1
|
Dong HL, Zheng CC, Dai L, Zhang XH, Tan ZJ. Effect of protein binding on the twist-stretch coupling of double-stranded RNA. J Chem Phys 2025; 162:145101. [PMID: 40197586 DOI: 10.1063/5.0260900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025] Open
Abstract
The elasticities of RNAs are generally essential for their biological functions, and RNAs often become functional when interacting with their binding proteins. However, the effects of binding proteins on the elasticities of double-stranded (ds) RNAs, such as twist-stretch coupling, still remain little understood. Here, our extensive all-atom molecular dynamics simulations show that the twist-stretch coupling of dsRNAs can be reversed from positive to negative by their binding proteins. Our analyses revealed that such a reversing effect of binding proteins is attributed to the protein anchoring across the major groove of dsRNAs, which alters the dominating deformation pathway from a major-groove-mediated one to a helical-radius-mediated one through two base-pair parameters of slide and inclination. Meanwhile, the anchoring effect from binding proteins on dsRNAs is further ascribed to the strong electrostatic attractions between dsRNAs and the positively charged binding domain of the proteins.
Collapse
Affiliation(s)
- Hai-Long Dong
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen-Chen Zheng
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Xing-Hua Zhang
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Zheng X, Kong W, Dai X, You C. YBX1 Modulates 8-Oxoguanine Recognition and Repair in DNA. ACS Chem Biol 2025; 20:529-536. [PMID: 39903676 DOI: 10.1021/acschembio.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
8-Oxoguanine (8-oxoG) is not only a biomarker of oxidative DNA damage but also an epigenetic-like regulator in mammalian cells. The identification and characterization of 8-oxoG-binding proteins would be crucial for further understanding the biological consequences of 8-oxoG. Here, we identified human Y-box-binding protein 1 (YBX1) as a novel binding protein for 8-oxoG modification in DNA by using a quantitative proteomic approach. Moreover, we found that the deficiency of YBX1 can substantially decrease the cellular sensitivity to oxidative stress and facilitate the repair of 8-oxoG embedded in DNA. These findings provided new insight into the biological significance of the functional interplay between YBX1 and 8-oxoG modification in DNA.
Collapse
Affiliation(s)
- Xiaofang Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, PR China
| | - Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Yang X, Chen X, Yang W, Pommier Y. Structural insights into human topoisomerase 3β DNA and RNA catalysis and nucleic acid gate dynamics. Nat Commun 2025; 16:834. [PMID: 39828754 PMCID: PMC11743793 DOI: 10.1038/s41467-025-55959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Type IA topoisomerases (TopoIAs) are present in all living organisms. They resolve DNA/RNA catenanes, knots and supercoils by breaking and rejoining single-stranded DNA/RNA segments and allowing the passage of another nucleic acid segment through the break. Topoisomerase III-β (TOP3B), the only RNA topoisomerase in metazoans, promotes R-loop disassembly and translation of mRNAs. Defects in TOP3B lead to severe neurological diseases. We present a series of cryo-EM structures of human TOP3B with its cofactor TDRD3 during cleavage and rejoining of DNA or RNA, thus elucidating the roles of divalent metal ions and key enzyme residues in each step of the catalytic cycle. We also obtained the structure of an open-gate configuration that addresses the long-standing question of the strand-passage mechanism. Our studies reveal how TOP3B catalyzes both DNA and RNA relaxation, while TOP3A acts only on DNA.
Collapse
Affiliation(s)
- Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Xuemin Chen
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
- School of Life Sciences, Anhui University, Hefei, China
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Nikkel DJ, Kaur R, Wetmore SD. How Can One Metal Power Nucleic Acid Phosphodiester Bond Cleavage by a Nuclease? Multiscale Computational Studies Highlight a Diverse Mechanistic Landscape. J Phys Chem B 2025; 129:3-18. [PMID: 39720842 DOI: 10.1021/acs.jpcb.4c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Despite the remarkable resistance of the nucleic acid phosphodiester backbone to degradation affording genetic stability, the P-O bond must be broken during DNA repair and RNA metabolism, among many other critical cellular processes. Nucleases are powerful enzymes that can enhance the uncatalyzed rate of phosphodiester bond cleavage by up to ∼1017-fold. Despite the most well accepted hydrolysis mechanism involving two metals (MA2+ to activate a water nucleophile and MB2+ to stabilize the leaving group), experimental evidence suggests that some nucleases can use a single metal to facilitate the chemical step, a controversial concept in the literature. The present perspective uses the case studies of four nucleases (I-PpoI, APE1, and bacterial and human EndoV) to highlight how computational approaches ranging from quantum mechanical (QM) cluster models to molecular dynamics (MD) simulations and combined quantum mechanics-molecular mechanics (QM/MM) calculations can reveal the atomic level details necessary to understand how a nuclease can use a single metal to facilitate this difficult chemistry. The representative nucleases showcase how different amino acid residues (e.g., histidine, aspartate) can fulfill the role of the first metal (MA2+) in the two-metal-mediated mechanisms. Nevertheless, differences in active site architectures afford diversity in the single-metal-mediated mechanism in terms of the metal-substrate coordination, the role of the metal, and the identities of the general acid and base. The greater understanding of the catalytic mechanisms of nucleases obtained from the body of work reviewed can be used to further explore the progression of diseases associated with nuclease (mis)activity and the development of novel nuclease applications such as disease diagnostics, gene engineering, and therapeutics.
Collapse
Affiliation(s)
- Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
5
|
Quillin AL, Arnould B, Knutson SD, Flores TF, Heemstra JM. EndoVIA for quantifying A-to-I editing and mapping the subcellular localization of edited transcripts. Methods Enzymol 2024; 710:99-130. [PMID: 39870453 PMCID: PMC11908505 DOI: 10.1016/bs.mie.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited. Widely used methods require RNA extraction and pooling that ultimately erases subcellular localization and cell-to-cell variation, which may be critical to understanding misregulation. To overcome these challenges, we recently developed Endonuclease V Immunostaining Assay (EndoVIA) to selectively detect and visualize A-to-I edited RNA in situ. In this chapter, we describe in detail how to prepare cell samples, stain A-to-I edited transcripts with EndoVIA, quantify global inosine abundance, and visualize the subcellular localization of inosine-containing RNAs at the single molecule level.
