1
|
Liu Y, Liu P, Duan S, Lin J, Qi W, Yu Z, Gao X, Sun X, Liu J, Lin J, Zhai S, Qin K, Cao Y, Li J, Liu Y, Chen M, Zou S, Wen C, Wang J, Fu D, Wang J, Bao H, Sun K, Jiang Y, Shen B. CTCF enhances pancreatic cancer progression via FLG-AS1-dependent epigenetic regulation and macrophage polarization. Cell Death Differ 2025; 32:745-762. [PMID: 39616247 PMCID: PMC11982239 DOI: 10.1038/s41418-024-01423-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 04/11/2025] Open
Abstract
CCCTC-binding factor (CTCF) regulates chromatin organization and is upregulated in pancreatic ductal adenocarcinoma (PDAC). We found that CTCF interacts with HNRNPU through a FLG-AS1-dependent mechanism, facilitating the recruitment of EP300 and activation of the m6A reader IGF2BP2. This activation promotes histone lactylation at the promoter region of IGF2BP2 stimulating the proliferation of PDAC cells. IGF2BP2 enhanced the mRNA stability of CSF1 and MYC. Moreover, FLG-AS1 directly interacts with HNRNPU to modulate alternative splicing of CSF1, thus promoting the M2 polarization of tumor associated macrophages (TAMs) in PDAC. The results indicated that CTCF-induced oncogenic modification of histone lactylation, m6A and alternative spilcing as multi-regulation modes of TAMs reprogramming in PDAC and identifies CTCF as a potential therapeutic target for PDAC immunotherapy whose inhibition M2 polarization through the IGF2BP2/CSF1/CSF1R axis. Curaxin combined with gemcitabine treatment has shown promising antitumor efficacy against PDAC.
Collapse
Affiliation(s)
- Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Jiayu Lin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengwei Yu
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Gao
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuqiao Sun
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jiewei Lin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Kai Qin
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jingwei Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Yang Liu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Mengmin Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jiancheng Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Haili Bao
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Keyan Sun
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| | - Yu Jiang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| |
Collapse
|
2
|
Dong M, Zhang Y, Chen M, Tan Y, Min J, He X, Liu F, Gu J, Jiang H, Zheng L, Chen J, Yin Q, Li X, Chen X, Shao Y, Ji Y, Chen H. ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT. Acta Pharm Sin B 2024; 14:3027-3048. [PMID: 39027248 PMCID: PMC11252488 DOI: 10.1016/j.apsb.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 07/20/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a key driver of atherosclerosis. Aerobic glycolysis is increased in the endothelium of atheroprone areas, accompanied by elevated lactate levels. Histone lactylation, mediated by lactate, can regulate gene expression and participate in disease regulation. However, whether histone lactylation is involved in atherosclerosis remains unknown. Here, we report that lipid peroxidation could lead to EndMT-induced atherosclerosis by increasing lactate-dependent histone H3 lysine 18 lactylation (H3K18la) in vitro and in vivo, as well as in atherosclerotic patients' arteries. Mechanistically, the histone chaperone ASF1A was first identified as a cofactor of P300, which precisely regulated the enrichment of H3K18la at the promoter of SNAI1, thereby activating SNAI1 transcription and promoting EndMT. We found that deletion of ASF1A inhibited EndMT and improved endothelial dysfunction. Functional analysis based on Apoe KO Asf1a ECKO mice in the atherosclerosis model confirmed the involvement of H3K18la in atherosclerosis and found that endothelium-specific ASF1A deficiency inhibited EndMT and alleviated atherosclerosis development. Inhibition of glycolysis by pharmacologic inhibition and advanced PROTAC attenuated H3K18la, SNAI1 transcription, and EndMT-induced atherosclerosis. This study illustrates precise crosstalk between metabolism and epigenetics via H3K18la by the P300/ASF1A molecular complex during EndMT-induced atherogenesis, which provides emerging therapies for atherosclerosis.
Collapse
Affiliation(s)
- Mengdie Dong
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, and Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Yunjia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Minghong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yongkang Tan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiao Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xian He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fuhao Liu
- Department of Clinical Medicine, Nanjing Medical University TIANYUAN Honors School, Nanjing Medical University, Nanjing 211166, China
| | - Jiaming Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Longbin Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jiajing Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Quanwen Yin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing 211166, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Hongshan Chen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, and Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Cardiology, Huai'an First People's Hospital Affiliated with Nanjing Medical University, Huai'an 223399, China
| |
Collapse
|
3
|
Cheng IH, Pi WC, Hsu CH, Guo Y, Lai JL, Wang GG, Chung BC, Roeder RG, Chen WY. TAF2, within the TFIID complex, regulates the expression of a subset of protein-coding genes. Cell Death Discov 2024; 10:244. [PMID: 38773077 PMCID: PMC11109217 DOI: 10.1038/s41420-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
TFIID, one of the general transcription factor (GTF), regulates transcriptional initiation of protein-coding genes through direct binding to promoter elements and subsequent recruitment of other GTFs and RNA polymerase II. Although generally required for most protein-coding genes, accumulated studies have also demonstrated promoter-specific functions for several TFIID subunits in gene activation. Here, we report that TBP-associated factor 2 (TAF2) specifically regulates TFIID binding to a small subset of protein-coding genes and is essential for cell growth of multiple cancer lines. Co-immunoprecipitation assays revealed that TAF2 may be sub-stoichiometrically associated with the TFIID complex, thus indicating a minor fraction of TAF2-containing TFIID in cells. Consistently, integrated genome-wide profiles show that TAF2 binds to and regulates only a small subset of protein-coding genes. Furthermore, through the use of an inducible TAF2 degradation system, our results reveal a reduction of TBP/TFIID binding to several ribosomal genes upon selective ablation of TAF2. In addition, depletion of TAF2, as well as the TAF2-regulated ribosomal protein genes RPL30 and RPL39, decreases ribosome assembly and global protein translation. Collectively, this study suggests that TAF2 within the TFIID complex is of functional importance for TBP/TFIID binding to and expression of a small subset of protein-coding genes, thus establishing a previously unappreciated promoter-selective function for TAF2.
