1
|
Harsh S, Liu HY, Bhaskar PK, Rushlow C, Bach EA. The pioneer factor Zelda induces male-to-female somatic sex reversal in adult tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645575. [PMID: 40236223 PMCID: PMC11996320 DOI: 10.1101/2025.03.26.645575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Somatic sex identity must be maintained throughout adulthood for tissue function. Adult somatic stem cells in the Drosophila testis (i.e., CySCs) lacking the transcription factor Chinmo are reprogrammed to their ovarian counterparts by induction of female-specific Tra F , but this is not mechanistically understood. Pioneer factors play central roles in direct reprogramming, and many upregulated genes in chinmo -/- CySCs contain binding sites for the pioneer factor Zelda (Zld). microRNAs repress zld mRNA in wild type CySCs, but they are downregulated after Chinmo loss, allowing for zld mRNA translation. Zld depletion from chinmo -/- CySCs suppresses feminization, and ectopic Zld induces Tra F and feminizes wild-type CySCs. qkr58E-2 and ecdysone receptor ( EcR ), direct Zld targets in the embryo, are female-biased in adult gonads and upregulated in chinmo -/- CySCs. The RNA-binding protein Qkr58E-2 produces Tra F , while EcR promotes female-biased gene expression. Ectopic Zld feminizes adult male adipose tissue, demonstrating that Zld can instruct female and override male identity in adult XY tissues. Highlights zld mRNA is repressed by microRNAs in XY somatic gonadal cells Zld is upregulated in and required for sex reversal of XY chinmo -/- cells Zld induces Qkr58E-2 and EcR, which cause Tra F and female-biased transcription Zld feminizes XY adipose cells by inducing Tra F and downregulating Chinmo.
Collapse
|
2
|
Sivkina AL, Iarovaia OV, Razin SV, Ulianov SV. The establishment of the 3D genome structure during zygotic genome activation. Ann N Y Acad Sci 2025; 1545:38-51. [PMID: 40029160 DOI: 10.1111/nyas.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
During zygotic genome activation (ZGA) and early development, hierarchical levels of chromatin structure undergo remarkable perturbations: changes in the nuclear-to-cytoplasmic ratio of various components; changes in chromatin accessibility; histone exchange; and the formation of 3D structures such as loops, topologically associated domains, and compartments. Here, we review the peculiarities, variability, and emergence of the chromatin structural features during ZGA in different organisms. Focusing on newly found structures called fountains, we describe the prerequisites for cohesin loading on DNA and possible mechanisms of genome organization in early development. Fountains resulting from asymmetric bidirectional cohesin extrusion spread from cohesin-loading points in a CTCF-independent manner. We discuss that fountains may not possess specific functions, unlike conventional chromatin structures, and could be found in other biological processes where cohesin loading occurs.
Collapse
Affiliation(s)
| | - Olga V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Zhou BR, Orris B, Guan R, Lian T, Bai Y. Structural insights into the recognition of native nucleosomes by pioneer transcription factors. Curr Opin Struct Biol 2025; 92:103024. [PMID: 40024204 DOI: 10.1016/j.sbi.2025.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
Pioneer transcription factors possess the unique ability to bind to nucleosomal DNA and locally open closed chromatin, enabling the binding of additional chromatin-associated factors. These factors are pivotal in determining cell fate. Structural studies of pioneer transcription factors interacting with nucleosomes have predominantly relied on model systems incorporating canonical DNA motifs within synthetic, strongly positioned DNA. However, recent advances have revealed structures of several pioneer transcription factors bound to their native nucleosome targets at gene enhancers involved in cell reprogramming. These findings offer fresh insights into how pioneer transcription factors recognize and disrupt compact chromatin. In this review, we summarize these recent discoveries and explore their broader implications.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Benjamin Orris
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA.
| |
Collapse
|
4
|
O'Haren T, Aoki T, Rieder LE. Zelda is dispensable for Drosophila melanogaster histone gene regulation. Mol Biol Cell 2025; 36:br3. [PMID: 39661467 PMCID: PMC11809315 DOI: 10.1091/mbc.e24-01-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
To ensure that the embryo can package exponentially increasing amounts of DNA, replication-dependent histones are some of the earliest transcribed genes from the zygotic genome. However, how the histone genes are identified is not known. The Drosophila melanogaster pioneer factor CLAMP regulates the embryonic histone genes and helps establish the histone locus body, a suite of factors that controls histone mRNA biosynthesis, but CLAMP is not unique to the histone genes. Zelda collaborates with CLAMP across the genome to regulate zygotic genome activation and target early activated genes. We hypothesized that Zelda helps identify histone genes for early embryonic expression. We found that Zelda targets the histone gene locus early during embryogenesis, prior to histone gene expression. However, depletion of zelda in the early embryo does not affect histone mRNA levels or prevent the recruitment of other factors. These results suggest the earliest events responsible for specifying the zygotic histone genes remain undiscovered.
Collapse
Affiliation(s)
- Tommy O'Haren
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | | |
Collapse
|
5
|
Amiri EE, Tenger-Trolander A, Li M, Thomas Julian A, Kasan K, Sanders SA, Blythe S, Schmidt-Ott U. Conservation of symmetry breaking at the level of chromatin accessibility between fly species with unrelated anterior determinants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632851. [PMID: 39868093 PMCID: PMC11760685 DOI: 10.1101/2025.01.13.632851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Establishing the anterior-posterior body axis is a fundamental process during embryogenesis, and the fruit fly, Drosophila melanogaster, provides one of the best-known case studies of this process. In Drosophila, localized mRNA of bicoid serves as anterior determinant (AD). Bicoid engages in a concentration-dependent competition with nucleosomes and initiates symmetry-breaking along the AP axis by promoting chromatin accessibility at the loci of transcription factor (TF) genes that are expressed in the anterior of the embryo. However, ADs of other fly species are unrelated and structurally distinct, and little is known about how they function. We addressed this question in the moth fly, Clogmia albipunctata, in which a maternally expressed transcript isoform of the pair-rule segmentation gene odd-paired is localized in the anterior egg and has been co-opted as AD. We provide a de novo assembly and annotation of the Clogmia genome and describe how knockdown of zelda and maternal odd-paired transcript affect chromatin accessibility and expression of TF-encoding loci. The results of these experiments suggest direct roles of Cal-Zld in opening and closing chromatin during nuclear cleavage cycles and show that Clogmia's maternal odd-paired activity promotes chromatin accessibility and anterior expression during the early phase of zygotic genome activation at Clogmia's homeobrain and sloppy-paired loci. We conclude that unrelated dipteran ADs initiate anterior-posterior axis-specification at the level of enhancer accessibility and that homeobrain and sloppy-paired homologs may serve a more widely conserved role in the initiation of anterior pattern formation given their early anterior expression and function in head development in other insects.