Collapse
Affiliation(s)
| | - Benoît Arnould
- Department of Chemistry, Washington University in St. Louis, MO, United States
| | - Steve D Knutson
- Department of Chemistry, Princeton University, Princeton, NJ, United States; Merck Center for Catalysis, Princeton University, Princeton, NJ, United States
| | - Tatiana F Flores
- Department of Chemistry, Washington University in St. Louis, MO, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, MO, United States.
| |
Collapse
|
6
|
Kaur R, Nikkel DJ, Wetmore SD. Mechanism of Nucleic Acid Phosphodiester Bond Cleavage by Human Endonuclease V: MD and QM/MM Calculations Reveal a Versatile Metal Dependence. J Phys Chem B 2024; 128:9455-9469. [PMID: 39359137 DOI: 10.1021/acs.jpcb.4c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Human endonuclease V (EndoV) catalytically removes deaminated nucleobases by cleaving the phosphodiester bond as part of RNA metabolism. Despite being implicated in several diseases (cancers, cardiovascular diseases, and neurological disorders) and potentially being a useful tool in biotechnology, details of the human EndoV catalytic pathway remain unclear due to limited experimental information beyond a crystal structure of the apoenzyme and select mutational data. Since a mechanistic understanding is critical for further deciphering the central roles and expanding applications of human EndoV in medicine and biotechnology, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations were used to unveil the atomistic details of the catalytic pathway. Due to controversies surrounding the number of metals required for nuclease activity, enzyme-substrate models with different numbers of active site metals and various metal-substrate binding configurations were built based on structural data for other nucleases. Subsequent MD simulations revealed the structure and stability of the human EndoV-substrate complex for a range of active site metal binding architectures. Four unique pathways were then characterized using QM/MM that vary in metal number (one versus two) and modes of substrate coordination [direct versus indirect (water-mediated)], with several mechanisms being fully consistent with experimental structural, kinetic, and mutational data for related nucleases, including members of the EndoV family. Beyond uncovering key roles for several active site amino acids (D240 and K155), our calculations highlight that while one metal is essential for human EndoV activity, the enzyme can benefit from using two metals due to the presence of two suitable metal binding sites. By directly comparing one- versus two-metal-mediated P-O bond cleavage reactions within the confines of the same active site, our work brings a fresh perspective to the "number of metals" controversy.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, Alberta, Canada
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, Alberta, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, Alberta, Canada
| |
Collapse
|
7
|
Herbert A. Neurodegenerative diseases reflect the reciprocal roles played by retroelements in regulating memory and immunity. Front Neurosci 2024; 18:1445540. [PMID: 39371608 PMCID: PMC11451048 DOI: 10.3389/fnins.2024.1445540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Tetrapod endogenous retroelements (ERE) encode proteins that have been exapted to perform many roles in development and also in innate immunity, including GAG (group specific antigen) proteins from the ERE long terminal repeat (LTR) family, some of which can assemble into viral-like capsids (VLCs) and transmit mRNA across synapses. The best characterized member of this family is ARC (activity-regulated cytoskeletal gene), that is involved in memory formation. Other types of EREs, such as LINES and SINES (long and short interspersed elements), have instead been exapted for immune defenses against infectious agents. These immune EREs identify host transcripts by forming the unusual left-handed Z-DNA and Z-RNA conformations to enable self/nonself discrimination. Elevated levels of immune EREs in the brain are associated with neurodegenerative disease. Here I address the question of how pathways based on immune EREs are relate to the memory EREs that mediate neural plasticity. I propose that during infection and in other inflammatory states, ERE encoded GAG capsids deliver interferon-induced immune EREs that rapidly inhibit translation of viral RNAs in the dendritic splines by activation of protein kinase R (PKR). The response limits transmission of viruses and autonomously replicating elements, while protecting bystander cells from stress-induced cell death. Further, the PKR-dependent phosphorylation of proteins, like tau, disrupts the endocytic pathways exploited by viruses to spread to other cells. The responses come at a cost. They impair memory formation and can contribute to pathology by increasing the deposition of amyloid beta.
Collapse
|
8
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser. Proc Natl Acad Sci U S A 2024; 121:e2318527121. [PMID: 39190355 PMCID: PMC11388330 DOI: 10.1073/pnas.2318527121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and, more importantly, a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
9
|
Chang C, Zhou G, Gao Y. Observing one-divalent-metal-ion-dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo. eLife 2024; 13:RP99960. [PMID: 39141555 PMCID: PMC11325842 DOI: 10.7554/elife.99960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.
Collapse
Affiliation(s)
- Caleb Chang
- Department of Biosciences, Rice UniversityHoustonUnited States
| | - Grace Zhou
- Department of Biosciences, Rice UniversityHoustonUnited States
| | - Yang Gao
- Department of Biosciences, Rice UniversityHoustonUnited States
| |
Collapse
|
10
|
Tao WB, Xiong J, Yuan BF. Site-specific quantification of Adenosine-to-Inosine RNA editing by Endonuclease-Mediated qPCR. Bioorg Med Chem 2024; 110:117837. [PMID: 39013280 DOI: 10.1016/j.bmc.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
RNA molecules contain diverse modified nucleobases that play pivotal roles in numerous biological processes. Adenosine-to-inosine (A-to-I) RNA editing, one of the most prevalent RNA modifications in mammalian cells, is linked to a multitude of human diseases. To unveil the functions of A-to-I RNA editing, accurate quantification of inosine at specific sites is essential. In this study, we developed an endonuclease-mediated cleavage and real-time fluorescence quantitative PCR method for A-to-I RNA editing (EM-qPCR) to quantitatively analyze A-to-I RNA editing at a single site. By employing this method, we successfully quantified the levels of A-to-I RNA editing on various transfer RNA (tRNA) molecules at position 34 (I34) in mammalian cells with precision. Subsequently, this method was applied to tissues from sleep-deprived mice, revealing a notable alteration in the levels of I34 between sleep-deprived and control mice. The proposed method sets a precedent for the quantitative analysis of A-to-I RNA editing at specific sites, facilitating a deeper understanding of the biological implications of A-to-I RNA editing.