Collapse
Affiliation(s)
- I-Hsin Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Hao Hsu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Jun-Lin Lai
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Gang G Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Bon-Chu Chung
- Insitute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Rhodes D. To slide or not to slide: key role of the hexasome in chromatin remodeling revealed. Nat Struct Mol Biol 2024; 31:742-746. [PMID: 38769465 DOI: 10.1038/s41594-024-01278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/14/2024] [Indexed: 05/22/2024]
Abstract
Hexasomes are non-canonical nucleosomes that package DNA with six instead of eight histones. First discovered 40 years ago as a consequence of transcription, two near-atomic-resolution cryo-EM structures of the hexasome in complex with the chromatin remodeler INO80 have now started to unravel its mechanistic impact on the regulatory landscape of chromatin. Loss of one histone H2A-H2B dimer converts inactive nucleosomes into distinct and favorable substrates for ATP-dependent chromatin remodeling.
Collapse
Affiliation(s)
- Daniela Rhodes
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
5
|
Oishi T, Hatazawa S, Kujirai T, Kato J, Kobayashi Y, Ogasawara M, Akatsu M, Ehara H, Sekine SI, Hayashi G, Takizawa Y, Kurumizaka H. Contributions of histone tail clipping and acetylation in nucleosome transcription by RNA polymerase II. Nucleic Acids Res 2023; 51:10364-10374. [PMID: 37718728 PMCID: PMC10602921 DOI: 10.1093/nar/gkad754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
The N-terminal tails of histones protrude from the nucleosome core and are target sites for histone modifications, such as acetylation and methylation. Histone acetylation is considered to enhance transcription in chromatin. However, the contribution of the histone N-terminal tail to the nucleosome transcription by RNA polymerase II (RNAPII) has not been clarified. In the present study, we reconstituted nucleosomes lacking the N-terminal tail of each histone, H2A, H2B, H3 or H4, and performed RNAPII transcription assays. We found that the N-terminal tail of H3, but not H2A, H2B and H4, functions in RNAPII pausing at the SHL(-5) position of the nucleosome. Consistently, the RNAPII transcription assay also revealed that the nucleosome containing N-terminally acetylated H3 drastically alleviates RNAPII pausing at the SHL(-5) position. In addition, the H3 acetylated nucleosome produced increased amounts of the run-off transcript. These results provide important evidence that the H3 N-terminal tail plays a role in RNAPII pausing at the SHL(-5) position of the nucleosome, and its acetylation directly alleviates this nucleosome barrier.
Collapse
Affiliation(s)
- Takumi Oishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuki Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Munetaka Akatsu
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
6
|
Nakadai T, Shimada M, Ito K, Cevher MA, Chu CS, Kumegawa K, Maruyama R, Malik S, Roeder RG. Two target gene activation pathways for orphan ERR nuclear receptors. Cell Res 2023; 33:165-183. [PMID: 36646760 PMCID: PMC9892517 DOI: 10.1038/s41422-022-00774-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2022] [Indexed: 01/18/2023] Open
Abstract
Estrogen-related receptors (ERRα/β/γ) are orphan nuclear receptors that function in energy-demanding physiological processes, as well as in development and stem cell maintenance, but mechanisms underlying target gene activation by ERRs are largely unknown. Here, reconstituted biochemical assays that manifest ERR-dependent transcription have revealed two complementary mechanisms. On DNA templates, ERRs activate transcription with just the normal complement of general initiation factors through an interaction of the ERR DNA-binding domain with the p52 subunit of initiation factor TFIIH. On chromatin templates, activation by ERRs is dependent on AF2 domain interactions with the cell-specific coactivator PGC-1α, which in turn recruits the ubiquitous p300 and MED1/Mediator coactivators. This role of PGC-1α may also be fulfilled by other AF2-interacting coactivators like NCOA3, which is shown to recruit Mediator selectively to ERRβ and ERRγ. Importantly, combined genetic and RNA-seq analyses establish that both the TFIIH and the AF2 interaction-dependent pathways are essential for ERRβ/γ-selective gene expression and pluripotency maintenance in embryonic stem cells in which NCOA3 is a critical coactivator.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Murat Alper Cevher
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Frederick MA, Williamson KE, Fernandez Garcia M, Ferretti MB, McCarthy RL, Donahue G, Luzete Monteiro E, Takenaka N, Reynaga J, Kadoch C, Zaret KS. A pioneer factor locally opens compacted chromatin to enable targeted ATP-dependent nucleosome remodeling. Nat Struct Mol Biol 2023; 30:31-37. [PMID: 36536103 PMCID: PMC10004348 DOI: 10.1038/s41594-022-00886-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
To determine how different pioneer transcription factors form a targeted, accessible nucleosome within compacted chromatin and collaborate with an ATP-dependent chromatin remodeler, we generated nucleosome arrays in vitro with a central nucleosome containing binding sites for the hematopoietic E-Twenty Six (ETS) factor PU.1 and Basic Leucine Zipper (bZIP) factors C/EBPα and C/EBPβ. Our long-read sequencing reveals that each factor can expose a targeted nucleosome on linker histone-compacted arrays, but with different nuclease sensitivity patterns. The DNA binding domain of PU.1 binds mononucleosomes, but requires an additional intrinsically disordered domain to bind and open compacted chromatin. The canonical mammalian SWI/SNF (cBAF) remodeler was unable to act upon two forms of locally open chromatin unless cBAF was enabled by a separate transactivation domain of PU.1. cBAF potentiates the PU.1 DNA binding domain to weakly open chromatin in the absence of the PU.1 disordered domain. Our findings reveal a hierarchy by which chromatin is opened and show that pioneer factors can provide specificity for action by nucleosome remodelers.