Collapse
Affiliation(s)
- Ezra E. Amiri
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Ayse Tenger-Trolander
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Muzi Li
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Alexander Thomas Julian
- Illinois Institute of Technology, Department of Biology, 3105 South Dearborn Street, Chicago, Illinois 60616, USA
| | - Koray Kasan
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Sheri A. Sanders
- Notre Dame University, 252 Galvin Life Science Center/Freimann Life Science Center, Notre Dame, Indiana 46556, USA
| | - Shelby Blythe
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, Illinois 60208, USA
- Northwestern University and The University of Chicago, National Institute for Theory and Mathematics in Biology, 875 North Michigan Avenue, Suite 3500, Chicago, Illinois 60611, USA
| | - Urs Schmidt-Ott
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
McGehee J, Stathopoulos A. Target gene responses differ when transcription factor levels are acutely decreased by nuclear export versus degradation. Development 2024; 151:dev202775. [PMID: 39397716 PMCID: PMC11574349 DOI: 10.1242/dev.202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Defining the time of action for morphogens requires tools capable of temporally controlled perturbations. To study how the transcription factor Dorsal affects patterning of the Drosophila embryonic dorsal-ventral axis, we used two light-inducible tags that trigger either nuclear export or degradation of Dorsal under blue light. Nuclear export of Dorsal leads to loss of the high-threshold, ventrally expressed target gene snail (sna), while the low-threshold, laterally expressed target gene short-gastrulation (sog) is retained. In contrast, degradation of Dorsal results in retention of sna, loss of sog, and lower nuclear levels compared to when Dorsal is exported from the nucleus. To understand why nuclear export causes loss of sna but degradation does not, we investigated Dorsal kinetics using photobleaching and found that it rapidly re-enters the nucleus even under blue-light conditions favoring export. The associated kinetics of Dorsal being rapidly imported and exported continuously are likely responsible for loss of sna but, alternatively, can support sog. Collectively, our results indicate that this dynamic patterning process is influenced by both Dorsal concentration and nuclear retention.
Collapse
Affiliation(s)
- James McGehee
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Zhao J, Lammers NC, Alamos S, Kim YJ, Martini G, Garcia HG. Optogenetic dissection of transcriptional repression in a multicellular organism. Nat Commun 2024; 15:9263. [PMID: 39461978 PMCID: PMC11513125 DOI: 10.1038/s41467-024-53539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Transcriptional control is fundamental to cellular function. However, despite knowing that transcription factors can repress or activate specific genes, how these functions are implemented at the molecular level has remained elusive, particularly in the endogenous context of developing animals. Here, we combine optogenetics, single-cell live-imaging, and mathematical modeling to study how a zinc-finger repressor, Knirps, induces switch-like transitions into long-lived quiescent states. Using optogenetics, we demonstrate that repression is rapidly reversible (~1 min) and memoryless. Furthermore, we show that the repressor acts by decreasing the frequency of transcriptional bursts in a manner consistent with an equilibrium binding model. Our results provide a quantitative framework for dissecting the in vivo biochemistry of eukaryotic transcriptional regulation.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Department of Physics, University of California, Berkeley, CA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicholas C Lammers
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Simon Alamos
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, LBNL, Berkeley, CA, USA
| | - Yang Joon Kim
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Gabriella Martini
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hernan G Garcia
- Department of Physics, University of California, Berkeley, CA, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
8
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
9
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
10
|
Sharma A, Dsilva GJ, Deshpande G, Galande S. Exploring the versatility of zygotic genome regulators: A comparative and functional analysis. Cell Rep 2024; 43:114680. [PMID: 39182225 DOI: 10.1016/j.celrep.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The activation of the zygotic genome constitutes an essential process during early embryogenesis that determines the overall progression of embryonic development. Zygotic genome activation (ZGA) is tightly regulated, involving a delicate interplay of activators and repressors, to precisely control the timing and spatial pattern of gene expression. While regulators of ZGA vary across species, they accomplish comparable outcomes. Recent studies have shed light on the unanticipated roles of ZGA components both during and after ZGA. Moreover, different ZGA regulators seem to have acquired unique functional modalities to manifest their regulatory potential. In this review, we explore these observations to assess whether these are simply anecdotal or contribute to a broader regulatory framework that employs a versatile means to arrive at the conserved outcome.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Greg Jude Dsilva
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Girish Deshpande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India.
| |
Collapse
|
11
|
Grand RS, Pregnolato M, Baumgartner L, Hoerner L, Burger L, Schübeler D. Genome access is transcription factor-specific and defined by nucleosome position. Mol Cell 2024; 84:3455-3468.e6. [PMID: 39208807 PMCID: PMC11420395 DOI: 10.1016/j.molcel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Mammalian gene expression is controlled by transcription factors (TFs) that engage sequence motifs in a chromatinized genome, where nucleosomes can restrict DNA access. Yet, how nucleosomes affect individual TFs remains unclear. Here, we measure the ability of over one hundred TF motifs to recruit TFs in a defined chromosomal locus in mouse embryonic stem cells. This identifies a set sufficient to enable the binding of TFs with diverse tissue specificities, functions, and DNA-binding domains. These chromatin-competent factors are further classified when challenged to engage motifs within a highly phased nucleosome. The pluripotency factors OCT4-SOX2 preferentially engage non-nucleosomal and entry-exit motifs, but not nucleosome-internal sites, a preference that also guides binding genome wide. By contrast, factors such as BANP, REST, or CTCF engage throughout, causing nucleosomal displacement. This supports that TFs vary widely in their sensitivity to nucleosomes and that genome access is TF specific and influenced by nucleosome position in the cell.
Collapse
Affiliation(s)
- Ralph Stefan Grand
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marco Pregnolato
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland
| | - Lisa Baumgartner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
12
|
Xu Y, Wang B, Bush I, Saunders HAJ, Wildonger J, Han C. In vivo optogenetic manipulations of endogenous proteins reveal spatiotemporal roles of microtubule and kinesin in dendrite patterning. SCIENCE ADVANCES 2024; 10:eadp0138. [PMID: 39213355 PMCID: PMC11364106 DOI: 10.1126/sciadv.adp0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
During animal development, the spatiotemporal properties of molecular events largely determine the biological outcomes. Conventional gene analysis methods lack the spatiotemporal resolution for precise dissection of developmental mechanisms. Although optogenetic tools exist for manipulating designer proteins in cultured cells, few have been successfully applied to endogenous proteins in live animals. Here, we report OptoTrap, a light-inducible clustering system for manipulating endogenous proteins of diverse sizes, subcellular locations, and functions in Drosophila. This system turns on fast, is reversible in minutes or hours, and contains variants optimized for neurons and epithelial cells. By using OptoTrap to disrupt microtubules and inhibit kinesin-1 in neurons, we show that microtubules support the growth of highly dynamic dendrites and that kinesin-1 is required for patterning of low- and high-order dendritic branches in differential spatiotemporal domains. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds promise for studying developmental mechanisms in a wide range of cell types and developmental stages.
Collapse
Affiliation(s)
- Yineng Xu
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Inle Bush
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Harriet AJ Saunders
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA
- Pediatrics Department and Biological Sciences Division, Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
14
|
Stoeber S, Godin H, Xu C, Bai L. Pioneer factors: nature or nurture? Crit Rev Biochem Mol Biol 2024; 59:139-153. [PMID: 38778580 PMCID: PMC11444900 DOI: 10.1080/10409238.2024.2355885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Chromatin is densely packed with nucleosomes, which limits the accessibility of many chromatin-associated proteins. Pioneer factors (PFs) are usually viewed as a special group of sequence-specific transcription factors (TFs) that can recognize nucleosome-embedded motifs, invade compact chromatin, and generate open chromatin regions. Through this process, PFs initiate a cascade of events that play key roles in gene regulation and cell differentiation. A current debate in the field is if PFs belong to a unique subset of TFs with intrinsic "pioneering activity", or if all TFs have the potential to function as PFs within certain cellular contexts. There are also different views regarding the key feature(s) that define pioneering activity. In this review, we present evidence from the literature related to these alternative views and discuss how to potentially reconcile them. It is possible that both intrinsic properties, like tight nucleosome binding and structural compatibility, and cellular conditions, like concentration and co-factor availability, are important for PF function.