Collapse
Affiliation(s)
- Wan-Bing Tao
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Jun Xiong
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, PR China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, PR China.
| |
Collapse
|
11
|
Quillin A, Arnould B, Knutson SD, Heemstra JM. Spatial Visualization of A-to-I Editing in Cells Using Endonuclease V Immunostaining Assay (EndoVIA). ACS CENTRAL SCIENCE 2024; 10:1396-1405. [PMID: 39071059 PMCID: PMC11273454 DOI: 10.1021/acscentsci.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing is one of the most widespread post-transcriptional RNA modifications and is catalyzed by adenosine deaminases acting on RNA (ADARs). Varying across tissue types, A-to-I editing is essential for numerous biological functions, and dysregulation leads to autoimmune and neurological disorders, as well as cancer. Recent evidence has also revealed a link between RNA localization and A-to-I editing, yet understanding of the mechanisms underlying this relationship and its biological impact remains limited. Current methods rely primarily on in vitro characterization of extracted RNA that ultimately erases subcellular localization and cell-to-cell heterogeneity. To address these challenges, we have repurposed endonuclease V (EndoV), a magnesium-dependent ribonuclease that cleaves inosine bases in edited RNA, to selectively bind and detect A-to-I edited RNA in cells. The work herein introduces an endonuclease V immunostaining assay (EndoVIA), a workflow that provides spatial visualization of edited transcripts, enables rapid quantification of overall inosine abundance, and maps the landscape of A-to-I editing within the transcriptome at the nanoscopic level.
Collapse
Affiliation(s)
- Alexandria
L. Quillin
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Benoît Arnould
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Steve D. Knutson
- Merck
Center for Catalysis, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Chang C, Zhou G, Gao Y. Observing one-divalent-metal-ion dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592236. [PMID: 38746211 PMCID: PMC11092635 DOI: 10.1101/2024.05.02.592236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.
Collapse
Affiliation(s)
- Caleb Chang
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Grace Zhou
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
13
|
Mitsuoka K, Kim JI, Yoshida A, Matsumoto A, Aoki-Shioi N, Iwai S, Kuraoka I. Base preference for inosine 3'-riboendonuclease activity of human endonuclease V: implications for cleavage of poly-A tails containing inosine. Sci Rep 2024; 14:14973. [PMID: 38951658 PMCID: PMC11217400 DOI: 10.1038/s41598-024-65814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Deamination of bases is a form of DNA damage that occurs spontaneously via the hydrolysis and nitrosation of living cells, generating hypoxanthine from adenine. E. coli endonuclease V (eEndoV) cleaves hypoxanthine-containing double-stranded DNA, whereas human endonuclease V (hEndoV) cleaves hypoxanthine-containing RNA; however, hEndoV in vivo function remains unclear. To date, hEndoV has only been examined using hypoxanthine, because it binds closely to the base located at the cleavage site. Here, we examined whether hEndoV cleaves other lesions (e.g., AP site, 6-methyladenine, xanthine) to reveal its function and whether 2'-nucleoside modification affects its cleavage activity. We observed that hEndoV is hypoxanthine-specific; its activity was the highest with 2'-OH modification in ribose. The cleavage activity of hEndoV was compared based on its base sequence. We observed that it has specificity for adenine located on the 3'-end of hypoxanthine at the cleavage site, both before and after cleavage. These data suggest that hEndoV recognizes and cleaves the inosine generated on the poly A tail to maintain RNA quality. Our results provide mechanistic insight into the role of hEndoV in vivo.
Collapse
Affiliation(s)
- Kazuma Mitsuoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Jung In Kim
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Aya Yoshida
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Akane Matsumoto
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Narumi Aoki-Shioi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
14
|
Kaur R, Frederickson A, Wetmore SD. Elucidation of the catalytic mechanism of a single-metal dependent homing endonuclease using QM and QM/MM approaches: the case study of I- PpoI. Phys Chem Chem Phys 2024; 26:8919-8931. [PMID: 38426850 DOI: 10.1039/d3cp06201e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Homing endonucleases (HEs) are highly specific DNA cleaving enzymes, with I-PpoI having been suggested to use a single metal to accelerate phosphodiester bond cleavage. Although an I-PpoI mechanism has been proposed based on experimental structural data, no consensus has been reached regarding the roles of the metal or key active site amino acids. This study uses QM cluster and QM/MM calculations to provide atomic-level details of the I-PpoI catalytic mechanism. Minimal QM cluster and large-scale QM/MM models demonstrate that the experimentally-proposed pathway involving direct Mg2+ coordination to the substrate coupled with leaving group protonation through a metal-activated water is not feasible due to an inconducive I-PpoI active site alignment. Despite QM cluster models of varying size uncovering a pathway involving leaving group protonation by a metal-activated water, indirect (water-mediated) metal coordination to the substrate is required to afford this pathway, which renders this mechanism energetically infeasible. Instead, QM cluster models reveal that the preferred pathway involves direct Mg2+-O3' coordination to stabilize the charged substrate and assist leaving group departure, while H98 activates the water nucleophile. These calculations also underscore that both catalytic residues that directly interact with the substrate and secondary amino acids that position or stabilize these residues are required for efficient catalysis. QM/MM calculations on the solvated enzyme-DNA complex verify the preferred mechanism, which is fully consistent with experimental kinetic, structural, and mutational data. The fundamental understanding of the I-PpoI mechanism of action, gained from the present work can be used to further explore potential uses of this enzyme in biotechnology and medicine, and direct future computational investigations of other members of the understudied HE family.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| | - Angela Frederickson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
15
|
Quillin AL, Arnould B, Knutson SD, Heemstra JM. Spatial visualization of A-to-I Editing in cells using Endonuclease V Immunostaining Assay (EndoVIA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583344. [PMID: 38496620 PMCID: PMC10942280 DOI: 10.1101/2024.03.04.583344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Adenosine-to-Inosine (A-to-I) editing is one of the most widespread post-transcriptional RNA modifications and is catalyzed by adenosine deaminases acting on RNA (ADARs). Varying across tissue types, A-to-I editing is essential for numerous biological functions and dysregulation leads to autoimmune and neurological disorders, as well as cancer. Recent evidence has also revealed a link between RNA localization and A-to-I editing, yet understanding of the mechanisms underlying this relationship and its biological impact remains limited. Current methods rely primarily on in vitro characterization of extracted RNA that ultimately erases subcellular localization and cell-to-cell heterogeneity. To address these challenges, we have repurposed Endonuclease V (EndoV), a magnesium dependent ribonuclease that cleaves inosine bases in edited RNA, to selectively bind and detect A-to-I edited RNA in cells. The work herein introduces Endonuclease V Immunostaining Assay (EndoVIA), a workflow that provides spatial visualization of edited transcripts, enables rapid quantification of overall inosine abundance, and maps the landscape of A-to-I editing within the transcriptome at the nanoscopic level.
