiliation(s)
| | - Steven West
- The Living Systems Institute, University of Exeter, Exeter, UK.
| | | |
Collapse
|
17
|
Ielasi FS, Ternifi S, Fontaine E, Iuso D, Couté Y, Palencia A. Human histone pre-mRNA assembles histone or canonical mRNA-processing complexes by overlapping 3'-end sequence elements. Nucleic Acids Res 2022; 50:12425-12443. [PMID: 36447390 PMCID: PMC9756948 DOI: 10.1093/nar/gkac878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Human pre-mRNA processing relies on multi-subunit macromolecular complexes, which recognize specific RNA sequence elements essential for assembly and activity. Canonical pre-mRNA processing proceeds via the recognition of a polyadenylation signal (PAS) and a downstream sequence element (DSE), and produces polyadenylated mature mRNAs, while replication-dependent (RD) histone pre-mRNA processing requires association with a stem-loop (SL) motif and a histone downstream element (HDE), and produces cleaved but non-polyadenylated mature mRNAs. H2AC18 mRNA, a specific H2A RD histone pre-mRNA, can be processed to give either a non-polyadenylated mRNA, ending at the histone SL, or a polyadenylated mRNA. Here, we reveal how H2AC18 captures the two human pre-mRNA processing complexes in a mutually exclusive mode by overlapping a canonical PAS (AAUAAA) sequence element with a HDE. Disruption of the PAS sequence on H2AC18 pre-mRNA prevents recruitment of the canonical complex in vitro, without affecting the histone machinery. This shows how the relative position of cis-acting elements in histone pre-mRNAs allows the selective recruitment of distinct human pre-mRNA complexes, thereby expanding the capability to regulate 3' processing and polyadenylation.
Collapse
Affiliation(s)
- Francesco S Ielasi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Sara Ternifi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Emeline Fontaine
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Domenico Iuso
- Institute for Advanced Biosciences (IAB), Epigenetics and Cell Signaling, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Andrés Palencia
- To whom correspondence should be addressed. Tel: +33 476 54 95 75;
| |
Collapse
|
18
|
Wang X, Cheng H, Zhao J, Li J, Chen Y, Cui K, Tian L, Zhang J, Li C, Sun S, Feng Y, Yao S, Bian Z, Huang S, Fei B, Huang Z. Long noncoding RNA DLGAP1-AS2 promotes tumorigenesis and metastasis by regulating the Trim21/ELOA/LHPP axis in colorectal cancer. Mol Cancer 2022; 21:210. [PMID: 36376892 PMCID: PMC9664729 DOI: 10.1186/s12943-022-01675-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have driven research focused on their effects as oncogenes or tumor suppressors involved in carcinogenesis. However, the functions and mechanisms of most lncRNAs in colorectal cancer (CRC) remain unclear. METHODS The expression of DLGAP1-AS2 was assessed by quantitative RT-PCR in multiple CRC cohorts. The impacts of DLGAP1-AS2 on CRC growth and metastasis were evaluated by a series of in vitro and in vivo assays. Furthermore, the underlying mechanism of DLGAP1-AS2 in CRC was revealed by RNA pull down, RNA immunoprecipitation, RNA sequencing, luciferase assays, chromatin immunoprecipitation, and rescue experiments. RESULTS We discovered that DLGAP1-AS2 promoted CRC tumorigenesis and metastasis by physically interacting with Elongin A (ELOA) and inhibiting its protein stability by promoting tripartite motif containing 21 (Trim21)-mediated ubiquitination modification and degradation of ELOA. In particular, we revealed that DLGAP1-AS2 decreases phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) expression by inhibiting ELOA-mediated transcriptional activating of LHPP and thus blocking LHPP-dependent suppression of the AKT signaling pathway. In addition, we also demonstrated that DLGAP1-AS2 was bound and stabilized by cleavage and polyadenylation specificity factor (CPSF2) and cleavage stimulation factor (CSTF3). CONCLUSIONS The discovery of DLGAP1-AS2, a promising prognostic biomarker, reveals a new dimension into the molecular pathogenesis of CRC and provides a prospective treatment target for this disease.
Collapse
Affiliation(s)
- Xue Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Han Cheng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Jing Zhao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Jiuming Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Ying Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
| | - Lu Tian
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Jia Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Chaoqun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Yuyang Feng
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Shenglin Huang
- Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Jiangsu, 214062, Wuxi, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| |
Collapse
|
19
|
Hunt AG. Review: Mechanisms underlying alternative polyadenylation in plants - looking in the right places. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111430. [PMID: 36007628 DOI: 10.1016/j.plantsci.2022.111430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Recent years have seen an explosion of interest in the subject of alternative polyadenylation in plants. Connections between the polyadenylation complex and numerous developmental and stress responses are well-established. However, those that link stimuli with the functioning of the polyadenylation complex are less well understood. To this end, it is imperative to clearly delineate the roles of the polyadenylation complex in both plant growth AND alternative polyadenylation. It is also necessary to understand the ways by which other molecular processes may contribute to alternative polyadenylation. This review discusses these issues, with a focus on instances that reveal mechanisms by which mRNA polyadenylation may be regulated. Insights from from characterizations of mutants affected in the polyadenylation complex are discussed, as are the limitations of such characterizations when it comes to teasing out cause and effect. These limitations encourage explorations to other processes that are beyond the core polyadenylation complex. Two such processes that sculpt the plant transcriptome - transcription termination and the epigenetic control of transposon activity - also contribute to regulated poly(A) site choice. These subjects define "the right places" - molecular mechanisms that contribute to the wide-ranging control of gene expression via mRNA polyadenylation.