Collapse
Affiliation(s)
- Shane Stoeber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Holly Godin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Bose A, Schuster K, Kodali C, Sonam S, Smith-Bolton R. The pioneer transcription factor Zelda facilitates the exit from regeneration and restoration of patterning in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596672. [PMID: 38854062 PMCID: PMC11160785 DOI: 10.1101/2024.05.30.596672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
For a damaged tissue to regenerate, the injured site must repair the wound, proliferate, and restore the correct patterning and cell types. We found that Zelda, a pioneer transcription factor largely known for its role in embryonic zygotic genome activation, is dispensable for normal wing development but crucial for wing disc patterning during regeneration. Impairing Zelda function during disc regeneration resulted in adult wings with a plethora of cell fate errors, affecting the veins, margins, and posterior compartment identity. Using CUT&RUN, we identified and validated targets of Zelda including the cell fate genes cut, Delta and achaete, which failed to return to their normal expression patterns upon loss of Zelda. In addition, Zelda controls expression of factors previously established to preserve cell fate during regeneration like taranis and osa, which stabilizes engrailed expression during regeneration, thereby preserving posterior identity. Finally, Zelda ensures proper expression of the integrins encoded by multiple edematous wings and myospheroid during regeneration to prevent blisters in the resuting adult wing. Thus, Zelda is crucial for maintaining cell fate and structural architecture of the regenerating tissue.
Collapse
Affiliation(s)
- Anish Bose
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Keaton Schuster
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chandril Kodali
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Surabhi Sonam
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel Smith-Bolton
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
McGehee J, Stathopoulos A. Target gene responses differ when transcription factor levels are acutely decreased by nuclear export versus degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595009. [PMID: 38826476 PMCID: PMC11142056 DOI: 10.1101/2024.05.20.595009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Defining the time of action for morphogens requires tools capable of temporally controlled perturbations. To study how the transcription factor Dorsal affects patterning of the Drosophila embryonic dorsal-ventral axis, we used two light-inducible tags that result in either nuclear export or degradation of Dorsal when exposed to blue light. Nuclear export of Dorsal results in loss of expression for the high threshold, ventrally-expressed target gene snail (sna) but retention of the low threshold, laterally-expressed target gene short-gastrulation (sog). In contrast, degradation of Dorsal results in retention of sna, loss of sog, and lower nuclear levels than when Dorsal is exported from the nucleus. To elucidate how nuclear export results in loss of sna but degradation does not, we investigated Dorsal kinetics using photobleaching and found it reenters the nucleus even under conditions of blue-light when export is favored. The associated kinetics of being imported and exported continuously are likely responsible for loss of sna but, alternatively, can support sog. Collectively, our results show that this dynamic patterning process is influenced by both Dorsal concentration and nuclear retention.
Collapse
Affiliation(s)
- James McGehee
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125
| |
Collapse
|
17
|
Gibson TJ, Larson ED, Harrison MM. Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function. Nat Struct Mol Biol 2024; 31:548-558. [PMID: 38365978 PMCID: PMC11261375 DOI: 10.1038/s41594-024-01231-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type-specific binding and activity. The mechanisms governing pioneer factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.
Collapse
Affiliation(s)
- Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Fenelon KD, Krause J, Koromila T. Opticool: Cutting-edge transgenic optical tools. PLoS Genet 2024; 20:e1011208. [PMID: 38517915 PMCID: PMC10959397 DOI: 10.1371/journal.pgen.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Julia Krause
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Theodora Koromila
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
19
|
O'Haren T, Aoki T, Rieder LE. Zelda is dispensable for Drosophila melanogaster histone gene regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572383. [PMID: 38187550 PMCID: PMC10769256 DOI: 10.1101/2023.12.19.572383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To ensure that the embryo can package exponentially increasing amounts of DNA, replication-dependent histones are some of the earliest transcribed genes from the zygotic genome. However, how the histone genes are identified is not known. The pioneer factors Zelda and CLAMP collaborate at a subset of genes to regulate zygotic genome activation in Drosophila melanogaster and target early activated genes to induce transcription. CLAMP also regulates the embryonic histone genes and helps establish the histone locus body, a suite of factors that controls histone mRNA biosynthesis. The relationship between Zelda and CLAMP led us to hypothesize that Zelda helps identify histone genes for early embryonic expression. We found that Zelda targets the histone locus early during embryogenesis, prior to histone gene expression. However, depletion of zelda in the early embryo does not affect histone mRNA levels or histone locus body formation. While surprising, these results concur with other investigations into Zelda's role in the early embryo, suggesting the earliest factors responsible for specifying the zygotic histone genes remain undiscovered.
Collapse
Affiliation(s)
- Tommy O'Haren
- Emory University Department of Biology, Atlanta, GA 30322, USA
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540 USA
| | - Leila E Rieder
- Emory University Department of Biology, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Bishop TR, Onal P, Xu Z, Zheng M, Gunasinghe H, Nien CY, Small S, Datta RR. Multi-level regulation of even-skipped stripes by the ubiquitous factor Zelda. Development 2023; 150:dev201860. [PMID: 37934130 PMCID: PMC10730019 DOI: 10.1242/dev.201860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
The zinc-finger protein Zelda (Zld) is a key activator of zygotic transcription in early Drosophila embryos. Here, we study Zld-dependent regulation of the seven-striped pattern of the pair-rule gene even-skipped (eve). Individual stripes are regulated by discrete enhancers that respond to broadly distributed activators; stripe boundaries are formed by localized repressors encoded by the gap genes. The strongest effects of Zld are on stripes 2, 3 and 7, which are regulated by two enhancers in a 3.8 kb genomic fragment that includes the eve basal promoter. We show that Zld facilitates binding of the activator Bicoid and the gap repressors to this fragment, consistent with its proposed role as a pioneer protein. To test whether the effects of Zld are direct, we mutated all canonical Zld sites in the 3.8 kb fragment, which reduced expression but failed to phenocopy the abolishment of stripes caused by removing Zld in trans. We show that Zld also indirectly regulates the eve stripes by establishing specific gap gene expression boundaries, which provides the embryonic spacing required for proper stripe activation.
Collapse
Affiliation(s)
- Timothy R. Bishop
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Pinar Onal
- Department of Molecular Biology and Genetics, Ihsan Dogramaci Bilkent University, Universiteler Mahallesi, 06800 Ankara, Turkey
| | - Zhe Xu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Michael Zheng
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Himari Gunasinghe
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Stephen Small
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Rhea R. Datta
- Department of Biology, Hamilton College, 198 College Hill Rd., Clinton, NY 13323, USA
| |
Collapse
|
21
|
Brennan KJ, Weilert M, Krueger S, Pampari A, Liu HY, Yang AWH, Morrison JA, Hughes TR, Rushlow CA, Kundaje A, Zeitlinger J. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev Cell 2023; 58:1898-1916.e9. [PMID: 37557175 PMCID: PMC10592203 DOI: 10.1016/j.devcel.2023.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.
Collapse
Affiliation(s)
- Kaelan J Brennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA
| | - Hsiao-Yun Liu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Ally W H Yang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA; Department of Genetics, Stanford University, Palo Alto, CA 94305, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
22
|
Harrison MM, Marsh AJ, Rushlow CA. Setting the stage for development: the maternal-to-zygotic transition in Drosophila. Genetics 2023; 225:iyad142. [PMID: 37616526 PMCID: PMC10550319 DOI: 10.1093/genetics/iyad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
The zygote has a daunting task ahead of itself; it must develop from a single cell (fertilized egg) into a fully functioning adult with a multitude of different cell types. In the beginning, the zygote has help from its mother, in the form of gene products deposited into the egg, but eventually, it must rely on its own resources to proceed through development. The transfer of developmental control from the mother to the embryo is called the maternal-to-zygotic transition (MZT). All animals undergo this transition, which is defined by two main processes-the degradation of maternal RNAs and the synthesis of new RNAs from the zygote's own genome. Here, we review the regulation of the MZT in Drosophila, but given the broad conservation of this essential process, much of the regulation is shared among metazoans.