Collapse
|
16
|
Kaur R, Wetmore SD. Is Metal Stabilization of the Leaving Group Required or Can Lysine Facilitate Phosphodiester Bond Cleavage in Nucleic Acids? A Computational Study of EndoV. J Chem Inf Model 2024; 64:944-959. [PMID: 38253321 DOI: 10.1021/acs.jcim.3c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Endonuclease V (EndoV) is a single-metal-dependent enzyme that repairs deaminated DNA nucleobases in cells by cleaving the phosphodiester bond, and this enzyme has proven to be a powerful tool in biotechnology and medicine. The catalytic mechanism used by EndoV must be understood to design new disease detection and therapeutic solutions and further exploit the enzyme in interdisciplinary applications. This study has used a mixed molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) approach to compare eight distinct catalytic pathways and provides the first proposed mechanism for bacterial EndoV. The calculations demonstrate that mechanisms involving either direct or indirect metal coordination to the leaving group of the substrate previously proposed for other nucleases are unlikely for EndoV, regardless of the general base (histidine, aspartate, and substrate phosphate moiety). Instead, distinct catalytic pathways are characterized for EndoV that involve K139 stabilizing the leaving group, a metal-coordinated water stabilizing the transition structure, and either H214 or a substrate phosphate group activating the water nucleophile. In silico K139A and H214A mutational results support the newly proposed roles of these residues. Although this is a previously unseen combination of general base, general acid, and metal-binding architecture for a one-metal-dependent endonuclease, our proposed catalytic mechanisms are fully consistent with experimental kinetic, structural, and mutational data. In addition to substantiating a growing body of literature, suggesting that one metal is enough to catalyze P-O bond cleavage in nucleic acids, this new fundamental understanding of the catalytic function will promote the exploration of new and improved applications of EndoV.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
17
|
Kudrin P, Rebane A. Do RNA modifications contribute to modulation of immune responses in allergic diseases? FRONTIERS IN ALLERGY 2023; 4:1277244. [PMID: 38026133 PMCID: PMC10679440 DOI: 10.3389/falgy.2023.1277244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
RNA modifications have emerged as a fundamental mechanism of post-transcriptional gene regulation, playing vital roles in cellular physiology and the development of various diseases. While the investigation of RNA modifications has seen significant advancements, the exploration of their implication in allergic diseases has been comparatively overlooked. Allergic reactions, including hay fever, asthma, eczema and food allergies, result from hypersensitive immune responses, affecting a considerable population worldwide. Despite the high prevalence, the molecular mechanisms underlying these responses remain partially understood. The potential role of RNA modifications in modulating the hypersensitive immune responses has yet to be fully elucidated. This mini-review seeks to shed light on potential connections between RNA modifications and allergy, highlighting recent findings and potential future research directions. By expanding our understanding of the complex interplay between RNA modifications and allergic responses, we hope to unlock new avenues for allergy diagnosis, prognosis, and therapeutic intervention.
Collapse
Affiliation(s)
- Pavel Kudrin
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
18
|
Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m 6A mRNA modifications. Nat Rev Mol Cell Biol 2023; 24:714-731. [PMID: 37369853 DOI: 10.1038/s41580-023-00622-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
19
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA Polymerase II substrate binding and metal coordination at 3.0 Å using a free-electron laser. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559052. [PMID: 37790421 PMCID: PMC10543002 DOI: 10.1101/2023.09.22.559052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Catalysis and translocation of multi-subunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near atomic resolution and precise arrangement of key active site components have been elusive. Here we present the free electron laser (FEL) structure of a matched ATP-bound Pol II, revealing the full active site interaction network at the highest resolution to date, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structure indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/bridge helix (BH) interactions induce conformational changes that could propel translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the hyperactive Rpb1 T834P bridge helix mutant reveals rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston MA 02115 USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260 USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| |
Collapse
|
20
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
21
|
Chang C, Zhou G, Gao Y. In crystallo observation of active site dynamics and transient metal ion binding within DNA polymerases. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:034702. [PMID: 37333512 PMCID: PMC10275647 DOI: 10.1063/4.0000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
DNA polymerases are the enzymatic catalysts that synthesize DNA during DNA replication and repair. Kinetic studies and x-ray crystallography have uncovered the overall kinetic pathway and led to a two-metal-ion dependent catalytic mechanism. Diffusion-based time-resolved crystallography has permitted the visualization of the catalytic reaction at atomic resolution and made it possible to capture transient events and metal ion binding that have eluded static polymerase structures. This review discusses past static structures and recent time-resolved structures that emphasize the crucial importance of primer alignment and different metal ions binding during catalysis and substrate discrimination.