Collapse
Affiliation(s)
- Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, 301A Plant Science Building, 1405 Veterans Road, Lexington, KY 40546-0312, USA.
| |
Collapse
|
20
|
Liu J, Lu X, Zhang S, Yuan L, Sun Y. Molecular Insights into mRNA Polyadenylation and Deadenylation. Int J Mol Sci 2022; 23:ijms231910985. [PMID: 36232288 PMCID: PMC9570436 DOI: 10.3390/ijms231910985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Poly(A) tails are present on almost all eukaryotic mRNAs, and play critical roles in mRNA stability, nuclear export, and translation efficiency. The biosynthesis and shortening of a poly(A) tail are regulated by large multiprotein complexes. However, the molecular mechanisms of these protein machineries still remain unclear. Recent studies regarding the structural and biochemical characteristics of those protein complexes have shed light on the potential mechanisms of polyadenylation and deadenylation. This review summarizes the recent structural studies on pre-mRNA 3′-end processing complexes that initiate the polyadenylation and discusses the similarities and differences between yeast and human machineries. Specifically, we highlight recent biochemical efforts in the reconstitution of the active human canonical pre-mRNA 3′-end processing systems, as well as the roles of RBBP6/Mpe1 in activating the entire machinery. We also describe how poly(A) tails are removed by the PAN2-PAN3 and CCR4-NOT deadenylation complexes and discuss the emerging role of the cytoplasmic poly(A)-binding protein (PABPC) in promoting deadenylation. Together, these recent discoveries show that the dynamic features of these machineries play important roles in regulating polyadenylation and deadenylation.
Collapse
|
21
|
Muckenfuss LM, Migenda Herranz AC, Boneberg FM, Clerici M, Jinek M. Fip1 is a multivalent interaction scaffold for processing factors in human mRNA 3' end biogenesis. eLife 2022; 11:80332. [PMID: 36073787 PMCID: PMC9512404 DOI: 10.7554/elife.80332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
3′ end formation of most eukaryotic mRNAs is dependent on the assembly of a ~1.5 MDa multiprotein complex, that catalyzes the coupled reaction of pre-mRNA cleavage and polyadenylation. In mammals, the cleavage and polyadenylation specificity factor (CPSF) constitutes the core of the 3′ end processing machinery onto which the remaining factors, including cleavage stimulation factor (CstF) and poly(A) polymerase (PAP), assemble. These interactions are mediated by Fip1, a CPSF subunit characterized by high degree of intrinsic disorder. Here, we report two crystal structures revealing the interactions of human Fip1 (hFip1) with CPSF30 and CstF77. We demonstrate that CPSF contains two copies of hFip1, each binding to the zinc finger (ZF) domains 4 and 5 of CPSF30. Using polyadenylation assays we show that the two hFip1 copies are functionally redundant in recruiting one copy of PAP, thereby increasing the processivity of RNA polyadenylation. We further show that the interaction between hFip1 and CstF77 is mediated via a short motif in the N-terminal ‘acidic’ region of hFip1. In turn, CstF77 competitively inhibits CPSF-dependent PAP recruitment and 3′ polyadenylation. Taken together, these results provide a structural basis for the multivalent scaffolding and regulatory functions of hFip1 in 3′ end processing.
Collapse
Affiliation(s)
| | | | | | - Marcello Clerici
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Liu H, Heller-Trulli D, Moore CL. Targeting the mRNA endonuclease CPSF73 inhibits breast cancer cell migration, invasion, and self-renewal. iScience 2022; 25:104804. [PMID: 35992060 PMCID: PMC9385686 DOI: 10.1016/j.isci.2022.104804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/26/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
Cleavage by the endonuclease CPSF73 and polyadenylation of nascent RNA is an essential step in co-transcriptional mRNA maturation. Recent work has surprisingly identified CPSF73 as a promising drug target for inhibiting the growth of specific cancers, triggering further studies on understanding CPSF73 regulation and functions in cells. Here, we report that a HECT-like E3 ligase, UBE3D, participates in stabilizing CPFS73 protein by preventing its ubiquitin-mediated degradation by the proteasome. Depletion of UBE3D leads to CPSF73 downregulation, a pre-mRNA cleavage defect, and dysregulated gene expression in cells. UBE3D dysfunction or chemical inactivation of CPSF73 inhibited migration and invasion as well as stem cell renewal phenotypes in vitro in triple-negative breast cancer cells. In addition, genetic overexpression of CPSF73 promoted breast cancer stemness and knocking down CPSF73 inhibited stem cell renewal properties. Together, our findings indicate that targeting the pre-mRNA processing nuclease CPSF73 has potential for breast cancer therapy.
Collapse
Affiliation(s)
- Huiyun Liu
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daniel Heller-Trulli
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire L. Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
23
|
Vorländer MK, Pacheco-Fiallos B, Plaschka C. Structural basis of mRNA maturation: Time to put it together. Curr Opin Struct Biol 2022; 75:102431. [PMID: 35930970 DOI: 10.1016/j.sbi.2022.102431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022]
Abstract
In eukaryotes, the expression of genetic information begins in the cell nucleus with precursor messenger RNA (pre-mRNA) transcription and processing into mature mRNA. The mRNA is subsequently recognized and packaged by proteins into an mRNA ribonucleoprotein complex (mRNP) and exported to the cytoplasm for translation. Each of the nuclear mRNA maturation steps is carried out by a dedicated molecular machine. Here, we highlight recent structural and mechanistic insights into how these machines function, including the capping enzyme, the spliceosome, the 3'-end processing machinery, and the transcription-export complex. While we increasingly understand individual steps of nuclear gene expression, many questions remain. For example, we are only beginning to reveal how mature mRNAs are recognized and packaged for nuclear export and how mRNA maturation events are coupled to transcription and to each other. Advances in the preparation of recombinant and endogenous protein-nucleic acid complexes, cryo-electron microscopy, and machine learning promise exciting insights into the mechanisms of nuclear gene expression and its spatial organization.