Collapse
Affiliation(s)
- Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Audrey J Marsh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | |
Collapse
|
23
|
Lerner J, Katznelson A, Zhang J, Zaret KS. Different chromatin-scanning modes lead to targeting of compacted chromatin by pioneer factors FOXA1 and SOX2. Cell Rep 2023; 42:112748. [PMID: 37405916 PMCID: PMC10529229 DOI: 10.1016/j.celrep.2023.112748] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Pioneer transcription factors interact with nucleosomes to scan silent, compact chromatin, enabling cooperative events that modulate gene activity. While at a subset of sites pioneer factors access chromatin by assisted loading with other transcription factors, the nucleosome-binding properties of pioneer factors enable them to initiate zygotic genome activation, embryonic development, and cellular reprogramming. To better understand nucleosome targeting in vivo, we assess whether pioneer factors FoxA1 and Sox2 target stable or unstable nucleosomes and find that they target DNase-resistant, stable nucleosomes, whereas HNF4A, a non-nucleosome binding factor, targets open, DNase-sensitive chromatin. Despite FOXA1 and SOX2 targeting similar proportions of DNase-resistant chromatin, using single-molecule tracking, we find that FOXA1 uses lower nucleoplasmic diffusion and longer residence times while SOX2 uses higher nucleoplasmic diffusion and shorter residence times to scan compact chromatin, while HNF4 scans compact chromatin much less efficiently. Thus, pioneer factors target compact chromatin through distinct processes.
Collapse
Affiliation(s)
- Jonathan Lerner
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Andrew Katznelson
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Jingchao Zhang
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
24
|
McNamara HM, Ramm B, Toettcher JE. Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems. Semin Cell Dev Biol 2023; 141:33-42. [PMID: 35484026 PMCID: PMC10332110 DOI: 10.1016/j.semcdb.2022.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Technological advances have driven many recent advances in developmental biology. Light sheet imaging can reveal single-cell dynamics in living three-dimensional tissues, whereas single-cell genomic methods open the door to a complete catalogue of cell types and gene expression states. An equally powerful but complementary set of approaches are also becoming available to define development processes from the bottom up. These synthetic approaches aim to reconstruct the minimal developmental patterns, signaling processes, and gene networks that produce the basic set of developmental operations: spatial polarization, morphogen interpretation, tissue movement, and cellular memory. In this review we discuss recent approaches at the intersection of synthetic biology and development, including synthetic circuits to deliver and record signaling stimuli and synthetic reconstitution of pattern formation on multicellular scales.
Collapse
Affiliation(s)
- Harold M McNamara
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA; Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Beatrice Ramm
- Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
25
|
Qian W, Good MC. Peeking under the hood of early embryogenesis: Using tools and synthetic biology to understand native control systems and sculpt tissues. Semin Cell Dev Biol 2023; 141:43-49. [PMID: 35525819 PMCID: PMC9633583 DOI: 10.1016/j.semcdb.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Early embryogenesis requires rapid division of pluripotent blastomeres, regulated genome activation, precise spatiotemporal signaling to pattern cell fate, and morphogenesis to shape primitive tissue architectures. The complexity of this process has inspired researchers to move beyond simple genetic perturbation into engineered devices and synthetic biology tools to permit temporal and spatial manipulation of the control systems guiding development. By precise alteration of embryo organization, it is now possible to advance beyond basic analytical strategies and directly test the sufficiency of models for developmental regulation. Separately, advances in micropatterning and embryoid culture have facilitated the bottom-up construction of complex embryo tissues allowing ex vivo systems to recapitulate even later stages of development. Embryos fertilized and grown ex vivo offer an excellent opportunity to exogenously perturb fundamental pathways governing embryogenesis. Here we review the technologies developed to thermally modulate the embryo cell cycle, and optically regulate morphogen and signaling pathways in space and time, specifically in the blastula embryo. Additionally, we highlight recent advances in cell patterning in two and three dimensions that have helped reveal the self-organizing properties and gene regulatory networks guiding early embryo organization.
Collapse
Affiliation(s)
- Wenchao Qian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C. Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA,Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Lead Contact,Correspondence: (M.C.G), Address: 421 Curie Blvd, 1151 Biomedical Research Building, Philadelphia PA 19104
| |
Collapse
|
26
|
Riemondy K, Henriksen JC, Rissland OS. Intron dynamics reveal principles of gene regulation during the maternal-to-zygotic transition. RNA (NEW YORK, N.Y.) 2023; 29:596-608. [PMID: 36764816 PMCID: PMC10158999 DOI: 10.1261/rna.079168.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/29/2023] [Indexed: 05/06/2023]
Abstract
The maternal-to-zygotic transition (MZT) is a conserved embryonic process in animals where developmental control shifts from the maternal to zygotic genome. A key step in this transition is zygotic transcription, and deciphering the MZT requires classifying newly transcribed genes. However, due to current technological limitations, this starting point remains a challenge for studying many species. Here, we present an alternative approach that characterizes transcriptome changes based solely on RNA-seq data. By combining intron-mapping reads and transcript-level quantification, we characterized transcriptome dynamics during the Drosophila melanogaster MZT. Our approach provides an accessible platform to investigate transcriptome dynamics that can be applied to the MZT in nonmodel organisms. In addition to classifying zygotically transcribed genes, our analysis revealed that over 300 genes express different maternal and zygotic transcript isoforms due to alternative splicing, polyadenylation, and promoter usage. The vast majority of these zygotic isoforms have the potential to be subject to different regulatory control, and over two-thirds encode different proteins. Thus, our analysis reveals an additional layer of regulation during the MZT, where new zygotic transcripts can generate additional proteome diversity.
Collapse
Affiliation(s)
- Kent Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jesslyn C Henriksen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Olivia S Rissland
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
27
|
Ciabrelli F, Rabbani L, Cardamone F, Zenk F, Löser E, Schächtle MA, Mazina M, Loubiere V, Iovino N. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. SCIENCE ADVANCES 2023; 9:eadf2687. [PMID: 37083536 PMCID: PMC10121174 DOI: 10.1126/sciadv.adf2687] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Zygotic genome activation (ZGA) is a crucial step of embryonic development. So far, little is known about the role of chromatin factors during this process. Here, we used an in vivo RNA interference reverse genetic screen to identify chromatin factors necessary for embryonic development in Drosophila melanogaster. Our screen reveals that histone acetyltransferases (HATs) and histone deacetylases are crucial ZGA regulators. We demonstrate that Nejire (CBP/EP300 ortholog) is essential for the acetylation of histone H3 lysine-18 and lysine-27, whereas Gcn5 (GCN5/PCAF ortholog) for lysine-9 of H3 at ZGA, with these marks being enriched at all actively transcribed genes. Nonetheless, these HATs activate distinct sets of genes. Unexpectedly, individual catalytic dead mutants of either Nejire or Gcn5 can activate zygotic transcription (ZGA) and transactivate a reporter gene in vitro. Together, our data identify Nejire and Gcn5 as key regulators of ZGA.