Collapse
Affiliation(s)
| | | | - Yang Gao
- Author to whom correspondence should be addressed:. Tel.: +1 (713) 348-2619
| |
Collapse
|
22
|
Biochemical and mutational studies of an endonuclease V from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A. World J Microbiol Biotechnol 2023; 39:90. [PMID: 36752840 DOI: 10.1007/s11274-023-03526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Endonuclease V (EndoV), which is widespread in bacteria, eukarya and Archaea, can cleave hypoxanthine (Hx)-containing DNA or RNA strand, and play an essential role in Hx repair. However, our understanding on archaeal EndoV's function remains incomplete. The model archaeon Sulfolobus islandicus REY15A encodes a putative EndoV protein (Sis-EndoV). Herein, we probed the biochemical characteristics of Sis-EndoV and dissected the roles of its seven conserved residues. Our biochemical data demonstrate that Sis-EndoV displays maximum cleavage efficiency at above 60 °C and at pH 7.0-9.0, and the enzyme activity is dependent on a divalent metal ion, among which Mg2+ is optimal. Importantly, we first measured the activation energy for cleaving Hx-containing ssDNA by Sis-EndoV to be 9.6 ± 0.8 kcal/mol by kinetic analyses, suggesting that chemical catalysis might be a rate-limiting step for catalysis. Mutational analyses show that residue D38 in Sis-EndoV is essential for catalysis, but has no role in DNA binding. Furthermore, we first revealed that residues Y41 and D189 in Sis-EndoV are involved in both DNA cleavage and DNA binding, but residues F77, H103, K156 and F161 are only responsible for DNA binding.
Collapse
|
23
|
Yang X, Saha S, Yang W, Neuman KC, Pommier Y. Structural and biochemical basis for DNA and RNA catalysis by human Topoisomerase 3β. Nat Commun 2022; 13:4656. [PMID: 35945419 PMCID: PMC9363430 DOI: 10.1038/s41467-022-32221-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
In metazoans, topoisomerase 3β (TOP3B) regulates R-loop dynamics and mRNA translation, which are critical for genome stability, neurodevelopment and normal aging. As a Type IA topoisomerase, TOP3B acts by general acid-base catalysis to break and rejoin single-stranded DNA. Passage of a second DNA strand through the transient break permits dissipation of hypernegative DNA supercoiling and catenation/knotting. Additionally, hsTOP3B was recently demonstrated as the human RNA topoisomerase, required for normal neurodevelopment and proposed to be a potential anti-viral target upon RNA virus infection. Here we elucidate the biochemical mechanisms of human TOP3B. We delineate the roles of divalent metal ions, and of a conserved Lysine residue (K10) in the differential catalysis of DNA and RNA. We also demonstrate that three regulatory factors fine-tune the catalytic performance of TOP3B: the TOP3B C-terminal tail, its protein partner TDRD3, and the sequence of its DNA/RNA substrates.
Collapse
Affiliation(s)
- Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Zheng X, Chen D, Zhao Y, Dai X, You C. Development of an Endonuclease V-Assisted Analytical Method for Sequencing Analysis of Deoxyinosine in DNA. Anal Chem 2022; 94:11627-11632. [PMID: 35942621 DOI: 10.1021/acs.analchem.2c02126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deoxyinosine (dI) is a highly mutagenic lesion that preferentially pairs with deoxycytidine during replication, which may induce A to G transition and ultimately contribute to carcinogenesis. Therefore, finding the site of dI modification in DNA is of great value for both basic research and clinical applications. Herein, we developed a novel method to sequence the dI modification site in DNA, which utilizes endonuclease V (EndoV)-dependent deamination repair to specifically label the modification site with biotin-14-dATP that allows the affinity enrichment of dI-bearing DNA for sequencing. We have achieved efficient determination of the location of the modified nucleotide in dI-bearing plasmid DNA with the assistance of EndoV-dependent deamination repair. We have also successfully applied this approach to locate the dI modification sites in the mitochondrial DNA of human cells. Our method should be generally applicable for genome-wide sequencing analysis of dI modifications in living organisms.
Collapse
Affiliation(s)
- Xiaofang Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Di Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Yingqi Zhao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
25
|
Zeng D, Zheng Z, Liu Y, Liu T, Li T, Liu J, Luo Q, Xue Y, Li S, Chai N, Yu S, Xie X, Liu YG, Zhu Q. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools. Int J Mol Sci 2022; 23:ijms23147990. [PMID: 35887335 PMCID: PMC9318980 DOI: 10.3390/ijms23147990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) can efficiently mediate C-to-T/G-to-A and A-to-G/T-to-C substitutions, respectively; however, achieving base transversions (C-to-G/C-to-A and A-to-T/A-to-C) is challenging and has been rarely studied in plants. Here, we constructed new plant C-to-G base editors (CGBEs) and new A-to-Y (T/C) base editors and explored their base editing characteristics in rice. First, we fused the highly active cytidine deaminase evoFENRY and the PAM-relaxed Cas9-nickase variant Cas9n-NG with rice and human uracil DNA N-glycosylase (rUNG and hUNG), respectively, to construct CGBE-rUNG and CGBE-hUNG vector tools. The analysis of five NG-PAM target sites showed that these CGBEs achieved C-to-G conversions with monoallelic editing efficiencies of up to 27.3% in T0 rice, with major byproducts being insertion/deletion mutations. Moreover, for the A-to-Y (C or T) editing test, we fused the highly active adenosine deaminase TadA8e and the Cas9-nickase variant SpGn (with NG-PAM) with Escherichia coli endonuclease V (EndoV) and human alkyladenine DNA glycosylase (hAAG), respectively, to generate ABE8e-EndoV and ABE8e-hAAG vectors. An assessment of five NG-PAM target sites showed that these two vectors could efficiently produce A-to-G substitutions in a narrow editing window; however, no A-to-Y editing was detected. Interestingly, the ABE8e-EndoV also generated precise small fragment deletions in the editing window from the 5′-deaminated A base to the SpGn cleavage site, suggesting its potential value in producing predictable small-fragment deletion mutations. Overall, we objectively evaluated the editing performance of CGBEs in rice, explored the possibility of A-to-Y editing, and developed a new ABE8e-EndoV tool, thus providing a valuable reference for improving and enriching base editing tools in plants.