Collapse
Affiliation(s)
- Matthias K Vorländer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria. https://twitter.com/@MVorlandr
| | - Belén Pacheco-Fiallos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria. https://twitter.com/@bpachecofiallos
| | - Clemens Plaschka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
| |
Collapse
|
24
|
Song J, Nabeel-Shah S, Pu S, Lee H, Braunschweig U, Ni Z, Ahmed N, Marcon E, Zhong G, Ray D, Ha KCH, Guo X, Zhang Z, Hughes TR, Blencowe BJ, Greenblatt JF. Regulation of alternative polyadenylation by the C2H2-zinc-finger protein Sp1. Mol Cell 2022; 82:3135-3150.e9. [PMID: 35914531 DOI: 10.1016/j.molcel.2022.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.
Collapse
Affiliation(s)
- Jingwen Song
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Shuye Pu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
| | - Ulrich Braunschweig
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Nujhat Ahmed
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Guoqing Zhong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Debashish Ray
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Kevin C H Ha
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada; Department of Computer Science, University of Toronto, 10 King's College Road, Toronto, ON M5S 3G4, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada.
| |
Collapse
|
25
|
Rodríguez-Molina JB, O'Reilly FJ, Fagarasan H, Sheekey E, Maslen S, Skehel JM, Rappsilber J, Passmore LA. Mpe1 senses the binding of pre-mRNA and controls 3' end processing by CPF. Mol Cell 2022; 82:2490-2504.e12. [PMID: 35584695 PMCID: PMC9380774 DOI: 10.1016/j.molcel.2022.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Most eukaryotic messenger RNAs (mRNAs) are processed at their 3' end by the cleavage and polyadenylation specificity factor (CPF/CPSF). CPF mediates the endonucleolytic cleavage of the pre-mRNA and addition of a polyadenosine (poly(A)) tail, which together define the 3' end of the mature transcript. The activation of CPF is highly regulated to maintain the fidelity of RNA processing. Here, using cryo-EM of yeast CPF, we show that the Mpe1 subunit directly contacts the polyadenylation signal sequence in nascent pre-mRNA. The region of Mpe1 that contacts RNA also promotes the activation of CPF endonuclease activity and controls polyadenylation. The Cft2 subunit of CPF antagonizes the RNA-stabilized configuration of Mpe1. In vivo, the depletion or mutation of Mpe1 leads to widespread defects in transcription termination by RNA polymerase II, resulting in transcription interference on neighboring genes. Together, our data suggest that Mpe1 plays a major role in accurate 3' end processing, activating CPF, and ensuring timely transcription termination.
Collapse
Affiliation(s)
| | - Francis J O'Reilly
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany
| | | | | | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | |
Collapse
|
26
|
Biswas B, Chaaban R, Chakraborty S, Devaux A, Dian AL, Minello A, Singh JK, Vagner S, Uguen P, Lambert S, Dutertre M, Carreira A. At the crossroads of RNA biology, genome integrity and cancer. Bull Cancer 2022; 109:728-735. [PMID: 35597618 DOI: 10.1016/j.bulcan.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
This article is the synthesis of the scientific presentations that took place during two international courses at Institute Curie, one on post-transcriptional gene regulation and the other on genome instability and human disease, that were joined together in their 2021 edition. This joined course brought together the knowledge on RNA metabolism and the maintenance of genome stability.
Collapse
Affiliation(s)
- Biswendu Biswas
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Rady Chaaban
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Shrena Chakraborty
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Alexandre Devaux
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Ana Luisa Dian
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Anna Minello
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Jenny Kaur Singh
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Stephan Vagner
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Patricia Uguen
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France.
| | - Sarah Lambert
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Martin Dutertre
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| | - Aura Carreira
- CNRS UMR 3348 Genome integrity, RNA and Cancer, Institut Curie, University Paris-Saclay, 91401 Orsay, France
| |
Collapse
|
27
|
Sanbonmatsu K. Getting to the bottom of lncRNA mechanism: structure-function relationships. Mamm Genome 2022; 33:343-353. [PMID: 34642784 PMCID: PMC8509902 DOI: 10.1007/s00335-021-09924-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
While long non-coding RNAs are known to play key roles in disease and development, relatively few structural studies have been performed for this important class of RNAs. Here, we review functional studies of long non-coding RNAs and expose the need for high-resolution 3-D structural studies, discussing the roles of long non-coding RNAs in the cell and how structure-function relationships might be used to elucidate further understanding. We then describe structural studies of other classes of RNAs using chemical probing, nuclear magnetic resonance, small-angle X-ray scattering, X-ray crystallography, and cryogenic electron microscopy (cryo-EM). Next, we review early structural studies of long non-coding RNAs to date and describe the way forward for the structural biology of long non-coding RNAs in terms of cryo-EM.
Collapse
|
28
|
Bilodeau DY, Sheridan RM, Balan B, Jex AR, Rissland OS. Precise gene models using long-read sequencing reveal a unique poly(A) signal in Giardia lamblia. RNA (NEW YORK, N.Y.) 2022; 28:668-682. [PMID: 35110372 PMCID: PMC9014877 DOI: 10.1261/rna.078793.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
During pre-mRNA processing, the poly(A) signal is recognized by a protein complex that ensures precise cleavage and polyadenylation of the nascent transcript. The location of this cleavage event establishes the length and sequence of the 3' UTR of an mRNA, thus determining much of its post-transcriptional fate. Using long-read sequencing, we characterize the polyadenylation signal and related sequences surrounding Giardia lamblia cleavage sites for over 2600 genes. We find that G. lamblia uses an AGURAA poly(A) signal, which differs from the mammalian AAUAAA. We also describe how G. lamblia lacks common auxiliary elements found in other eukaryotes, along with the proteins that recognize them. Further, we identify 133 genes with evidence of alternative polyadenylation. These results suggest that despite pared-down cleavage and polyadenylation machinery, 3' end formation still appears to be an important regulatory step for gene expression in G. lamblia.