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Leily Rabbani
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Francesco Cardamone
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- University of Freiburg, Faculty of Biology, Freiburg im Breisgau, Germany
| | - Fides Zenk
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Eva Löser
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Melanie A. Schächtle
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Marina Mazina
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Nicola Iovino
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
28
|
Harry ND, Zakas C. Maternal patterns of inheritance alter transcript expression in eggs. BMC Genomics 2023; 24:191. [PMID: 37038099 PMCID: PMC10084599 DOI: 10.1186/s12864-023-09291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Modifications to early development can lead to evolutionary diversification. The early stages of development are under maternal control, as mothers produce eggs loaded with nutrients, proteins and mRNAs that direct early embryogenesis. Maternally provided mRNAs are the only expressed genes in initial stages of development and are tightly regulated. Differences in maternal mRNA provisioning could lead to phenotypic changes in embryogenesis and ultimately evolutionary changes in development. However, the extent that maternal mRNA expression in eggs can vary is unknown for most developmental models. Here, we use a species with dimorphic development- where females make eggs and larvae of different sizes and life-history modes-to investigate the extent of variation in maternal mRNA provisioning to the egg. RESULTS We find that there is significant variation in gene expression across eggs of different development modes, and that there are both qualitative and quantitative differences in mRNA expression. We separate parental effects from allelic effects, and find that both mechanisms contribute to mRNA expression differences. We also find that offspring of intraspecific crosses differentially provision their eggs based on the parental cross direction (a parental effect), which has not been previously demonstrated in reproductive traits like oogenesis. CONCLUSION We find that maternally controlled initiation of development is functionally distinct between eggs of different sizes and maternal genotypes. Both allele-specific effects and parent-of-origin effects contribute to gene expression differences in eggs. The latter indicates an intergenerational effect where a parent's genotype can affect gene expression in an egg made by the next generation.
Collapse
Affiliation(s)
- Nathan D Harry
- Department of Biological Sciences, North Carolina State University, 112 Derieux Place, Raleigh, NC, 27607, USA
| | - Christina Zakas
- Department of Biological Sciences, North Carolina State University, 112 Derieux Place, Raleigh, NC, 27607, USA.
| |
Collapse
|
29
|
Gibson TJ, Harrison MM. Protein-intrinsic properties and context-dependent effects regulate pioneer-factor binding and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533281. [PMID: 37066406 PMCID: PMC10103944 DOI: 10.1101/2023.03.18.533281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type specific binding and activity. The mechanisms governing pioneer-factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head, and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin, and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.
Collapse
Affiliation(s)
- Tyler J. Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| |
Collapse
|
30
|
Alamos S, Reimer A, Westrum C, Turner MA, Talledo P, Zhao J, Luu E, Garcia HG. Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient. Cell Syst 2023; 14:220-236.e3. [PMID: 36696901 PMCID: PMC10125799 DOI: 10.1016/j.cels.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
How enhancers interpret morphogen gradients to generate gene expression patterns is a central question in developmental biology. Recent studies have proposed that enhancers can dictate whether, when, and at what rate promoters engage in transcription, but the complexity of endogenous enhancers calls for theoretical models with too many free parameters to quantitatively dissect these regulatory strategies. To overcome this limitation, we established a minimal promoter-proximal synthetic enhancer in embryos of Drosophila melanogaster. Here, a gradient of the Dorsal activator is read by a single Dorsal DNA binding site. Using live imaging to quantify transcriptional activity, we found that a single binding site can regulate whether promoters engage in transcription in a concentration-dependent manner. By modulating the binding-site affinity, we determined that a gene's decision to transcribe and its transcriptional onset time can be explained by a simple model where the promoter traverses multiple kinetic barriers before transcription can ensue.
Collapse
Affiliation(s)
- Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Armando Reimer
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Clay Westrum
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Meghan A Turner
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Paul Talledo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jiaxi Zhao
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Emma Luu
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA; Department of Physics, University of California at Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
31
|
Zaret KS. Two ways to skin a new cell fate. Dev Cell 2023; 58:1-2. [PMID: 36626868 PMCID: PMC9979843 DOI: 10.1016/j.devcel.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To induce cell fate changes, do transcription factors engage open domains of chromatin or elicit chromatin opening in a pioneering fashion? In this issue of Developmental Cell, Delás et al. show that the same sonic hedgehog (Shh) inducing signal can yield different neural tube fates by either modality.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Colonnetta MM, Schedl P, Deshpande G. Germline/soma distinction in Drosophila embryos requires regulators of zygotic genome activation. eLife 2023; 12:78188. [PMID: 36598809 PMCID: PMC9812407 DOI: 10.7554/elife.78188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
In Drosophila melanogaster embryos, somatic versus germline identity is the first cell fate decision. Zygotic genome activation (ZGA) orchestrates regionalized gene expression, imparting specific identity on somatic cells. ZGA begins with a minor wave that commences at nuclear cycle (NC)8 under the guidance of chromatin accessibility factors (Zelda, CLAMP, GAF), followed by the major wave during NC14. By contrast, primordial germ cell (PGC) specification requires maternally deposited and posteriorly anchored germline determinants. This is accomplished by a centrosome coordinated release and sequestration of germ plasm during the precocious cellularization of PGCs in NC10. Here, we report a novel requirement for Zelda and CLAMP during the establishment of the germline/soma distinction. When their activity is compromised, PGC determinants are not properly sequestered, and specification is disrupted. Conversely, the spreading of PGC determinants from the posterior pole adversely influences transcription in the neighboring somatic nuclei. These reciprocal aberrations can be correlated with defects in centrosome duplication/separation that are known to induce inappropriate transmission of the germ plasm. Interestingly, consistent with the ability of bone morphogenetic protein (BMP) signaling to influence specification of embryonic PGCs, reduction in the transcript levels of a BMP family ligand, decapentaplegic (dpp), is exacerbated at the posterior pole.
Collapse
Affiliation(s)
- Megan M Colonnetta
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Girish Deshpande
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
33
|
Abstract
The control of gene expression in eukaryotes relies on how transcription factors and RNA polymerases manipulate the structure of chromatin. These interactions are especially important in development as gene expression programs change. Chromatin generally limits the accessibility of DNA, and thus exposing sequences at regulatory elements is critical for gene expression. However, it is challenging to understand how transcription factors manipulate chromatin structure and the sequence of regulatory events. The Drosophila embryo has provided a powerful setting to directly observe the establishment and elaboration of chromatin features and experimentally test the causality of transcriptional events that are shared among many metazoans. The large embryo is tractable by live imaging, and a variety of well-developed tools allow the manipulation of factors during early development. The early embryo develops as a syncytium with rapid nuclear divisions and no zygotic transcription, with largely featureless chromatin. Thus, studies in this system have revealed the progression of genome activation triggered by pioneer factors that initiate DNA exposure at regulatory elements and the establishment of chromatin domains, including heterochromatin, the nucleolus, and nuclear bodies. The de novo emergence of nuclear structures in the early embryo reveals features of chromatin dynamics that are likely to be central to transcriptional regulation in all cells.
Collapse
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., P.O. Box 19024, Seattle, WA 98109-1024, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., P.O. Box 19024, Seattle, WA 98109-1024, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
34
|
Clark E, Battistara M, Benton MA. A timer gene network is spatially regulated by the terminal system in the Drosophila embryo. eLife 2022; 11:e78902. [PMID: 36524728 PMCID: PMC10065802 DOI: 10.7554/elife.78902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
In insect embryos, anteroposterior patterning is coordinated by the sequential expression of the 'timer' genes caudal, Dichaete, and odd-paired, whose expression dynamics correlate with the mode of segmentation. In Drosophila, the timer genes are expressed broadly across much of the blastoderm, which segments simultaneously, but their expression is delayed in a small 'tail' region, just anterior to the hindgut, which segments during germband extension. Specification of the tail and the hindgut depends on the terminal gap gene tailless, but beyond this the regulation of the timer genes is poorly understood. We used a combination of multiplexed imaging, mutant analysis, and gene network modelling to resolve the regulation of the timer genes, identifying 11 new regulatory interactions and clarifying the mechanism of posterior terminal patterning. We propose that a dynamic Tailless expression gradient modulates the intrinsic dynamics of a timer gene cross-regulatory module, delineating the tail region and delaying its developmental maturation.