Collapse
Affiliation(s)
- Dongchang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Yuxin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Tie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Jianhong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Qiyu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Yang Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Shengting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Suize Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
26
|
Visualizing the three-metal-ion-dependent cleavage of a mutagenic nucleotide. Proc Natl Acad Sci U S A 2022; 119:e2207180119. [PMID: 35737831 PMCID: PMC9245661 DOI: 10.1073/pnas.2207180119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Chen JJ, You XJ, Li L, Xie NB, Ding JH, Yuan BF, Feng YQ. Single-Base Resolution Detection of Adenosine-to-Inosine RNA Editing by Endonuclease-Mediated Sequencing. Anal Chem 2022; 94:8740-8747. [PMID: 35678728 DOI: 10.1021/acs.analchem.2c01226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Adenosine-to-inosine (A-to-Ino) RNA editing is one of the most prevalent modifications among all types of RNA. Abnormal A-to-InoRNA editing has been demonstrated to be associated with many human diseases. Identification of A-to-Ino editing sites is indispensable to deciphering their biological roles. Herein, by employing the unique property of human endonuclease V (hEndoV), we proposed a hEndoV-mediated sequencing (hEndoV-seq) method for the single-base resolution detection of A-to-InoRNA editing sites. In this approach, the terminal 3'OH of RNA is first blocked by 3'-deoxyadenosine (3'-deoxy-A). Specific cleavage of Ino sites by hEndoV protein produces new terminal 3'OH, which can be identified by sequencing analysis, and therefore offers the site-specific detection of Ino in RNA. The principle of hEndoV-seq is straightforward and the analytical procedure is simple. No chemical reaction is involved in the sequencing library preparation. The whole procedure in hEndoV-seq is carried out under mild conditions and RNA is not prone to degradation. Taken together, the proposed hEndoV-seq method is capable of site-specific identification of A-to-Ino editing in RNA, which provides a valuable tool for elucidating the functions of A-to-Ino editing in RNA.
Collapse
Affiliation(s)
- Juan-Juan Chen
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xue-Jiao You
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| | - Lin Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neng-Bin Xie
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
28
|
Nakamura T, Yamagata Y. Visualization of mutagenic nucleotide processing by Escherichia coli MutT, a Nudix hydrolase. Proc Natl Acad Sci U S A 2022; 119:e2203118119. [PMID: 35594391 PMCID: PMC9173781 DOI: 10.1073/pnas.2203118119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli MutT prevents mutations by hydrolyzing mutagenic 8-oxo-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) in the presence of Mg2+ or Mn2+ ions. MutT is one of the most studied enzymes in the nucleoside diphosphate-linked moiety X (Nudix) hydrolase superfamily, which is widely distributed in living organisms. However, the catalytic mechanisms of most Nudix hydrolases, including two- or three-metal-ion mechanisms, are still unclear because these mechanisms are proposed using the structures mimicking the reaction states, such as substrate analog complexes. Here, we visualized the hydrolytic reaction process of MutT by time-resolved X-ray crystallography using a biological substrate, 8-oxo-dGTP, and an active metal ion, Mn2+. The reaction was initiated by soaking MutT crystals in a MnCl2 solution and stopped by freezing the crystals at various time points. In total, five types of intermediate structures were refined by investigating the time course of the electron densities in the active site as well as the anomalous signal intensities of Mn2+ ions. The structures and electron densities show that three Mn2+ ions bind to the Nudix motif of MutT and align the substrate 8-oxo-dGTP for catalysis. Accompanied by the coordination of the three Mn2+ ions, a water molecule, bound to a catalytic base, forms a binuclear Mn2+ center for nucleophilic substitution at the β-phosphorus of 8-oxo-dGTP. The reaction condition using Mg2+ also captured a structure in complex with three Mg2+ ions. This study provides the structural details essential for understanding the three-metal-ion mechanism of Nudix hydrolases and proposes that some of the Nudix hydrolases share this mechanism.
Collapse
Affiliation(s)
- Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
- Shokei University and Shokei University Junior College, Kumamoto, 862-8678, Japan
| |
Collapse
|
29
|
In crystallo observation of three metal ion promoted DNA polymerase misincorporation. Nat Commun 2022; 13:2346. [PMID: 35487947 PMCID: PMC9054841 DOI: 10.1038/s41467-022-30005-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 11/11/2022] Open
Abstract
Error-free replication of DNA is essential for life. Despite the proofreading capability of several polymerases, intrinsic polymerase fidelity is in general much higher than what base-pairing energies can provide. Although researchers have investigated this long-standing question with kinetics, structural determination, and computational simulations, the structural factors that dictate polymerase fidelity are not fully resolved. Time-resolved crystallography has elucidated correct nucleotide incorporation and established a three-metal-ion-dependent catalytic mechanism for polymerases. Using X-ray time-resolved crystallography, we visualize the complete DNA misincorporation process catalyzed by DNA polymerase η. The resulting molecular snapshots suggest primer 3´-OH alignment mediated by A-site metal ion binding is the key step in substrate discrimination. Moreover, we observe that C-site metal ion binding preceded the nucleotidyl transfer reaction and demonstrate that the C-site metal ion is strictly required for misincorporation. Our results highlight the essential but separate roles of the three metal ions in DNA synthesis. By observing DNA polymerase misincorporation with time-resolved crystallography, the authors visualize three-metal ion dependent polymerase catalysis and identify A-site metal-mediated primer alignment as a key step in nucleotide discrimination.