Collapse
Affiliation(s)
- Danielle Y Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ryan M Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
29
|
Boreikaite V, Elliott TS, Chin JW, Passmore LA. RBBP6 activates the pre-mRNA 3' end processing machinery in humans. Genes Dev 2022; 36:210-224. [PMID: 35177536 PMCID: PMC8887125 DOI: 10.1101/gad.349223.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
3' end processing of most human mRNAs is carried out by the cleavage and polyadenylation specificity factor (CPSF; CPF in yeast). Endonucleolytic cleavage of the nascent pre-mRNA defines the 3' end of the mature transcript, which is important for mRNA localization, translation, and stability. Cleavage must therefore be tightly regulated. Here, we reconstituted specific and efficient 3' endonuclease activity of human CPSF with purified proteins. This required the seven-subunit CPSF as well as three additional protein factors: cleavage stimulatory factor (CStF), cleavage factor IIm (CFIIm), and, importantly, the multidomain protein RBBP6. Unlike its yeast homolog Mpe1, which is a stable subunit of CPF, RBBP6 does not copurify with CPSF and is recruited in an RNA-dependent manner. Sequence and mutational analyses suggest that RBBP6 interacts with the WDR33 and CPSF73 subunits of CPSF. Thus, it is likely that the role of RBBP6 is conserved from yeast to humans. Overall, our data are consistent with CPSF endonuclease activation and site-specific pre-mRNA cleavage being highly controlled to maintain fidelity in mRNA processing.
Collapse
Affiliation(s)
- Vytaute Boreikaite
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
30
|
Abstract
It is every biochemist's dream to reconstitute a biological process in vitro using defined components, because doing so not only reduces a biological phenomenon to one or a series of biochemical reactions, but also defines the minimal list of essential components. In this issue of Genes & Development, Boreikaite and colleagues (pp. 210-224) and Schmidt and colleagues (pp. 195-209) report their independent reconstitution of human pre-mRNA 3' end processing.
Collapse
Affiliation(s)
- Yoseop Yoon
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| |
Collapse
|
31
|
Schmidt M, Kluge F, Sandmeir F, Kühn U, Schäfer P, Tüting C, Ihling C, Conti E, Wahle E. Reconstitution of 3' end processing of mammalian pre-mRNA reveals a central role of RBBP6. Genes Dev 2022; 36:195-209. [PMID: 35177537 PMCID: PMC8887130 DOI: 10.1101/gad.349217.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
Abstract
The 3' ends of almost all eukaryotic mRNAs are generated in an essential two-step processing reaction: endonucleolytic cleavage of an extended precursor followed by the addition of a poly(A) tail. By reconstituting the reaction from overproduced and purified proteins, we provide a minimal list of 14 polypeptides that are essential and two that are stimulatory for RNA processing. In a reaction depending on the polyadenylation signal AAUAAA, the reconstituted system cleaves pre-mRNA at a single preferred site corresponding to the one used in vivo. Among the proteins, cleavage factor I stimulates cleavage but is not essential, consistent with its prominent role in alternative polyadenylation. RBBP6 is required, with structural data showing it to contact and presumably activate the endonuclease CPSF73 through its DWNN domain. The C-terminal domain of RNA polymerase II is dispensable. ATP, but not its hydrolysis, supports RNA cleavage by binding to the hClp1 subunit of cleavage factor II with submicromolar affinity.
Collapse
Affiliation(s)
- Moritz Schmidt
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Florian Kluge
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Felix Sandmeir
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Peter Schäfer
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christian Tüting
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
32
|
Enserink JM, Chymkowitch P. Cell Cycle-Dependent Transcription: The Cyclin Dependent Kinase Cdk1 Is a Direct Regulator of Basal Transcription Machineries. Int J Mol Sci 2022; 23:ijms23031293. [PMID: 35163213 PMCID: PMC8835803 DOI: 10.3390/ijms23031293] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
The cyclin-dependent kinase Cdk1 is best known for its function as master regulator of the cell cycle. It phosphorylates several key proteins to control progression through the different phases of the cell cycle. However, studies conducted several decades ago with mammalian cells revealed that Cdk1 also directly regulates the basal transcription machinery, most notably RNA polymerase II. More recent studies in the budding yeast Saccharomyces cerevisiae have revisited this function of Cdk1 and also revealed that Cdk1 directly controls RNA polymerase III activity. These studies have also provided novel insight into the physiological relevance of this process. For instance, cell cycle-stage-dependent activity of these complexes may be important for meeting the increased demand for various proteins involved in housekeeping, metabolism, and protein synthesis. Recent work also indicates that direct regulation of the RNA polymerase II machinery promotes cell cycle entry. Here, we provide an overview of the regulation of basal transcription by Cdk1, and we hypothesize that the original function of the primordial cell-cycle CDK was to regulate RNAPII and that it later evolved into specialized kinases that govern various aspects of the transcription machinery and the cell cycle.
Collapse
Affiliation(s)
- Jorrit M. Enserink
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
- Correspondence: (J.M.E.); (P.C.)