Collapse
Affiliation(s)
- Megan A Frederick
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kaylyn E Williamson
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Meilin Fernandez Garcia
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan L McCarthy
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edgar Luzete Monteiro
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Takenaka
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janice Reynaga
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Okuda M, Tsunaka Y, Nishimura Y. Dynamic structures of intrinsically disordered proteins related to the general transcription factor TFIIH, nucleosomes, and histone chaperones. Biophys Rev 2022; 14:1449-1472. [PMID: 36659983 PMCID: PMC9842849 DOI: 10.1007/s12551-022-01014-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in structural analysis by cryogenic electron microscopy (cryo-EM) and X-ray crystallography have revealed the tertiary structures of various chromatin-related proteins, including transcription factors, RNA polymerases, nucleosomes, and histone chaperones; however, the dynamic structures of intrinsically disordered regions (IDRs) in these proteins remain elusive. Recent studies using nuclear magnetic resonance (NMR), together with molecular dynamics (MD) simulations, are beginning to reveal dynamic structures of the general transcription factor TFIIH complexed with target proteins including the general transcription factor TFIIE, the tumor suppressor p53, the cell cycle protein DP1, the DNA repair factors XPC and UVSSA, and three RNA polymerases, in addition to the dynamics of histone tails in nucleosomes and histone chaperones. In complexes of TFIIH, the PH domain of the p62 subunit binds to an acidic string formed by the IDR in TFIIE, p53, XPC, UVSSA, DP1, and the RPB6 subunit of three RNA polymerases by a common interaction mode, namely extended string-like binding of the IDR on the positively charged surface of the PH domain. In the nucleosome, the dynamic conformations of the N-tails of histones H2A and H2B are correlated, while the dynamic conformations of the N-tails of H3 and H4 form a histone tail network dependent on their modifications and linker DNA. The acidic IDRs of the histone chaperones of FACT and NAP1 play important roles in regulating the accessibility to histone proteins in the nucleosome.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045 Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528 Japan
| |
Collapse
|
9
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
10
|
Rosal KG, Chen WY, Chung BC. The A'-helix of CYP11A1 remodels mitochondrial cristae. J Biomed Sci 2022; 29:61. [PMID: 35978408 PMCID: PMC9386925 DOI: 10.1186/s12929-022-00846-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background CYP11A1 is a protein located in the inner membrane of mitochondria catalyzing the first step of steroid synthesis. As a marker gene for steroid-producing cells, the abundance of CYP11A1 characterizes the extent of steroidogenic cell differentiation. Besides, the mitochondria of fully differentiated steroidogenic cells are specialized with tubulovesicular cristae. The participation of CYP11A1 in the change of mitochondrial structure and the differentiation of steroid-producing cells, however, has not been investigated. Methods We engineered nonsteroidogenic monkey kidney COS1 cells to express CYP11A1 upon doxycycline induction and examined the mitochondrial structure of these cells. We also mapped the CYP11A1 domains that confer structural changes of mitochondria. We searched for CYP11A1-interacting proteins and investigated the role of this interacting protein in shaping mitochondrial structure. Finally, we examined the effect of CYP11A1 overexpression on the amount of mitochondrial contact site and cristae organizing system. Results We found that CYP11A1 overexpression led to the formation of tubulovesicular cristae in mitochondria. We also identified the A’-helix located at amino acid #57–68 to be sufficient for membrane insertion and crista remodeling. We identified heat shock protein 60 (Hsp60) as the CYP11A1-interacting protein and showed that Hsp60 is required for CYP11A1 accumulation and crista remodeling. Finally, we found that the small MIC10 subcomplex of the mitochondrial contact site and cristae organizing system was reduced when CYP11A1 was overexpressed. Conclusions CYP11A1 participates in the formation of tubulovesicular cristae in the mitochondria of steroidogenic cells. Its A’-helix is sufficient for the formation of tubulovesicular cristae and for protein integration into the membrane. CYP11A1 interacts with Hsp60, which is required for CYP11A1 accumulation. The accumulation of CYP11A1 leads to the reduction of MIC10 complex and changes mitochondrial structure. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00846-7.
Collapse
Affiliation(s)
- Karen G Rosal
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, 115, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Bon-Chu Chung
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, 115, Taiwan. .,Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan. .,Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
11
|
He P, Zhang C, Ji Y, Ge MK, Yu Y, Zhang N, Yang S, Yu JX, Shen SM, Chen GQ. Epithelial cells-enriched lncRNA SNHG8 regulates chromatin condensation by binding to Histone H1s. Cell Death Differ 2022; 29:1569-1581. [PMID: 35140358 PMCID: PMC9345976 DOI: 10.1038/s41418-022-00944-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Linker histone H1 proteins contain many variants in mammalian and can stabilize the condensed state of chromatin by binding to nucleosomes and promoting a more inaccessible structure of DNA. However, it is poorly understood how the binding of histone H1s to chromatin DNA is regulated. Screened as one of a collection of epithelial cells-enriched long non-coding RNAs (lncRNAs), here we found that small nucleolar RNA host gene 8 (SNHG8) is a chromatin-localized lncRNA and presents strong interaction and phase separation with histone H1 variants. Moreover, SNHG8 presents stronger ability to bind H1s than linker DNA, and outcompetes linker DNA for H1 binding. Consequently, loss of SNHG8 increases the amount of H1s that bind to chromatin, promotes chromatin condensation, and induces an epithelial differentiation-associated gene expression pattern. Collectively, our results propose that the highly abundant SNHG8 in epithelial cells keeps histone H1 variants out of nucleosome and its loss contributes to epithelial cell differentiation.
Collapse
Affiliation(s)
- Ping He
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Cheng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yan Ji
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meng-Kai Ge
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yun Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Shuo Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Jian-Xiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, SJTU-SM, Shanghai, 200025, China
| | - Shao-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China. .,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| |
Collapse
|
12
|
Papin A, Cesarman E, Melnick A. 3D chromosomal architecture in germinal center B cells and its alterations in lymphomagenesis. Curr Opin Genet Dev 2022; 74:101915. [PMID: 35550952 DOI: 10.1016/j.gde.2022.101915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
In eukaryotic cells, the genome is three dimensionally (3D) organized with DNA interaction dynamics and topology changes that regulate gene expression and drive cell fate. Upon antigen stimulation, naive B cells are activated and form germinal centers (GC) for the generation of memory B cells and plasma cells. Thereby, terminal B-cell differentiation and associated humoral immune response require massive but rigorous 3D DNA reorganization. Here, we review the dynamics of genome reorganization during GC formation and the impact of its alterations on lymphomagenesis from the nucleosome structure to the higher order chromosome organization. We particularly discuss the identified architects of 3D DNA in GC B cells and the role of their mutations in B-cell lymphomas.