Collapse
|
30
|
Jones SP, Goossen C, Lewis SD, Delaney AM, Gleghorn ML. Not making the cut: Techniques to prevent RNA cleavage in structural studies of RNase-RNA complexes. J Struct Biol X 2022; 6:100066. [PMID: 35340590 PMCID: PMC8943300 DOI: 10.1016/j.yjsbx.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
RNases are varied in the RNA structures and sequences they target for cleavage and are an important type of enzyme in cells. Despite the numerous examples of RNases known, and of those with determined three-dimensional structures, relatively few examples exist with the RNase bound to intact cognate RNA substrate prior to cleavage. To better understand RNase structure and sequence specificity for RNA targets, in vitro methods used to assemble these enzyme complexes trapped in a pre-cleaved state have been developed for a number of different RNases. We have surveyed the Protein Data Bank for such structures and in this review detail methodologies that have successfully been used and relate them to the corresponding structures. We also offer ideas and suggestions for future method development. Many strategies within this review can be used in combination with X-ray crystallography, as well as cryo-EM, and other structure-solving techniques. Our hope is that this review will be used as a guide to resolve future yet-to-be-determined RNase-substrate complex structures.
Collapse
Affiliation(s)
- Seth P. Jones
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Christian Goossen
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Lothrop St, Pittsburgh, PA 15261, United States
| | - Sean D. Lewis
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Mayo Clinic, 200 1st St SW, Rochester, MN 5590, United States
| | - Annie M. Delaney
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Michael L. Gleghorn
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| |
Collapse
|
31
|
Garcia Gonzalez J, Hernandez FJ. Nuclease activity: an exploitable biomarker in bacterial infections. Expert Rev Mol Diagn 2022; 22:265-294. [PMID: 35240900 DOI: 10.1080/14737159.2022.2049249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In the increasingly challenging field of clinical microbiology, diagnosis is a cornerstone whose accuracy and timing are crucial for the successful management, therapy, and outcome of infectious diseases. Currently employed biomarkers of infectious diseases define the scope and limitations of diagnostic techniques. As such, expanding the biomarker catalog is crucial to address unmet needs and bring about novel diagnostic functionalities and applications. AREAS COVERED This review describes the extracellular nucleases of 15 relevant bacterial pathogens and discusses the potential use of nuclease activity as a diagnostic biomarker. Articles were searched for in PubMed using terms: "nuclease", "bacteria", "nuclease activity" or "biomarker". For overview sections, original and review articles between 2000 and 2019 were searched for using terms: "infections", "diagnosis", "bacterial", "burden", "challenges". Informative articles were selected. EXPERT OPINION Using the catalytic activity of nucleases offers new possibilities compared to established biomarkers. Nucleic acid activatable reporters in combination with different transduction platforms and delivery methods can be used to detect disease-associated nuclease activity patterns in vitro and in vivo for prognostic and diagnostic applications. Even when these patterns are not obvious or of unknown etiology, screening platforms could be used to identify new disease reporters.
Collapse
Affiliation(s)
- Javier Garcia Gonzalez
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Linköping, Sweden.,Nucleic Acids Technologies Laboratory (NAT-lab), Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Linköping, Sweden.,Nucleic Acids Technologies Laboratory (NAT-lab), Linköping University, Linköping, Sweden
| |
Collapse
|
32
|
Shiraishi M, Hidaka M, Iwai S. Endonuclease V from the archaeon Thermococcus kodakarensis is an inosine-specific ribonuclease. Biosci Biotechnol Biochem 2022; 86:313-320. [PMID: 34928335 DOI: 10.1093/bbb/zbab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/11/2021] [Indexed: 11/14/2022]
Abstract
Endonuclease V (EndoV) is an inosine-specific endonuclease which is highly conserved in all domains of life: Bacteria, Archaea, and Eukarya; and, therefore, may play an important role in nucleic acid processes. It is currently thought that bacterial EndoVs are involved in DNA repair, while eukaryotic EndoVs are involved in RNA editing based on the differences in substrate preferences. However, the role of EndoV proteins, particularly in the archaeal domain, is still poorly understood. Here, we explored the biochemical properties of EndoV from the hyperthermophilic archaeon Thermococcus kodakarensis (TkoEndoV). We show that TkoEndoV has a strong preference for RNA over DNA. Further, we synthesized 1-methylinosine-containing RNA that is a simple TΨC loop mimic of archaeal tRNA and found that TkoEndoV discriminates between 1-methylinosine and inosine, and selectively acts on inosine. Our findings suggest a potential role of archaeal EndoV in the regulation of inosine-containing RNA.
Collapse
Affiliation(s)
- Miyako Shiraishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Michihi Hidaka
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigenori Iwai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
33
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
34
|
Endo M, Kim JI, Shioi NA, Iwai S, Kuraoka I. Arabidopsis thaliana endonuclease V is a ribonuclease specific for inosine-containing single-stranded RNA. Open Biol 2021; 11:210148. [PMID: 34665969 PMCID: PMC8526164 DOI: 10.1098/rsob.210148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Endonuclease V is highly conserved, both structurally and functionally, from bacteria to humans, and it cleaves the deoxyinosine-containing double-stranded DNA in Escherichia coli, whereas in Homo sapiens it catalyses the inosine-containing single-stranded RNA. Thus, deoxyinosine and inosine are unexpectedly produced by the deamination reactions of adenine in DNA and RNA, respectively. Moreover, adenosine-to-inosine (A-to-I) RNA editing is carried out by adenosine deaminase acting on dsRNA (ADARs). We focused on Arabidopsis thaliana endonuclease V (AtEndoV) activity exhibiting variations in DNA or RNA substrate specificities. Since no ADAR was observed for A-to-I editing in A. thaliana, the possibility of inosine generation by A-to-I editing can be ruled out. Purified AtEndoV protein cleaved the second and third phosphodiester bonds, 3' to inosine in single-strand RNA, at a low reaction temperature of 20-25°C, whereas the AtEndoV (Y100A) protein bearing a mutation in substrate recognition sites did not cleave these bonds. Furthermore, AtEndoV, similar to human EndoV, prefers RNA substrates over DNA substrates, and it could not cleave the inosine-containing double-stranded RNA. Thus, we propose the possibility that AtEndoV functions as an RNA substrate containing inosine induced by RNA damage, and not by A-to-I RNA editing in vivo.