| |
Collapse
|
33
|
Li J, Yue L, Li Z, Zhang W, Zhang B, Zhao F, Dong X. aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy. eLife 2021; 10:70464. [PMID: 34964713 PMCID: PMC8716108 DOI: 10.7554/elife.70464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, aCPSF1 was reported to function as the long-sought global transcription termination factor of archaea; however, the working mechanism remains elusive. This work, through analyzing transcript-3′end-sequencing data of Methanococcus maripaludis, found genome-wide positive correlations of both the terminator uridine(U)-tract and aCPSF1 with hierarchical transcription termination efficacies (TTEs). In vitro assays determined that aCPSF1 specifically binds to the terminator U-tract with U-tract number-related binding affinity, and in vivo assays demonstrated the two elements are indispensable in dictating high TTEs, revealing that aCPSF1 and the terminator U-tract cooperatively determine high TTEs. The N-terminal KH domains equip aCPSF1 with specific-binding capacity to terminator U-tract and the aCPSF1-terminator U-tract cooperation; while the nuclease activity of aCPSF1 was also required for TTEs. aCPSF1 also guarantees the terminations of transcripts with weak intrinsic terminator signals. aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota exhibited similar U-tract cooperation in dictating TTEs. Therefore, aCPSF1 and the intrinsic U-rich terminator could work in a noteworthy two-in-one termination mode in archaea, which may be widely employed by archaeal phyla; using one trans-action factor to recognize U-rich terminator signal and cleave transcript 3′-end, the archaeal aCPSF1-dependent transcription termination may represent a simplified archetypal mode of the eukaryotic RNA polymerase II termination machinery.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Serna M, González-Corpas A, Cabezudo S, López-Perrote A, Degliesposti G, Zarzuela E, Skehel JM, Muñoz J, Llorca O. CryoEM of RUVBL1-RUVBL2-ZNHIT2, a complex that interacts with pre-mRNA-processing-splicing factor 8. Nucleic Acids Res 2021; 50:1128-1146. [PMID: 34951455 PMCID: PMC8789047 DOI: 10.1093/nar/gkab1267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Biogenesis of the U5 small nuclear ribonucleoprotein (snRNP) is an essential and highly regulated process. In particular, PRPF8, one of U5 snRNP main components, requires HSP90 working in concert with R2TP, a cochaperone complex containing RUVBL1 and RUVBL2 AAA-ATPases, and additional factors that are still poorly characterized. Here, we use biochemistry, interaction mapping, mass spectrometry and cryoEM to study the role of ZNHIT2 in the regulation of the R2TP chaperone during the biogenesis of PRPF8. ZNHIT2 forms a complex with R2TP which depends exclusively on the direct interaction of ZNHIT2 with the RUVBL1–RUVBL2 ATPases. The cryoEM analysis of this complex reveals that ZNHIT2 alters the conformation and nucleotide state of RUVBL1–RUVBL2, affecting its ATPase activity. We characterized the interactions between R2TP, PRPF8, ZNHIT2, ECD and AAR2 proteins. Interestingly, PRPF8 makes a direct interaction with R2TP and this complex can incorporate ZNHIT2 and other proteins involved in the biogenesis of PRPF8 such as ECD and AAR2. Together, these results show that ZNHIT2 participates in the assembly of the U5 snRNP as part of a network of contacts between assembly factors required for PRPF8 biogenesis and the R2TP-HSP90 chaperone, while concomitantly regulating the structure and nucleotide state of R2TP.
Collapse
Affiliation(s)
- Marina Serna
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana González-Corpas
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Sofía Cabezudo
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Andrés López-Perrote
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Gianluca Degliesposti
- MRC Laboratory of Molecular Biology. Francis Crick Avenue. Cambridge Biomedical Campus, Cambridge CB2 0QH. UK
| | - Eduardo Zarzuela
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology. Francis Crick Avenue. Cambridge Biomedical Campus, Cambridge CB2 0QH. UK
| | - Javier Muñoz
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Oscar Llorca
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
35
|
Architectural and functional details of CF IA proteins involved in yeast 3'-end pre-mRNA processing and its significance for eukaryotes: A concise review. Int J Biol Macromol 2021; 193:387-400. [PMID: 34699898 DOI: 10.1016/j.ijbiomac.2021.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
In eukaryotes, maturation of pre-mRNA relies on its precise 3'-end processing. This processing involves co-transcriptional steps regulated by sequence elements and other proteins. Although, it holds tremendous importance, defect in the processing machinery will result in erroneous pre-mRNA maturation leading to defective translation. Remarkably, more than 20 proteins in humans and yeast share homology and execute this processing. The defects in this processing are associated with various diseases in humans. We shed light on the CF IA subunit of yeast Saccharomyces cerevisiae that contains four proteins (Pcf11, Clp1, Rna14 and Rna15) involved in this processing. Structural details of various domains of CF IA and their roles during 3'-end processing, like cleavage and polyadenylation at 3'-UTR of pre-mRNA and other cellular events are explained. Further, the chronological development and important discoveries associated with 3'-end processing are summarized. Moreover, the mammalian homologues of yeast CF IA proteins, along with their key roles are described. This knowledge would be helpful for better comprehension of the mechanism associated with this marvel; thus opening up vast avenues in this area.
Collapse
|
36
|
Kumar A, Yu CWH, Rodríguez-Molina JB, Li XH, Freund SMV, Passmore LA. Dynamics in Fip1 regulate eukaryotic mRNA 3' end processing. Genes Dev 2021; 35:1510-1526. [PMID: 34593603 PMCID: PMC8559680 DOI: 10.1101/gad.348671.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023]
Abstract
In this study, Kumar et al. characterized the structure–function relationship of the essential poly(A) factor Fip1. Using in vitro reconstitution and structural studies, the authors report that Fip1 dynamics within the 3′ end processing machinery are required to coordinate cleavage and polyadenylation. Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3′ end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3′ end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3′ end processing machinery are required to coordinate cleavage and polyadenylation.
Collapse
Affiliation(s)
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
37
|
Hunt AG, Howe DK, Brown A, Yeargan M. Transcriptional dynamics in the protozoan parasite Sarcocystis neurona and mammalian host cells after treatment with a specific inhibitor of apicomplexan mRNA polyadenylation. PLoS One 2021; 16:e0259109. [PMID: 34710156 PMCID: PMC8553156 DOI: 10.1371/journal.pone.0259109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
In recent years, a class of chemical compounds (benzoxaboroles) that are active against a range of parasites has been shown to target mRNA polyadenylation by inhibiting the activity of CPSF73, the endonucleolytic core of the eukaryotic polyadenylation complex. One particular compound, termed AN3661, is active against several apicomplexan parasites that cause disease in humans. In this study, we report that AN3661 is active against an apicomplexan that causes disease in horses and marine mammals (Sarcocystis neurona), with an approximate IC50 value of 14.99 nM. Consistent with the reported mode of action of AN3661 against other apicomplexans, S. neurona mutants resistant to AN3661 had an alteration in CPSF73 that was identical to a mutation previously documented in AN3661-resistant Toxoplasma gondii and Plasmodium falciparum. AN3661 had a wide-ranging effect on poly(A) site choice in S. neurona, with more than half of all expressed genes showing some alteration in mRNA 3' ends. This was accompanied by changes in the relative expression of more than 25% of S. neurona genes and an overall 5-fold reduction of S. neurona transcripts in infected cells. In contrast, AN3661 had no discernible effect on poly(A) site choice or gene expression in the host cells. These transcriptomic studies indicate that AN3661 is exceedingly specific for the parasite CPSF73 protein, and has the potential to augment other therapies for the control of apicomplexan parasites in domestic animals.