Collapse
Affiliation(s)
- Antonin Papin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
13
|
Dombrowski M, Engeholm M, Dienemann C, Dodonova S, Cramer P. Histone H1 binding to nucleosome arrays depends on linker DNA length and trajectory. Nat Struct Mol Biol 2022; 29:493-501. [PMID: 35581345 PMCID: PMC9113941 DOI: 10.1038/s41594-022-00768-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/01/2022] [Indexed: 01/17/2023]
Abstract
Throughout the genome, nucleosomes often form regular arrays that differ in nucleosome repeat length (NRL), occupancy of linker histone H1 and transcriptional activity. Here, we report cryo-EM structures of human H1-containing tetranucleosome arrays with four physiologically relevant NRLs. The structures show a zig-zag arrangement of nucleosomes, with nucleosomes 1 and 3 forming a stack. H1 binding to stacked nucleosomes depends on the NRL, whereas H1 always binds to the non-stacked nucleosomes 2 and 4. Short NRLs lead to altered trajectories of linker DNA, and these altered trajectories sterically impair H1 binding to the stacked nucleosomes in our structures. As the NRL increases, linker DNA trajectories relax, enabling H1 contacts and binding. Our results provide an explanation for why arrays with short NRLs are depleted of H1 and suited for transcription, whereas arrays with long NRLs show full H1 occupancy and can form transcriptionally silent heterochromatin regions. Cryo-EM structures of human H1-containing tetranucleosome arrays with distinct, physiological nucleosome repeat lengths reveal that nucleosomes assume a zig-zag arrangement and H1 binds to stacked nucleosomes with longer linker DNA.
Collapse
Affiliation(s)
- Marco Dombrowski
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Maik Engeholm
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Svetlana Dodonova
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
14
|
EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol 2022; 24:384-399. [PMID: 35210568 PMCID: PMC9710513 DOI: 10.1038/s41556-022-00850-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Canonically, EZH2 serves as the catalytic subunit of PRC2, which mediates H3K27me3 deposition and transcriptional repression. Here, we report that in acute leukaemias, EZH2 has additional noncanonical functions by binding cMyc at non-PRC2 targets and uses a hidden transactivation domain (TAD) for (co)activator recruitment and gene activation. Both canonical (EZH2-PRC2) and noncanonical (EZH2-TAD-cMyc-coactivators) activities of EZH2 promote oncogenesis, which explains the slow and ineffective antitumour effect of inhibitors of the catalytic function of EZH2. To suppress the multifaceted activities of EZH2, we used proteolysis-targeting chimera (PROTAC) to develop a degrader, MS177, which achieved effective, on-target depletion of EZH2 and interacting partners (that is, both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes). Compared with inhibitors of the enzymatic function of EZH2, MS177 is fast-acting and more potent in suppressing cancer growth. This study reveals noncanonical oncogenic roles of EZH2, reports a PROTAC for targeting the multifaceted tumorigenic functions of EZH2 and presents an attractive strategy for treating EZH2-dependent cancers.
Collapse
|
15
|
Soshnev AA, Allis CD, Cesarman E, Melnick AM. Histone H1 Mutations in Lymphoma: A Link(er) between Chromatin Organization, Developmental Reprogramming, and Cancer. Cancer Res 2021; 81:6061-6070. [PMID: 34580064 PMCID: PMC8678342 DOI: 10.1158/0008-5472.can-21-2619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Aberrant cell fate decisions due to transcriptional misregulation are central to malignant transformation. Histones are the major constituents of chromatin, and mutations in histone-encoding genes are increasingly recognized as drivers of oncogenic transformation. Mutations in linker histone H1 genes were recently identified as drivers of peripheral lymphoid malignancy. Loss of H1 in germinal center B cells results in widespread chromatin decompaction, redistribution of core histone modifications, and reactivation of stem cell-specific transcriptional programs. This review explores how linker histones and mutations therein regulate chromatin structure, highlighting reciprocal relationships between epigenetic circuits, and discusses the emerging role of aberrant three-dimensional chromatin architecture in malignancy.
Collapse
Affiliation(s)
- Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Ari M Melnick
- Division of Hematology & Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
16
|
Sheban D, Shani T, Maor R, Aguilera-Castrejon A, Mor N, Oldak B, Shmueli MD, Eisenberg-Lerner A, Bayerl J, Hebert J, Viukov S, Chen G, Kacen A, Krupalnik V, Chugaeva V, Tarazi S, Rodríguez-delaRosa A, Zerbib M, Ulman A, Masarwi S, Kupervaser M, Levin Y, Shema E, David Y, Novershtern N, Hanna JH, Merbl Y. SUMOylation of linker histone H1 drives chromatin condensation and restriction of embryonic cell fate identity. Mol Cell 2021; 82:106-122.e9. [PMID: 34875212 DOI: 10.1016/j.molcel.2021.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
The fidelity of the early embryonic program is underlined by tight regulation of the chromatin. Yet, how the chromatin is organized to prohibit the reversal of the developmental program remains unclear. Specifically, the totipotency-to-pluripotency transition marks one of the most dramatic events to the chromatin, and yet, the nature of histone alterations underlying this process is incompletely characterized. Here, we show that linker histone H1 is post-translationally modulated by SUMO2/3, which facilitates its fixation onto ultra-condensed heterochromatin in embryonic stem cells (ESCs). Upon SUMOylation depletion, the chromatin becomes de-compacted and H1 is evicted, leading to totipotency reactivation. Furthermore, we show that H1 and SUMO2/3 jointly mediate the repression of totipotent elements. Lastly, we demonstrate that preventing SUMOylation on H1 abrogates its ability to repress the totipotency program in ESCs. Collectively, our findings unravel a critical role for SUMOylation of H1 in facilitating chromatin repression and desolation of the totipotent identity.