Collapse
Affiliation(s)
- Erik Clark
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Margherita Battistara
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Matthew A Benton
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Developmental Biology Unit, EMBLHeidelbergGermany
| |
Collapse
|
35
|
The influence of high-order chromatin state in the regulation of stem cell fate. Biochem Soc Trans 2022; 50:1809-1822. [DOI: 10.1042/bst20220763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genomic DNA is hierarchically compacted by histones into chromatin, which is initially assembled by the nucleosome and further folded into orderly and flexible structures that include chromatin fiber, chromatin looping, topologically associated domains (TADs), chromosome compartments, and chromosome territories. These distinct structures and motifs build the three-dimensional (3D) genome architecture, which precisely controls spatial and temporal gene expression in the nucleus. Given that each type of cell is characterized by its own unique gene expression profile, the state of high-order chromatin plays an essential role in the cell fate decision. Accumulating evidence suggests that the plasticity of high-order chromatin is closely associated with stem cell fate. In this review, we summarize the biological roles of the state of high-order chromatin in embryogenesis, stem cell differentiation, the maintenance of stem cell identity, and somatic cell reprogramming. In addition, we highlight the roles of epigenetic factors and pioneer transcription factors (TFs) involved in regulating the state of high-order chromatin during the determination of stem cell fate and discuss how H3K9me3-heterochromatin restricts stem cell fate. In summary, we review the most recent progress in research on the regulatory functions of high-order chromatin dynamics in the determination and maintenance of stem cell fate.
Collapse
|
36
|
Fan H, Barnes C, Hwang H, Zhang K, Yang J. Precise modulation of embryonic development through optogenetics. Genesis 2022; 60:e23505. [PMID: 36478118 PMCID: PMC9847014 DOI: 10.1002/dvg.23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed enormous progress in optogenetics, which uses photo-sensitive proteins to control signal transduction in live cells and animals. The ever-increasing amount of optogenetic tools, however, could overwhelm the selection of appropriate optogenetic strategies. In this work, we summarize recent progress in this emerging field and highlight the application of opsin-free optogenetics in studying embryonic development, focusing on new insights gained into optical induction of morphogenesis, cell polarity, cell fate determination, tissue differentiation, neuronal regeneration, synaptic plasticity, and removal of cells during development.
Collapse
Affiliation(s)
- Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin Barnes
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| |
Collapse
|
37
|
EBF1 is continuously required for stabilizing local chromatin accessibility in pro-B cells. Proc Natl Acad Sci U S A 2022; 119:e2210595119. [PMID: 36409886 PMCID: PMC9860308 DOI: 10.1073/pnas.2210595119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of de novo chromatin accessibility in lymphoid progenitors requires the "pioneering" function of transcription factor (TF) early B cell factor 1 (EBF1), which binds to naïve chromatin and induces accessibility by recruiting the BRG1 chromatin remodeler subunit. However, it remains unclear whether the function of EBF1 is continuously required for stabilizing local chromatin accessibility. To this end, we replaced EBF1 by EBF1-FKBPF36V in pro-B cells, allowing the rapid degradation by adding the degradation TAG13 (dTAG13) dimerizer. EBF1 degradation results in a loss of genome-wide EBF1 occupancy and EBF1-targeted BRG1 binding. Chromatin accessibility was rapidly diminished at EBF1-binding sites with a preference for sites whose occupancy requires the pioneering activity of the C-terminal domain of EBF1. Diminished chromatin accessibility correlated with altered gene expression. Thus, continuous activity of EBF1 is required for the stable maintenance of the transcriptional and epigenetic state of pro-B cells.
Collapse
|
38
|
Bauer M. How does an organism extract relevant information from transcription factor concentrations? Biochem Soc Trans 2022; 50:1365-1376. [PMID: 36111776 PMCID: PMC9704516 DOI: 10.1042/bst20220333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 09/10/2024]
Abstract
How does an organism regulate its genes? The involved regulation typically occurs in terms of a signal processing chain: an externally applied stimulus or a maternally supplied transcription factor leads to the expression of some downstream genes, which, in turn, are transcription factors for further genes. Especially during development, these transcription factors are frequently expressed in amounts where noise is still important; yet, the signals that they provide must not be lost in the noise. Thus, the organism needs to extract exactly relevant information in the signal. New experimental approaches involving single-molecule measurements at high temporal precision as well as increased precision in manipulations directly on the genome are allowing us to tackle this question anew. These new experimental advances mean that also from the theoretical side, theoretical advances should be possible. In this review, I will describe, specifically on the example of fly embryo gene regulation, how theoretical approaches, especially from inference and information theory, can help in understanding gene regulation. To do so, I will first review some more traditional theoretical models for gene regulation, followed by a brief discussion of information-theoretical approaches and when they can be applied. I will then introduce early fly development as an exemplary system where such information-theoretical approaches have traditionally been applied and can be applied; I will specifically focus on how one such method, namely the information bottleneck approach, has recently been used to infer structural features of enhancer architecture.
Collapse
Affiliation(s)
- Marianne Bauer
- Bionanoscience Department, Delft University of Technology, van der Maasweg 9, 2629 Delft, The Netherlands
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, U.S.A
- Lewis–Sigler Institute for Integrative Genomics Princeton University, Princeton, NJ 08544, U.S.A
| |
Collapse
|
39
|
Cho CY, Kemp JP, Duronio RJ, O'Farrell PH. Coordinating transcription and replication to mitigate their conflicts in early Drosophila embryos. Cell Rep 2022; 41:111507. [PMID: 36261005 PMCID: PMC9667882 DOI: 10.1016/j.celrep.2022.111507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Collisions between transcribing RNA polymerases and DNA replication forks are disruptive. The threat of collisions is particularly acute during the rapid early embryonic cell cycles of Drosophila when S phase occupies the entirety of interphase. We hypothesize that collision-avoidance mechanisms safeguard this early transcription. Real-time imaging of endogenously tagged RNA polymerase II (RNAPII) and a reporter for nascent transcripts in unperturbed embryos shows clustering of RNAPII at around 2 min after mitotic exit, followed by progressive dispersal as associated nascent transcripts accumulate later in interphase. Abrupt inhibition of various steps in DNA replication, including origin licensing, origin firing, and polymerization, suppresses post-mitotic RNAPII clustering and transcription in nuclear cycles. We propose that replication dependency defers the onset of transcription so that RNAPII transcribes behind advancing replication forks. The resulting orderly progression can explain how early embryos circumvent transcription-replication conflicts to express essential developmental genes.
Collapse
Affiliation(s)
- Chun-Yi Cho
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
40
|
Larson ED, Komori H, Fitzpatrick ZA, Krabbenhoft SD, Lee CY, Harrison M. Premature translation of the Drosophila zygotic genome activator Zelda is not sufficient to precociously activate gene expression. G3 (BETHESDA, MD.) 2022; 12:6649735. [PMID: 35876878 PMCID: PMC9434156 DOI: 10.1093/g3journal/jkac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/15/2022] [Indexed: 05/22/2023]
Abstract
Following fertilization, the unified germ cells rapidly transition to a totipotent embryo. Maternally deposited mRNAs encode the proteins necessary for this reprogramming as the zygotic genome remains transcriptionally quiescent during the initial stages of development. The transcription factors required to activate the zygotic genome are among these maternally deposited mRNAs and are robustly translated following fertilization. In Drosophila, the mRNA encoding Zelda, the major activator of the zygotic genome, is not translated until 1 h after fertilization. Here we demonstrate that zelda translation is repressed in the early embryo by the TRIM-NHL protein Brain tumor (BRAT). BRAT also regulates Zelda levels in the larval neuroblast lineage. In the embryo, BRAT-mediated translational repression is regulated by the Pan Gu kinase, which is triggered by egg activation. The Pan Gu kinase phosphorylates translational regulators, suggesting that Pan Gu kinase activity alleviates translational repression of zelda by BRAT and coupling translation of zelda with that of other regulators of early embryonic development. Using the premature translation of zelda in embryos lacking BRAT activity, we showed that early translation of a zygotic genome activator is not sufficient to drive precocious gene expression. Instead, Zelda-target genes showed increased expression at the time they are normally activated. We propose that transition through early development requires the integration of multiple processes, including the slowing of the nuclear division cycle and activation of the zygotic genome. These processes are coordinately controlled by Pan Gu kinase-mediated regulation of translation.