Collapse
Affiliation(s)
- Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States of America
- * E-mail:
| | - Daniel K. Howe
- Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - Ashley Brown
- Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - Michelle Yeargan
- Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
38
|
Pfleiderer MM, Galej WP. Emerging insights into the function and structure of the Integrator complex. Transcription 2021; 12:251-265. [PMID: 35311473 PMCID: PMC9006982 DOI: 10.1080/21541264.2022.2047583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
The Integrator was originally discovered as a specialized 3'-end processing endonuclease complex required for maturation of RNA polymerase II (RNAPII)-dependent small nuclear RNAs (snRNAs). Since its discovery, Integrator's spectrum of substrates was significantly expanded to include non-polyadenylated long noncoding RNAs (lncRNA), enhancer RNAs (eRNAs), telomerase RNA (tertRNA), several Herpesvirus transcripts, and messenger RNAs (mRNAs). Recently emerging transcriptome-wide studies reveled an important role of the Integrator in protein-coding genes, where it contributes to gene expression regulation through promoter-proximal transcription attenuation. These new functional data are complemented by several structures of Integrator modules and higher-order complexes, providing mechanistic insights into Integrator-mediated processing events. In this work, we summarize recent progress in our understanding of the structure and function of the Integrator complex.
Collapse
|
39
|
Liu H, Moore CL. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease. Trends Biochem Sci 2021; 46:772-784. [PMID: 33941430 PMCID: PMC8364479 DOI: 10.1016/j.tibs.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Cleavage of nascent transcripts is a fundamental process for eukaryotic mRNA maturation and for the production of different mRNA isoforms. In eukaryotes, cleavage of mRNA precursors by the highly conserved endonuclease CPSF73 is critical for mRNA stability, export from the nucleus, and translation. As an essential enzyme in the cell, CPSF73 surprisingly shows promise as a drug target for specific cancers and for protozoan parasites. In this review, we cover our current understanding of CPSF73 in cleavage and polyadenylation, histone pre-mRNA processing, and transcription termination. We discuss the potential of CPSF73 as a target for novel therapeutics and highlight further research into the regulation of CPSF73 that will be critical to understanding its role in cancer and other diseases.
Collapse
Affiliation(s)
- Huiyun Liu
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
40
|
Turtola M, Manav MC, Kumar A, Tudek A, Mroczek S, Krawczyk PS, Dziembowski A, Schmid M, Passmore LA, Casañal A, Jensen TH. Three-layered control of mRNA poly(A) tail synthesis in Saccharomyces cerevisiae. Genes Dev 2021; 35:1290-1303. [PMID: 34385261 PMCID: PMC8415320 DOI: 10.1101/gad.348634.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.
Collapse
Affiliation(s)
- Matti Turtola
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M Cemre Manav
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ananthanarayanan Kumar
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ana Casañal
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
41
|
U7 deciphered: the mechanism that forms the unusual 3' end of metazoan replication-dependent histone mRNAs. Biochem Soc Trans 2021; 49:2229-2240. [PMID: 34351387 DOI: 10.1042/bst20210323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
In animal cells, replication-dependent histone mRNAs end with a highly conserved stem-loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3' end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3'-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3' end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem-loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a ∼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3'-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3'-end processing machineries.
Collapse
|
42
|
Pfleiderer MM, Galej WP. Structure of the catalytic core of the Integrator complex. Mol Cell 2021; 81:1246-1259.e8. [PMID: 33548203 PMCID: PMC7980224 DOI: 10.1016/j.molcel.2021.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/29/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
The Integrator is a specialized 3' end-processing complex involved in cleavage and transcription termination of a subset of nascent RNA polymerase II transcripts, including small nuclear RNAs (snRNAs). We provide evidence of the modular nature of the Integrator complex by biochemically characterizing its two subcomplexes, INTS5/8 and INTS10/13/14. Using cryoelectron microscopy (cryo-EM), we determined a 3.5-Å-resolution structure of the INTS4/9/11 ternary complex, which constitutes Integrator's catalytic core. Our structure reveals the spatial organization of the catalytic nuclease INTS11, bound to its catalytically impaired homolog INTS9 via several interdependent interfaces. INTS4, a helical repeat protein, plays a key role in stabilizing nuclease domains and other components. In this assembly, all three proteins form a composite electropositive groove, suggesting a putative RNA binding path within the complex. Comparison with other 3' end-processing machineries points to distinct features and a unique architecture of the Integrator's catalytic module.