Collapse
Affiliation(s)
- Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tom Shani
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Roey Maor
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Nofar Mor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bernardo Oldak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Jonathan Bayerl
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jakob Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Sergey Viukov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Guoyun Chen
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Kacen
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladislav Krupalnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Valeriya Chugaeva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shadi Tarazi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Mirie Zerbib
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Ulman
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Solaiman Masarwi
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Meital Kupervaser
- De Botton Institute for Protein Profiling, INCPM, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, INCPM, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Efrat Shema
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Noa Novershtern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
17
|
Leonen CJA, Shimada M, Weller CE, Nakadai T, Hsu PL, Tyson EL, Mishra A, Shelton PM, Sadilek M, Hawkins RD, Zheng N, Roeder RG, Chatterjee C. Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts. eLife 2021; 10:67952. [PMID: 34747692 PMCID: PMC8626089 DOI: 10.7554/elife.67952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/06/2021] [Indexed: 01/22/2023] Open
Abstract
The post-translational modification of histones by the small ubiquitin-like modifier (SUMO) protein has been associated with gene regulation, centromeric localization, and double-strand break repair in eukaryotes. Although sumoylation of histone H4 was specifically associated with gene repression, this could not be proven due to the challenge of site-specifically sumoylating H4 in cells. Biochemical crosstalk between SUMO and other histone modifications, such as H4 acetylation and H3 methylation, that are associated with active genes also remains unclear. We addressed these challenges in mechanistic studies using an H4 chemically modified at Lys12 by SUMO-3 (H4K12su) and incorporated into mononucleosomes and chromatinized plasmids for functional studies. Mononucleosome-based assays revealed that H4K12su inhibits transcription-activating H4 tail acetylation by the histone acetyltransferase p300, as well as transcription-associated H3K4 methylation by the extended catalytic module of the Set1/COMPASS (complex of proteins associated with Set1) histone methyltransferase complex. Activator- and p300-dependent in vitro transcription assays with chromatinized plasmids revealed that H4K12su inhibits both H4 tail acetylation and RNA polymerase II-mediated transcription. Finally, cell-based assays with a SUMO-H4 fusion that mimics H4 tail sumoylation confirmed the negative crosstalk between histone sumoylation and acetylation/methylation. Thus, our studies establish the key role for histone sumoylation in gene silencing and its negative biochemical crosstalk with active transcription-associated marks in human cells.
Collapse
Affiliation(s)
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
| | - Caroline E Weller
- Department of Chemistry, University of Washington, Seattle, United States
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States.,Project for Cancer Epigenomics, Cancer Institute of JFCR, Tokyo, Japan
| | - Peter L Hsu
- Department of Pharmacology, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Elizabeth L Tyson
- Department of Chemistry, University of Washington, Seattle, United States
| | - Arpit Mishra
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, United States
| | - Patrick Mm Shelton
- Department of Chemistry, University of Washington, Seattle, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, United States
| | - R David Hawkins
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, United States
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, United States
| |
Collapse
|
18
|
Yoneda M, Yasui K, Nakagawa T, Hattori N, Ito T. Nucleosome assembly protein 1 (NAP-1) is a regulator of histone H1 acetylation. J Biochem 2021; 170:763-773. [PMID: 34551067 DOI: 10.1093/jb/mvab098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Acetylation of histone H1 is generally considered to activate transcription, whereas deacetylation of H1 represses transcription. However, the precise mechanism of the acetylation is unknown. Here, using chromatography, we identified nucleosome assembly protein 1 (NAP-1) as having inhibitory activity against histone H1 acetylation by acetyltransferase p300. We found that native NAP-1 interacts with H1 in a Drosophila crude extract. We also found that it inhibits the deacetylation of histone H1 by histone deacetylase 1 (HDAC1). The core histones in nucleosomes were acetylated in a GAL4-VP16 transcriptional activator-dependent manner in vitro. This acetylation was strongly repressed by hypoacetylated H1 but to a lesser extent by hyperacetylated H1. Consistent with these findings, a micrococcal nuclease assay indicated that hypoacetylated H1, which represses activator-dependent acetylation, was incorporated into chromatin, whereas hyperacetylated H1 was not. To determine the contribution of NAP-1 to transcriptional regulation in vivo, we compared NAP-1 knockdown (KD) with coactivator CREB-binding protein (CBP) KD using RNA sequencing in Drosophila Schneider 2 cells. Most genes were downregulated rather than upregulated by NAP-1 KD, and those downregulated genes were also downregulated by CBP KD. Our results suggest that NAP-1 plays a role in transcriptional regulation by fine-tuning the acetylation of histone H1.
Collapse
Affiliation(s)
- Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Kiyoshi Yasui
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Department of Oncology, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Naoko Hattori
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
19
|
Abstract
In eukaryotes, genomic DNA is packaged into chromatin in the nucleus. The accessibility of DNA is dependent on the chromatin structure and dynamics, which essentially control DNA-related processes, including transcription, DNA replication, and repair. All of the factors that affect the structure and dynamics of nucleosomes, the nucleosome-nucleosome interaction interfaces, and the binding of linker histones or other chromatin-binding proteins need to be considered to understand the organization and function of chromatin fibers. In this review, we provide a summary of recent progress on the structure of chromatin fibers in vitro and in the nucleus, highlight studies on the dynamic regulation of chromatin fibers, and discuss their related biological functions and abnormal organization in diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Wei Li
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; .,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Cryo-EM structure of SETD2/Set2 methyltransferase bound to a nucleosome containing oncohistone mutations. Cell Discov 2021; 7:32. [PMID: 33972509 PMCID: PMC8110526 DOI: 10.1038/s41421-021-00261-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Substitution of lysine 36 with methionine in histone H3.3 (H3.3K36M) is an oncogenic mutation that inhibits SETD2-mediated histone H3K36 tri-methylation in tumors. To investigate how the oncohistone mutation affects the function of SETD2 at the nucleosome level, we determined the cryo-EM structure of human SETD2 associated with an H3.3K36M nucleosome and cofactor S-adenosylmethionine (SAM), and revealed that SETD2 is attached to the N-terminal region of histone H3 and the nucleosome DNA at superhelix location 1, accompanied with the partial unwrapping of nucleosome DNA to expose the SETD2-binding site. These structural features were also observed in the previous cryo-EM structure of the fungal Set2-nucleosome complex. By contrast with the stable association of SETD2 with the H3.3K36M nucleosome, the EM densities of SETD2 could not be observed on the wild-type nucleosome surface, suggesting that the association of SETD2 with wild-type nucleosome might be transient. The linker histone H1, which stabilizes the wrapping of nucleosome DNA at the entry/exit sites, exhibits an inhibitory effect on the activities of SETD2 and displays inversely correlated genome distributions with that of the H3K36me3 marks. Cryo-EM analysis of yeast H3K36 methyltransferase Set2 complexed with nucleosomes further revealed evolutionarily conserved structural features for nucleosome recognition in eukaryotes, and provides insights into the mechanism of activity regulation. These findings have advanced our understanding of the structural basis for the tumorigenesis mechanism of the H3.3K36M mutation and highlight the effect of nucleosome conformation on the regulation of histone modification.