Collapse
Affiliation(s)
- Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hideyuki Komori
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zoe A Fitzpatrick
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel D Krabbenhoft
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cheng-Yu Lee
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa Harrison
- Corresponding author: Department of Biomolecular Chemistry, University of Wisconsin-Madison, 440 Henry Mall, 6204B Biochemical Sciences Building, Madison, WI 53706, USA.
| |
Collapse
|
41
|
Sierra-Pagan JE, Garry DJ. The regulatory role of pioneer factors during cardiovascular lineage specification – A mini review. Front Cardiovasc Med 2022; 9:972591. [PMID: 36082116 PMCID: PMC9445115 DOI: 10.3389/fcvm.2022.972591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.
Collapse
Affiliation(s)
- Javier E. Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Daniel J. Garry
| |
Collapse
|
42
|
Isbel L, Grand RS, Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022; 23:728-740. [PMID: 35831531 DOI: 10.1038/s41576-022-00512-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Vuoristo S, Bhagat S, Hydén-Granskog C, Yoshihara M, Gawriyski L, Jouhilahti EM, Ranga V, Tamirat M, Huhtala M, Kirjanov I, Nykänen S, Krjutškov K, Damdimopoulos A, Weltner J, Hashimoto K, Recher G, Ezer S, Paluoja P, Paloviita P, Takegami Y, Kanemaru A, Lundin K, Airenne TT, Otonkoski T, Tapanainen JS, Kawaji H, Murakawa Y, Bürglin TR, Varjosalo M, Johnson MS, Tuuri T, Katayama S, Kere J. DUX4 is a multifunctional factor priming human embryonic genome activation. iScience 2022; 25:104137. [PMID: 35402882 PMCID: PMC8990217 DOI: 10.1016/j.isci.2022.104137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/04/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Double homeobox 4 (DUX4) is expressed at the early pre-implantation stage in human embryos. Here we show that induced human DUX4 expression substantially alters the chromatin accessibility of non-coding DNA and activates thousands of newly identified transcribed enhancer-like regions, preferentially located within ERVL-MaLR repeat elements. CRISPR activation of transcribed enhancers by C-terminal DUX4 motifs results in the increased expression of target embryonic genome activation (EGA) genes ZSCAN4 and KHDC1P1. We show that DUX4 is markedly enriched in human zygotes, followed by intense nuclear DUX4 localization preceding and coinciding with minor EGA. DUX4 knockdown in human zygotes led to changes in the EGA transcriptome but did not terminate the embryos. We also show that the DUX4 protein interacts with the Mediator complex via the C-terminal KIX binding motif. Our findings contribute to the understanding of DUX4 as a regulator of the non-coding genome.
Collapse
Affiliation(s)
- Sanna Vuoristo
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Shruti Bhagat
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Instutute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
| | | | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden
| | - Lisa Gawriyski
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Vipin Ranga
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Mahlet Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Mikko Huhtala
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Ida Kirjanov
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Sonja Nykänen
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Competence Centre for Health Technologies, 51010 Tartu, Estonia.,University of Tartu, Department of Obstetrics and Gynecology, Institute of Clinical Medicine, 50406 Tartu, Estonia
| | | | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Gaëlle Recher
- Laboratoire Photonique Numérique et Nanosciences, CNRS, Institut d'Optique Graduate School, University of Bordeaux, UMR 5298, 33400 Bordeaux, France
| | - Sini Ezer
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Priit Paluoja
- Competence Centre for Health Technologies, 51010 Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia.,University of Helsinki, Doctoral Program in Population Health, 00014 Helsinki, Finland
| | - Pauliina Paloviita
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | | | | | - Karolina Lundin
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Tomi T Airenne
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Children's Hospital, Helsinki University Central Hospital, 00290
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland.,Reproductive Medicine Unit, Helsinki University Hospital, 00290 Helsinki, Finland.,Oulu University Hospital, 90220 Oulu, Finland
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako 351-0198, Japan.,Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Instutute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan.,IFOM, The FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Thomas R Bürglin
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland.,Reproductive Medicine Unit, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Folkhälsan Research Center, 00290 Helsinki, Finland
| |
Collapse
|
44
|
Fernandes G, Tran H, Andrieu M, Diaw Y, Perez Romero C, Fradin C, Coppey M, Walczak AM, Dostatni N. Synthetic reconstruction of the hunchback promoter specifies the role of Bicoid, Zelda and Hunchback in the dynamics of its transcription. eLife 2022; 11:74509. [PMID: 35363606 PMCID: PMC8975551 DOI: 10.7554/elife.74509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
For over 40 years, the Bicoid-hunchback (Bcd-hb) system in the fruit fly embryo has been used as a model to study how positional information in morphogen concentration gradients is robustly translated into step-like responses. A body of quantitative comparisons between theory and experiment have since questioned the initial paradigm that the sharp hb transcription pattern emerges solely from diffusive biochemical interactions between the Bicoid transcription factor and the gene promoter region. Several alternative mechanisms have been proposed, such as additional sources of positional information, positive feedback from Hb proteins or out-of-equilibrium transcription activation. By using the MS2-MCP RNA-tagging system and analysing in real time, the transcription dynamics of synthetic reporters for Bicoid and/or its two partners Zelda and Hunchback, we show that all the early hb expression pattern features and temporal dynamics are compatible with an equilibrium model with a short decay length Bicoid activity gradient as a sole source of positional information. Meanwhile, Bicoid’s partners speed-up the process by different means: Zelda lowers the Bicoid concentration threshold required for transcriptional activation while Hunchback reduces burstiness and increases the polymerase firing rate.
Collapse
Affiliation(s)
- Gonçalo Fernandes
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
| | - Huy Tran
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France.,Laboratoire de Physique de l'École Normale Supérieure, CNRS, Université PSL, Sorbonne Université and Université de Paris, Paris, France
| | - Maxime Andrieu
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
| | - Youssoupha Diaw
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
| | - Carmina Perez Romero
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Cécile Fradin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.,Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Mathieu Coppey
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique de l'École Normale Supérieure, CNRS, Université PSL, Sorbonne Université and Université de Paris, Paris, France
| | - Nathalie Dostatni
- Institut Curie, Université PSL, Sorbonne Université, CNRS, Nuclear Dynamics, Paris, France
| |
Collapse
|
45
|
Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022; 23:449-464. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.