Collapse
Affiliation(s)
- Moritz M Pfleiderer
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Wojciech P Galej
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
43
|
Benjamin B, Sanchez AM, Garg A, Schwer B, Shuman S. Structure-function analysis of fission yeast cleavage and polyadenylation factor (CPF) subunit Ppn1 and its interactions with Dis2 and Swd22. PLoS Genet 2021; 17:e1009452. [PMID: 33711009 PMCID: PMC7990198 DOI: 10.1371/journal.pgen.1009452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/24/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fission yeast Cleavage and Polyadenylation Factor (CPF), a 13-subunit complex, executes the cotranscriptional 3' processing of RNA polymerase II (Pol2) transcripts that precedes transcription termination. The three-subunit DPS sub-complex of CPF, consisting of a PP1-type phosphoprotein phosphatase Dis2, a WD-repeat protein Swd22, and a putative phosphatase regulatory factor Ppn1, associates with the CPF core to form the holo-CPF assembly. Here we probed the functional, physical, and genetic interactions of DPS by focusing on the Ppn1 subunit, which mediates association of DPS with the core. Transcriptional profiling by RNA-seq defined limited but highly concordant sets of protein-coding genes that were dysregulated in ppn1Δ, swd22Δ and dis2Δ cells, which included the DPSΔ down-regulated phosphate homeostasis genes pho1 and pho84 that are controlled by lncRNA-mediated transcriptional interference. Essential and inessential modules of the 710-aa Ppn1 protein were defined by testing the effects of Ppn1 truncations in multiple genetic backgrounds in which Ppn1 is required for growth. An N-terminal 172-aa disordered region was dispensable and its deletion alleviated hypomorphic phenotypes caused by deleting C-terminal aa 640-710. A TFIIS-like domain (aa 173-330) was not required for viability but was important for Ppn1 activity in phosphate homeostasis. Distinct sites within Ppn1 for binding to Dis2 (spanning Ppn1 aa 506 to 532) and Swd22 (from Ppn1 aa 533 to 578) were demarcated by yeast two-hybrid assays. Dis2 interaction-defective missense mutants of full-length Ppn1 (that retained Swd22 interaction) were employed to show that binding to Dis2 (or its paralog Sds21) was necessary for Ppn1 biological activity. Ppn1 function was severely compromised by missense mutations that selectively affected its binding to Swd22.
Collapse
Affiliation(s)
- Bradley Benjamin
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (BS); (SS)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- * E-mail: (BS); (SS)
| |
Collapse
|
44
|
von Loeffelholz O, Klaholz BP. Setup and Troubleshooting of Volta Phase Plate Cryo-EM Data Collection. Methods Mol Biol 2021; 2305:291-299. [PMID: 33950395 DOI: 10.1007/978-1-0716-1406-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cryo electron microscopy (cryo-EM) has become a method of choice in structural biology to analyze isolated complexes and cellular structures. This implies adequate imaging of the specimen and advanced image-processing methods to obtain high-resolution 3D reconstructions. The use of a Volta phase plate in cryo-EM drastically increases the image contrast while being able to record images at high acceleration voltage and close to focus, i.e., at conditions where high-resolution information is best preserved. During image processing, higher contrast images can be aligned and classified better than lower quality ones resulting in increased data quality and the need for less data. Here, we give step-by-step guidelines on how to set up high-quality VPP cryo-EM single particle data collections, as exemplified by human ribosome data acquired during a one-day data collection session. Further, we describe specific technical details in image processing that differ from conventional single particle cryo-EM data analysis.
Collapse
Affiliation(s)
- Ottilie von Loeffelholz
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France. .,Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France. .,Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
45
|
Yue L, Li J, Zhang B, Qi L, Li Z, Zhao F, Li L, Zheng X, Dong X. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3'-end cleavage mode. Nucleic Acids Res 2020; 48:9589-9605. [PMID: 32857850 PMCID: PMC7515710 DOI: 10.1093/nar/gkaa702] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023] Open
Abstract
Transcription termination defines accurate transcript 3′-ends and ensures programmed transcriptomes, making it critical to life. However, transcription termination mechanisms remain largely unknown in Archaea. Here, we reported the physiological significance of the newly identified general transcription termination factor of Archaea, the ribonuclease aCPSF1, and elucidated its 3′-end cleavage triggered termination mechanism. The depletion of Mmp-aCPSF1 in Methanococcus maripaludis caused a genome-wide transcription termination defect and disordered transcriptome. Transcript-3′end-sequencing revealed that transcriptions primarily terminate downstream of a uridine-rich motif where Mmp-aCPSF1 performed an endoribonucleolytic cleavage, and the endoribonuclease activity was determined to be essential to the in vivo transcription termination. Co-immunoprecipitation and chromatin-immunoprecipitation detected interactions of Mmp-aCPSF1 with RNA polymerase and chromosome. Phylogenetic analysis revealed that the aCPSF1 orthologs are ubiquitously distributed among the archaeal phyla, and two aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to terminate transcription of M. maripaludis. Therefore, the aCPSF1 dependent termination mechanism could be widely employed in Archaea, including Lokiarchaeota belonging to Asgard Archaea, the postulated archaeal ancestor of Eukaryotes. Strikingly, aCPSF1-dependent archaeal transcription termination reported here exposes a similar 3′-cleavage mode as the eukaryotic RNA polymerase II termination, thus would shed lights on understanding the evolutionary linking between archaeal and eukaryotic termination machineries.