Collapse
|
21
|
Kolářová K, Nešpor Dadejová M, Loja T, Lochmanová G, Sýkorová E, Dvořáčková M. Disruption of NAP1 genes in Arabidopsis thaliana suppresses the fas1 mutant phenotype, enhances genome stability and changes chromatin compaction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:56-73. [PMID: 33368779 DOI: 10.1111/tpj.15145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Histone chaperones mediate the assembly and disassembly of nucleosomes and participate in essentially all DNA-dependent cellular processes. In Arabidopsis thaliana, loss-of-function of FAS1 or FAS2 subunits of the H3-H4 histone chaperone complex CHROMATIN ASSEMBLY FACTOR 1 (CAF-1) has a dramatic effect on plant morphology, growth and overall fitness. CAF-1 dysfunction can lead to altered chromatin compaction, systematic loss of repetitive elements or increased DNA damage, clearly demonstrating its severity. How chromatin composition is maintained without functional CAF-1 remains elusive. Here we show that disruption of the H2A-H2B histone chaperone NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) suppresses the FAS1 loss-of-function phenotype. The quadruple mutant fas1 nap1;1 nap1;2 nap1;3 shows wild-type growth, decreased sensitivity to genotoxic stress and suppression of telomere and 45S rDNA loss. Chromatin of fas1 nap1;1 nap1;2 nap1;3 plants is less accessible to micrococcal nuclease and the nuclear H3.1 and H3.3 histone pools change compared to fas1. Consistently, association between NAP1 and H3 occurs in the cytoplasm and nucleus in vivo in protoplasts. Altogether we show that NAP1 proteins play an essential role in DNA repair in fas1, which is coupled to nucleosome assembly through modulation of H3 levels in the nucleus.
Collapse
Affiliation(s)
- Karolína Kolářová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, Brno, CZ-61137, Czech Republic
- Molecular Cytology and Cytometry, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, Brno, CZ-61265, Czech Republic
| | - Martina Nešpor Dadejová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Tomáš Loja
- Centre for Molecular Medicine, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Gabriela Lochmanová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Eva Sýkorová
- Molecular Cytology and Cytometry, Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, Brno, CZ-61265, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology/Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| |
Collapse
|
22
|
Understanding transcription across scales: From base pairs to chromosomes. Mol Cell 2021; 81:1601-1616. [PMID: 33770487 DOI: 10.1016/j.molcel.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The influence of genome organization on transcription is central to our understanding of cell type specification. Higher-order genome organization is established through short- and long-range DNA interactions. Coordination of these interactions, from single atoms to entire chromosomes, plays a fundamental role in transcriptional control of gene expression. Loss of this coupling can result in disease. Analysis of transcriptional regulation typically involves disparate experimental approaches, from structural studies that define angstrom-level interactions to cell-biological and genomic approaches that assess mesoscale relationships. Thus, to fully understand the mechanisms that regulate gene expression, it is critical to integrate the findings gained across these distinct size scales. In this review, I illustrate fundamental ways in which cells regulate transcription in the context of genome organization.
Collapse
|
23
|
Insights into the roles of histone chaperones in nucleosome assembly and disassembly in virus infection. Virus Res 2021; 297:198395. [PMID: 33737155 DOI: 10.1016/j.virusres.2021.198395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022]
Abstract
Nucleosomes are assembled or disassembled with the aid of histone chaperones in a cell. Viruses can exist either as minichromosomes/episomes or can integrate into the host genome and in both the cases the viral proteins interact and manipulate the cellular nucleosome assembly machinery to ensure their survival and propagation. Recent studies have provided insight into the mechanism and role of histone chaperones in nucleosome assembly and disassembly on the virus genome. Further, the interactions between viral proteins and histone chaperones have been implicated in the integration of the virus genome into the host genome. This review highlights the recent progress and future challenges in understanding the role of histone chaperones in viruses with DNA or RNA genome and their role in governing viral pathogenesis.
Collapse
|
24
|
Wu H, Dalal Y, Papoian GA. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle. J Mol Biol 2021; 433:166881. [PMID: 33617899 DOI: 10.1016/j.jmb.2021.166881] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
25
|
Sarkar P, Akhavantabib N, D'Arcy S. Comprehensive analysis of histone-binding proteins with multi-angle light scattering. Methods 2020; 184:93-101. [PMID: 31988003 PMCID: PMC7381358 DOI: 10.1016/j.ymeth.2020.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022] Open
Abstract
Interactions between histones and their binding partners are an important aspect of chromatin biology. Determining the stoichiometry of histone-containing complexes is an important pre-requisite for performing in vitro biochemical, biophysical and structural analyses. In this article, we detail how Size Exclusion Chromatography (SEC) coupled to Multi-Angle Light Scattering (MALS) can be used to study histone chaperones and their complexes. Our protocol details system setup, sample preparation, data collection, and data interpretation. We provide tips on designing an informative SEC-MALS experiment, using histone chaperones Nap1 and Vps75 as demonstrative examples. We outline recommendations to overcome specific challenges such as protein oligomerization, heterogeneity, and non-specific binding. We find SEC-MALS to be a robust and user-friendly approach for characterizing histone-binding proteins and their complexes.
Collapse
Affiliation(s)
- Prithwijit Sarkar
- Department of Biological Sciences, The University of Texas at Dallas, TX 75080, United States
| | - Noushin Akhavantabib
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, TX 75080, United States
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, TX 75080, United States.
| |
Collapse
|
26
|
Mashtalir N, Suzuki H, Farrell DP, Sankar A, Luo J, Filipovski M, D'Avino AR, St Pierre R, Valencia AM, Onikubo T, Roeder RG, Han Y, He Y, Ranish JA, DiMaio F, Walz T, Kadoch C. A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms. Cell 2020; 183:802-817.e24. [PMID: 33053319 PMCID: PMC7717177 DOI: 10.1016/j.cell.2020.09.051] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture. Here, we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome, generated using cryoelectron microscopy (cryo-EM), cross-linking mass spectrometry, and homology modeling. BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminal α-helix and the SMARCA4/2 C-terminal SnAc/post-SnAc regions, with disease-associated mutations in either causing attenuated chromatin remodeling activities. Further, we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes. Finally, we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex, identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation. Taken together, this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.
Collapse
Affiliation(s)
- Nazar Mashtalir
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hiroshi Suzuki
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Akshay Sankar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Martin Filipovski
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew R D'Avino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roodolph St Pierre
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Chemical Biology Program, Harvard Medical School, Boston, MA, USA
| | - Alfredo M Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Chemical Biology Program, Harvard Medical School, Boston, MA, USA
| | - Takashi Onikubo
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA.