Collapse
Affiliation(s)
- Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada.
| |
Collapse
|
46
|
Pluripotency factors determine gene expression repertoire at zygotic genome activation. Nat Commun 2022; 13:788. [PMID: 35145080 PMCID: PMC8831532 DOI: 10.1038/s41467-022-28434-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Awakening of zygotic transcription in animal embryos relies on maternal pioneer transcription factors. The interplay of global and specific functions of these proteins remains poorly understood. Here, we analyze chromatin accessibility and time-resolved transcription in single and double mutant zebrafish embryos lacking pluripotency factors Pou5f3 and Sox19b. We show that two factors modify chromatin in a largely independent manner. We distinguish four types of direct enhancers by differential requirements for Pou5f3 or Sox19b. We demonstrate that changes in chromatin accessibility of enhancers underlie the changes in zygotic expression repertoire in the double mutants. Pou5f3 or Sox19b promote chromatin accessibility of enhancers linked to the genes involved in gastrulation and ventral fate specification. The genes regulating mesendodermal and dorsal fates are primed for activation independently of Pou5f3 and Sox19b. Strikingly, simultaneous loss of Pou5f3 and Sox19b leads to premature expression of genes, involved in regulation of organogenesis and differentiation. Zygotic genome activation in zebrafish relies on pluripotency transcription factors Pou5f3 and Sox19b. Here the authors investigate how these factors interact in vivo by analyzing the changes in chromatin state and time-resolved transcription in Pou5f3 and Sox19b single and double mutant embryos.
Collapse
|
47
|
Larson ED, Komori H, Gibson TJ, Ostgaard CM, Hamm DC, Schnell JM, Lee CY, Harrison MM. Cell-type-specific chromatin occupancy by the pioneer factor Zelda drives key developmental transitions in Drosophila. Nat Commun 2021; 12:7153. [PMID: 34887421 PMCID: PMC8660810 DOI: 10.1038/s41467-021-27506-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
During Drosophila embryogenesis, the essential pioneer factor Zelda defines hundreds of cis-regulatory regions and in doing so reprograms the zygotic transcriptome. While Zelda is essential later in development, it is unclear how the ability of Zelda to define cis-regulatory regions is shaped by cell-type-specific chromatin architecture. Asymmetric division of neural stem cells (neuroblasts) in the fly brain provide an excellent paradigm for investigating the cell-type-specific functions of this pioneer factor. We show that Zelda synergistically functions with Notch to maintain neuroblasts in an undifferentiated state. Zelda misexpression reprograms progenitor cells to neuroblasts, but this capacity is limited by transcriptional repressors critical for progenitor commitment. Zelda genomic occupancy in neuroblasts is reorganized as compared to the embryo, and this reorganization is correlated with differences in chromatin accessibility and cofactor availability. We propose that Zelda regulates essential transitions in the neuroblasts and embryo through a shared gene-regulatory network driven by cell-type-specific enhancers.
Collapse
Affiliation(s)
- Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hideyuki Komori
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cyrina M Ostgaard
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Danielle C Hamm
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jack M Schnell
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Stem Cell and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cheng-Yu Lee
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
48
|
Histone variant H2A.Z regulates zygotic genome activation. Nat Commun 2021; 12:7002. [PMID: 34853314 PMCID: PMC8636486 DOI: 10.1038/s41467-021-27125-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
During embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist. By conducting GRO-seq, HiC and ChIP-seq in Drosophila embryos, we demonstrate that up to 65% of zygotically activated genes are enriched for the histone variant H2A.Z. H2A.Z enrichment precedes ZGA and RNA Polymerase II loading onto chromatin. In vivo knockdown of maternally contributed Domino, a histone chaperone and ATPase, reduces H2A.Z deposition at transcription start sites, causes global downregulation of housekeeping genes at ZGA, and compromises the establishment of the 3D chromatin structure. We infer that H2A.Z is essential for the de novo establishment of transcriptional programs during ZGA via chromatin reorganization. During embryogenesis, the genome becomes transcriptionally active in a process known as zygotic genome activation (ZGA); how ZGA is initiated is still an open question. Here the authors show histone variant H2A.Z deposition precedes RNA polymerase II binding on chromatin, before ZGA. H2A.Z loss causes transcriptional downregulation of ZGA genes and leads to changes in the 3D genome organization.
Collapse
|
49
|
da Silva JN, Simas DLR, Soares AR, Duarte HM, Moraes J, Conceição CC, da Silva RM, da Silva Vaz I, Logullo C. Glucose metabolomic profile during embryogenesis in the tick Rhipicephalus microplus. Metabolomics 2021; 17:79. [PMID: 34463832 DOI: 10.1007/s11306-021-01830-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/17/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Metabolomic approaches can assess the actual state of an organism's energy metabolism during a specific morphological event, providing a more accurate insight into the correlations between physiology and metabolic regulation. METHODS The study of the metabolomic profile aim to identify the largest possible number of biomolecules in a certain organism or specific structures. For this purpose, mass spectrometry (MS) and chromatography have been used in the present study. OBJECTIVES In this context, the aim of the present work is to evaluate the glucose metabolomic profile during embryogenesis in Rhipicephalus microplus tick, investigating the dynamics of nutrient utilization during tick embryo formation, as well as the control of glucose metabolism. RESULTS We show that glycogen reserves are preferentially mobilized to sustain the energy-intensive process of embryogenesis. Subsequently, the increase in concentration of specific amino acids indicates that protein degradation would provide carbons to fuel gluconeogenesis, supplying the embryo with sufficient glucose and glycogen during development. CONCLUSION Altogether, these results demonstrated the presence of a very refined catabolic and anabolic control during embryogenesis in R. microplus tick, suggesting the pronounced gluconeogenesis as a strategy to secure embryo development. Moreover, this research contributes to the understanding of the mechanisms that control glucose metabolism during tick embryogenesis and may aid the identification of putative targets for novel chemical or immunological control methods, which are essential to improve the prevention of tick infestations.
Collapse
Affiliation(s)
- Jhenifer Nascimento da Silva
- Grupo de Produtos Naturais de Organismos Aquáticos, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel Luiz Reis Simas
- Fábrica de Árvores Soluções Ambientais, Sitio Anjo Gabriel, Bragança Paulista, São Paulo, SP, Brazil
| | - Angelica Ribeiro Soares
- Grupo de Produtos Naturais de Organismos Aquáticos, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Heitor Monteiro Duarte
- Grupo de Produtos Naturais de Organismos Aquáticos, Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Christiano Calixto Conceição
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Renato Martins da Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco D, Subsolo, Sala 05, Prédio do CCS. Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
50
|
Viswanathan R, Hartmann J, Pallares Cartes C, De Renzis S. Desensitisation of Notch signalling through dynamic adaptation in the nucleus. EMBO J 2021; 40:e107245. [PMID: 34396565 PMCID: PMC8441390 DOI: 10.15252/embj.2020107245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, signalling pathways orchestrate organogenesis by controlling tissue‐specific gene expression programmes and differentiation. Although the molecular components of many common developmental signalling systems are known, our current understanding of how signalling inputs are translated into gene expression outputs in real‐time is limited. Here we employ optogenetics to control the activation of Notch signalling during Drosophila embryogenesis with minute accuracy and follow target gene expression by quantitative live imaging. Light‐induced nuclear translocation of the Notch Intracellular Domain (NICD) causes a rapid activation of target mRNA expression. However, target gene transcription gradually decays over time despite continuous photo‐activation and nuclear NICD accumulation, indicating dynamic adaptation to the signalling input. Using mathematical modelling and molecular perturbations, we show that this adaptive transcriptional response fits to known motifs capable of generating near‐perfect adaptation and can be best explained by state‐dependent inactivation at the target cis‐regulatory region. Taken together, our results reveal dynamic nuclear adaptation as a novel mechanism controlling Notch signalling output during tissue differentiation.
Collapse
Affiliation(s)
- Ranjith Viswanathan
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| | - Jonas Hartmann
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany.,Department of Cell and Developmental Biology, University College London, London, UK
| | | | - Stefano De Renzis
- European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg, Germany
| |
Collapse
|