Collapse
Affiliation(s)
- Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingyan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
46
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
47
|
Kilchert C, Kecman T, Priest E, Hester S, Aydin E, Kus K, Rossbach O, Castello A, Mohammed S, Vasiljeva L. System-wide analyses of the fission yeast poly(A) + RNA interactome reveal insights into organization and function of RNA-protein complexes. Genome Res 2020; 30:1012-1026. [PMID: 32554781 PMCID: PMC7397868 DOI: 10.1101/gr.257006.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
Large RNA-binding complexes play a central role in gene expression and orchestrate production, function, and turnover of mRNAs. The accuracy and dynamics of RNA–protein interactions within these molecular machines are essential for their function and are mediated by RNA-binding proteins (RBPs). Here, we show that fission yeast whole-cell poly(A)+ RNA–protein crosslinking data provide information on the organization of RNA–protein complexes. To evaluate the relative enrichment of cellular RBPs on poly(A)+ RNA, we combine poly(A)+ RNA interactome capture with a whole-cell extract normalization procedure. This approach yields estimates of in vivo RNA-binding activities that identify subunits within multiprotein complexes that directly contact RNA. As validation, we trace RNA interactions of different functional modules of the 3′ end processing machinery and reveal additional contacts. Extending our analysis to different mutants of the RNA exosome complex, we explore how substrate channeling through the complex is affected by mutation. Our data highlight the central role of the RNA helicase Mtl1 in regulation of the complex and provide insights into how different components contribute to engagement of the complex with substrate RNA. In addition, we characterize RNA-binding activities of novel RBPs that have been recurrently detected in the RNA interactomes of multiple species. We find that many of these, including cyclophilins and thioredoxins, are substoichiometric RNA interactors in vivo. Because RBPomes show very good overall agreement between species, we propose that the RNA-binding characteristics we observe in fission yeast are likely to apply to related proteins in higher eukaryotes as well.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Emily Priest
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Svenja Hester
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Ebru Aydin
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Krzysztof Kus
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Oliver Rossbach
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom.,Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
48
|
Sun Y, Hamilton K, Tong L. Recent molecular insights into canonical pre-mRNA 3'-end processing. Transcription 2020; 11:83-96. [PMID: 32522085 DOI: 10.1080/21541264.2020.1777047] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The majority of eukaryotic messenger RNA precursors (pre-mRNAs) undergo cleavage and polyadenylation at their 3' end. This canonical 3'-end processing depends on sequence elements in the pre-mRNA as well as a mega-dalton protein machinery. The cleavage site in mammalian pre-mRNAs is located between an upstream poly(A) signal, most frequently an AAUAAA hexamer, and a GU-rich downstream sequence element. This review will summarize recent advances from the studies on this canonical 3'-end processing machinery. They have revealed the molecular mechanism for the recognition of the poly(A) signal and provided the first glimpse into the overall architecture of the machinery. The studies also show that the machinery is highly dynamic conformationally, and extensive re-arrangements are necessary for its activation. Inhibitors targeting the active site of the CPSF73 nuclease of this machinery have anti-cancer, anti-inflammatory and anti-protozoal effects, indicating that CPSF73 and pre-mRNA 3'-end processing in general are attractive targets for drug discovery. ABBREVIATIONS APA: alternative polyadenylation; β-CASP: metallo-β-lactamase-associated CPSF Artemis SNM1/PSO2; CTD: C-terminal domain; CF: cleavage factor; CPF: cleavage and polyadenylation factor; CPSF: cleavage and polyadenylation specificity factor; CstF: cleavage stimulation factor; DSE: downstream element; HAT: half a TPR; HCC: histone pre-mRNA cleavage complex; mCF: mammalian cleavage factor; mPSF: mammalian polyadenylation specificity factor; mRNA: messenger RNA; nt: nucleotide; NTD: N-terminal domain; PAP: polyadenylate polymerase; PAS: polyadenylation signal; PIM: mPSF interaction motif; Poly(A): polyadenylation, polyadenylate; Pol II: RNA polymerase II; pre-mRNA: messenger RNA precursor; RRM: RNA recognition module, RNA recognition motif; snRNP: small nuclear ribonucleoprotein; TPR: tetratricopeptide repeat; UTR: untranslated region; ZF: zinc finger.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University , New York, NY, USA
| |
Collapse
|
49
|
Lee SD, Liu HY, Graber JH, Heller-Trulli D, Kaczmarek Michaels K, Cerezo JF, Moore CL. Regulation of the Ysh1 endonuclease of the mRNA cleavage/polyadenylation complex by ubiquitin-mediated degradation. RNA Biol 2020; 17:689-702. [PMID: 32009536 PMCID: PMC7237158 DOI: 10.1080/15476286.2020.1724717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mutation of the essential yeast protein Ipa1 has previously been demonstrated to cause defects in pre-mRNA 3' end processing and growth, but the mechanism underlying these defects was not clear. In this study, we show that the ipa1-1 mutation causes a striking depletion of Ysh1, the evolutionarily conserved endonuclease subunit of the 19-subunit mRNA Cleavage/Polyadenylation (C/P) complex, but does not decrease other C/P subunits. YSH1 overexpression rescues both the growth and 3' end processing defects of the ipa1-1 mutant. YSH1 mRNA level is unchanged in ipa1-1 cells, and proteasome inactivation prevents Ysh1 loss and causes accumulation of ubiquitinated Ysh1. Ysh1 ubiquitination is mediated by the Ubc4 ubiquitin-conjugating enzyme and Mpe1, which in addition to its function in C/P, is also a RING ubiquitin ligase. In summary, Ipa1 affects mRNA processing by controlling the availability of the C/P endonuclease and may represent a regulatory mechanism that could be rapidly deployed to facilitate reprogramming of cellular responses.
Collapse
Affiliation(s)
- Susan D. Lee
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Hui-Yun Liu
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Joel H. Graber
- Computational Biology and Bioinformatics Core, Mount Desert Island Biological Laboratory, Bar Harbor, ME, USA
| | - Daniel Heller-Trulli
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Katarzyna Kaczmarek Michaels
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | | | - Claire L. Moore
- Department of Developmental, Molecular, and Chemical Biology and Tufts School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
50
|
Sun Y, Zhang Y, Aik WS, Yang XC, Marzluff WF, Walz T, Dominski Z, Tong L. Structure of an active human histone pre-mRNA 3'-end processing machinery. Science 2020; 367:700-703. [PMID: 32029631 DOI: 10.1126/science.aaz7758] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/31/2019] [Indexed: 01/10/2023]
Abstract
The 3'-end processing machinery for metazoan replication-dependent histone precursor messenger RNAs (pre-mRNAs) contains the U7 small nuclear ribonucleoprotein and shares the key cleavage module with the canonical cleavage and polyadenylation machinery. We reconstituted an active human histone pre-mRNA processing machinery using 13 recombinant proteins and two RNAs and determined its structure by cryo-electron microscopy. The overall structure is highly asymmetrical and resembles an amphora with one long handle. We captured the pre-mRNA in the active site of the endonuclease, the 73-kilodalton subunit of the cleavage and polyadenylation specificity factor, poised for cleavage. The endonuclease and the entire cleavage module undergo extensive rearrangements for activation, triggered through the recognition of the duplex between the authentic pre-mRNA and U7 small nuclear RNA (snRNA). Our study also has notable implications for understanding canonical and snRNA 3'-end processing.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yixiao Zhang
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY 10065, USA
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY 10065, USA.
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|