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
27
|
An Z, Yin L, Liu Y, Peng M, Shen WH, Dong A. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1010-1024. [PMID: 32324922 DOI: 10.1111/tpj.14780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Histones are highly basic proteins involved in packaging DNA into chromatin, and histone modifications are fundamental in epigenetic regulation in eukaryotes. Among the numerous chromatin modifiers identified in Arabidopsis (Arabidopsis thaliana), MORF-RELATED GENE (MRG)1 and MRG2 have redundant functions in reading histone H3 lysine 36 trimethylation (H3K36me3). Here, we show that MRG2 binds histone chaperones belonging to the NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) family, including NAP1-RELATED PROTEIN (NRP)1 and NRP2. Characterization of the loss-of-function mutants mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 revealed that MRG1/MRG2 and NRP1/NRP2 regulate flowering time through fine-tuning transcription of floral genes by distinct molecular mechanisms. In particular, the physical interaction between NRP1/NRP2 and MRG1/MRG2 inhibited the binding of MRG1/MRG2 to the transcription factor CONSTANS (CO), leading to a transcriptional repression of FLOWERING LOCUS T (FT) through impeded H4K5 acetylation (H4K5ac) within the FT chromatin. By contrast, NRP1/NRP2 and MRG1/MRG2 act together, likely in a multiprotein complex manner, in promoting the transcription of FLOWERING LOCUS C (FLC) via an increase of both H4K5ac and H3K9ac in the FLC chromatin. Because the expression pattern of FLC represents the major category of differentially expressed genes identified by genome-wide RNA-sequencing analysis in the mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 mutants, it is reasonable to speculate that the NRP1/NRP2-MRG1/MRG2 complex may be involved in transcriptional activation of genes beyond FLC and flowering time control.
Collapse
Affiliation(s)
- Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Universitè de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
28
|
Pi WC, Wang J, Shimada M, Lin JW, Geng H, Lee YL, Lu R, Li D, Wang GG, Roeder RG, Chen WY. E2A-PBX1 functions as a coactivator for RUNX1 in acute lymphoblastic leukemia. Blood 2020; 136:11-23. [PMID: 32276273 PMCID: PMC7332894 DOI: 10.1182/blood.2019003312] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
E2A, a basic helix-loop-helix transcription factor, plays a crucial role in determining tissue-specific cell fate, including differentiation of B-cell lineages. In 5% of childhood acute lymphoblastic leukemia (ALL), the t(1,19) chromosomal translocation specifically targets the E2A gene and produces an oncogenic E2A-PBX1 fusion protein. Although previous studies have shown the oncogenic functions of E2A-PBX1 in cell and animal models, the E2A-PBX1-enforced cistrome, the E2A-PBX1 interactome, and related mechanisms underlying leukemogenesis remain unclear. Here, by unbiased genomic profiling approaches, we identify the direct target sites of E2A-PBX1 in t(1,19)-positive pre-B ALL cells and show that, compared with normal E2A, E2A-PBX1 preferentially binds to a subset of gene loci cobound by RUNX1 and gene-activating machineries (p300, MED1, and H3K27 acetylation). Using biochemical analyses, we further document a direct interaction of E2A-PBX1, through a region spanning the PBX1 homeodomain, with RUNX1. Our results also show that E2A-PBX1 binding to gene enhancers is dependent on the RUNX1 interaction but not the DNA-binding activity harbored within the PBX1 homeodomain of E2A-PBX1. Transcriptome analyses and cell transformation assays further establish a significant RUNX1 requirement for E2A-PBX1-mediated target gene activation and leukemogenesis. Notably, the RUNX1 locus itself is also directly activated by E2A-PBX1, indicating a multilayered interplay between E2A-PBX1 and RUNX1. Collectively, our study provides the first unbiased profiling of the E2A-PBX1 cistrome in pre-B ALL cells and reveals a previously unappreciated pathway in which E2A-PBX1 acts in concert with RUNX1 to enforce transcriptome alterations for the development of pre-B ALL.
Collapse
MESH Headings
- Amino Acid Motifs
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Core Binding Factor Alpha 2 Subunit/chemistry
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/physiology
- DNA/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Leukemic/genetics
- Histone Code
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/physiology
- Humans
- Mediator Complex/metabolism
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/physiology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Domains
- Protein Interaction Mapping
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Structure-Activity Relationship
- Transcriptome
- p300-CBP Transcription Factors/metabolism
Collapse
Affiliation(s)
- Wen-Chieh Pi
- Institute of Biochemistry and Molecular Biology and
- Biomedical Industry PhD Program, National Yang-Ming University, Taipei, Taiwan
| | - Jun Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY
| | - Jia-Wei Lin
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Huimin Geng
- Laboratory Medicine, UCSF School of Medicine, San Francisco, CA; and
| | - Yu-Ling Lee
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY
| | - Rui Lu
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology and
- Biomedical Industry PhD Program, National Yang-Ming University, Taipei, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Functions of paralogous RNA polymerase III subunits POLR3G and POLR3GL in mouse development. Proc Natl Acad Sci U S A 2020; 117:15702-15711. [PMID: 32576691 DOI: 10.1073/pnas.1922821117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells contain two isoforms of RNA polymerase III (Pol III) that differ in only a single subunit, with POLR3G in one form (Pol IIIα) and the related POLR3GL in the other form (Pol IIIβ). Previous research indicates that POLR3G and POLR3GL are differentially expressed, with POLR3G expression being highly enriched in embryonic stem cells (ESCs) and tumor cells relative to the ubiquitously expressed POLR3GL. To date, the functional differences between these two subunits remain largely unexplored, especially in vivo. Here, we show that POLR3G and POLR3GL containing Pol III complexes bind the same target genes and assume the same functions both in vitro and in vivo and, to a significant degree, can compensate for each other in vivo. Notably, an observed defect in the differentiation ability of POLR3G knockout ESCs can be rescued by exogenous expression of POLR3GL. Moreover, whereas POLR3G knockout mice die at a very early embryonic stage, POLR3GL knockout mice complete embryonic development without noticeable defects but die at about 3 wk after birth with signs of both general growth defects and potential cerebellum-related neuronal defects. The different phenotypes of the knockout mice likely reflect differential expression levels of POLR3G and POLR3GL across developmental stages and between tissues and insufficient amounts of total Pol III in vivo.
Collapse
|
30
|
Cabal-Hierro L, van Galen P, Prado MA, Higby KJ, Togami K, Mowery CT, Paulo JA, Xie Y, Cejas P, Furusawa T, Bustin M, Long HW, Sykes DB, Gygi SP, Finley D, Bernstein BE, Lane AA. Chromatin accessibility promotes hematopoietic and leukemia stem cell activity. Nat Commun 2020; 11:1406. [PMID: 32179749 PMCID: PMC7076002 DOI: 10.1038/s41467-020-15221-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/27/2020] [Indexed: 01/26/2023] Open
Abstract
Chromatin organization is a highly orchestrated process that influences gene expression, in part by modulating access of regulatory factors to DNA and nucleosomes. Here, we report that the chromatin accessibility regulator HMGN1, a target of recurrent DNA copy gains in leukemia, controls myeloid differentiation. HMGN1 amplification is associated with increased accessibility, expression, and histone H3K27 acetylation of loci important for hematopoietic stem cells (HSCs) and leukemia, such as HoxA cluster genes. In vivo, HMGN1 overexpression is linked to decreased quiescence and increased HSC activity in bone marrow transplantation. HMGN1 overexpression also cooperates with the AML-ETO9a fusion oncoprotein to impair myeloid differentiation and enhance leukemia stem cell (LSC) activity. Inhibition of histone acetyltransferases CBP/p300 relieves the HMGN1-associated differentiation block. These data nominate factors that modulate chromatin accessibility as regulators of HSCs and LSCs, and suggest that targeting HMGN1 or its downstream effects on histone acetylation could be therapeutically active in AML.
Collapse
Affiliation(s)
- Lucia Cabal-Hierro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Peter van Galen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kelly J Higby
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Katsuhiro Togami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Cody T Mowery
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Takashi Furusawa
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, USA
| | - Michael Bustin
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bradley E Bernstein
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
31
|
Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat Struct Mol Biol 2020; 27:109-118. [PMID: 32042149 DOI: 10.1038/s41594-019-0368-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Understanding how the genome is structurally organized as chromatin is essential for understanding its function. Here, we review recent developments that allowed the readdressing of old questions regarding the primary level of chromatin structure, the arrangement of nucleosomes along the DNA and the folding of the nucleosome fiber in nuclear space. In contrast to earlier views of nucleosome arrays as uniformly regular and folded, recent findings reveal heterogeneous array organization and diverse modes of folding. Local structure variations reflect a continuum of functional states characterized by differences in post-translational histone modifications, associated chromatin-interacting proteins and nucleosome-remodeling enzymes.
Collapse
|
32
|
Nizovtseva EV, Polikanov YS, Kulaeva OI, Clauvelin N, Postnikov YV, Olson WK, Studitsky VM. [Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin]. Mol Biol (Mosk) 2020; 53:1038-1048. [PMID: 31876282 DOI: 10.1134/s0026898419060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022]
Abstract
Transcriptional enhancers in the cell nuclei typically interact with the target promoters in cis over long stretches of chromatin, but the mechanism of this communication remains unknown. Previously we have developed a defined in vitro system for quantitative analysis of the rate of distant enhancer-promoter communication (EPC) and have shown that the chromatin fibers maintain efficient distant EPC in cis. Here we investigate the roles of linker histone H1 and HMGN5 protein in EPC. A considerable negative effect of histone H1 on EPC depending on its C- and N-tails was shown. Protein HMGN5 that affects chromatin compaction and is associated with active chromatin counteracts EPC inhibition by H1. The data suggest that the efficiency of the interaction between the enhancer and the promoter depends on the structure and dynamics of the chromatin fiber localized between them and can be regulated by proteins associated with chromatin.
Collapse
Affiliation(s)
- E V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA
| | - Y S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - O I Kulaeva
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA
| | - N Clauvelin
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Y V Postnikov
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - W K Olson
- Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 USA
| | - V M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19422 USA.,Faculty of Biology, Moscow State University, Moscow, 119991 Russia.,
| |
Collapse
|
33
|
Nucleus-specific linker histones Hho1 and Mlh1 form distinct protein interactions during growth, starvation and development in Tetrahymena thermophila. Sci Rep 2020; 10:168. [PMID: 31932604 PMCID: PMC6957481 DOI: 10.1038/s41598-019-56867-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Chromatin organization influences most aspects of gene expression regulation. The linker histone H1, along with the core histones, is a key component of eukaryotic chromatin. Despite its critical roles in chromatin structure and function and gene regulation, studies regarding the H1 protein-protein interaction networks, particularly outside of Opisthokonts, are limited. The nuclear dimorphic ciliate protozoan Tetrahymena thermophila encodes two distinct nucleus-specific linker histones, macronuclear Hho1 and micronuclear Mlh1. We used a comparative proteomics approach to identify the Hho1 and Mlh1 protein-protein interaction networks in Tetrahymena during growth, starvation, and sexual development. Affinity purification followed by mass spectrometry analysis of the Hho1 and Mlh1 proteins revealed a non-overlapping set of co-purifying proteins suggesting that Tetrahymena nucleus-specific linker histones are subject to distinct regulatory pathways. Furthermore, we found that linker histones interact with distinct proteins under the different stages of the Tetrahymena life cycle. Hho1 and Mlh1 co-purified with several Tetrahymena-specific as well as conserved interacting partners involved in chromatin structure and function and other important cellular pathways. Our results suggest that nucleus-specific linker histones might be subject to nucleus-specific regulatory pathways and are dynamically regulated under different stages of the Tetrahymena life cycle.
Collapse
|
34
|
Nizovtseva EV, Polikanov YS, Kulaeva OI, Clauvelin N, Postnikov YV, Olson WK, Studitsky VM. Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin. Mol Biol 2019. [DOI: 10.1134/s002689331906013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Roeder RG. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nat Struct Mol Biol 2019; 26:783-791. [PMID: 31439941 DOI: 10.1038/s41594-019-0287-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
The landmark 1969 discovery of nuclear RNA polymerases I, II and III in diverse eukaryotes represented a major turning point in the field that, with subsequent elucidation of the distinct structures and functions of these enzymes, catalyzed an avalanche of further studies. In this Review, written from a personal and historical perspective, I highlight foundational biochemical studies that led to the discovery of an expanding universe of the components of the transcriptional and regulatory machineries, and a parallel complexity in gene-specific mechanisms that continue to be explored to the present day.
Collapse
Affiliation(s)
- Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|