Collapse
Affiliation(s)
- Megumi Endo
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Jung In Kim
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Narumi Aoki Shioi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
35
|
Structural basis for recognition of distinct deaminated DNA lesions by endonuclease Q. Proc Natl Acad Sci U S A 2021; 118:2021120118. [PMID: 33658373 DOI: 10.1073/pnas.2021120118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spontaneous deamination of DNA cytosine and adenine into uracil and hypoxanthine, respectively, causes C to T and A to G transition mutations if left unrepaired. Endonuclease Q (EndoQ) initiates the repair of these premutagenic DNA lesions in prokaryotes by cleaving the phosphodiester backbone 5' of either uracil or hypoxanthine bases or an apurinic/apyrimidinic (AP) lesion generated by the excision of these damaged bases. To understand how EndoQ achieves selectivity toward these structurally diverse substrates without cleaving undamaged DNA, we determined the crystal structures of Pyrococcus furiosus EndoQ bound to DNA substrates containing uracil, hypoxanthine, or an AP lesion. The structures show that substrate engagement by EndoQ depends both on a highly distorted conformation of the DNA backbone, in which the target nucleotide is extruded out of the helix, and direct hydrogen bonds with the deaminated bases. A concerted swing motion of the zinc-binding and C-terminal helical domains of EndoQ toward its catalytic domain allows the enzyme to clamp down on a sharply bent DNA substrate, shaping a deep active-site pocket that accommodates the extruded deaminated base. Within this pocket, uracil and hypoxanthine bases interact with distinct sets of amino acid residues, with positioning mediated by an essential magnesium ion. The EndoQ-DNA complex structures reveal a unique mode of damaged DNA recognition and provide mechanistic insights into the initial step of DNA damage repair by the alternative excision repair pathway. Furthermore, we demonstrate that the unique activity of EndoQ is useful for studying DNA deamination and repair in mammalian systems.
Collapse
|
36
|
Knutson SD, Heemstra JM. Protein-based molecular recognition tools for detecting and profiling RNA modifications. Curr Opin Struct Biol 2021; 69:1-10. [PMID: 33445115 PMCID: PMC8272725 DOI: 10.1016/j.sbi.2020.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
RNA undergoes extensive biochemical modification following transcription. In addition to RNA splicing, transcripts are processed by a suite of enzymes that alter the chemical structure of different nucleobases. Broadly termed as 'RNA editing,' these modifications impart significant functional changes to translation, localization, and stability of individual transcripts within the cell. These changes are dynamic and required for a number of critical cellular processes, and dysregulation of these pathways is responsible for several disease states. Accurately detecting, measuring, and mapping different RNA modifications across the transcriptome is vital to understanding their broader functions as well as leveraging these events as diagnostic biomarkers. Here, we review recent advances in profiling several types of RNA modifications, with particular emphasis on adenosine-to-inosine (A-to-I) and N6-methyladenosine (m6A) RNA editing. We especially highlight approaches that utilize proteins to detect or enrich modified RNA transcripts before sequencing, and we summarize recent insights yielded from these techniques.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
37
|
Knutson SD, Arthur RA, Johnston HR, Heemstra JM. Direct Immunodetection of Global A-to-I RNA Editing Activity with a Chemiluminescent Bioassay. Angew Chem Int Ed Engl 2021; 60:17009-17017. [PMID: 33979483 PMCID: PMC8562906 DOI: 10.1002/anie.202102762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Adenosine-to-inosine (A-to-I) editing is a conserved eukaryotic RNA modification that contributes to development, immune response, and overall cellular function. Here, we utilize Endonuclease V (EndoV), which binds specifically to inosine in RNA, to develop an EndoV-linked immunosorbency assay (EndoVLISA) as a rapid, plate-based chemiluminescent method for measuring global A-to-I editing signatures in cellular RNA. We first optimize and validate our assay with chemically synthesized oligonucleotides. We then demonstrate rapid detection of inosine content in treated cell lines, demonstrating equivalent performance against current standard RNA-seq approaches. Lastly, we deploy our EndoVLISA for profiling differential A-to-I RNA editing signatures in normal and diseased human tissue, illustrating the utility of our platform as a diagnostic bioassay. Together, the EndoVLISA method is cost-effective, straightforward, and utilizes common laboratory equipment, offering a highly accessible new approach for studying A-to-I editing. Moreover, the multi-well plate format makes this the first assay amenable for direct high-throughput quantification of A-to-I editing for applications in disease detection and drug development.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, GA, 30322, USA
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory University, 101 Woodruff Cir., Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - H Richard Johnston
- Emory Integrated Computational Core, Emory University, 101 Woodruff Cir., Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, GA, 30322, USA
| |
Collapse
|
38
|
Direct Immunodetection of Global A‐to‐I RNA Editing Activity with a Chemiluminescent Bioassay. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution. Microbiol Spectr 2021; 9:e0031121. [PMID: 34287030 PMCID: PMC8552610 DOI: 10.1128/spectrum.00311-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacillus mycoides is poorly known despite its frequent occurrence in a wide variety of environments. To provide direct insight into its ecology and evolutionary history, a comparative investigation of the species pan-genome and the functional gene categorization of 35 isolates obtained from soil samples from northeastern Poland was performed. The pan-genome of these isolates is composed of 20,175 genes and is characterized by a strong predominance of adaptive genes (∼83%), a significant amount of plasmid genes (∼37%), and a great contribution of prophages and insertion sequences. The pan-genome structure and phylodynamic studies had suggested a wide genomic diversity among the isolates, but no correlation between lineages and the bacillus origin was found. Nevertheless, the two B. mycoides populations, one from Białowieża National Park, the last European natural primeval forest with soil classified as organic, and the second from mineral soil samples taken in a farm in Jasienówka, a place with strong anthropogenic pressure, differ significantly in the frequency of genes encoding proteins enabling bacillus adaptation to specific stress conditions and production of a set of compounds, thus facilitating their colonization of various ecological niches. Furthermore, differences in the prevalence of essential stress sigma factors might be an important trail of this process. Due to these numerous adaptive genes, B. mycoides is able to quickly adapt to changing environmental conditions. IMPORTANCE This research allows deeper understanding of the genetic organization of natural bacterial populations, specifically, Bacillus mycoides, a psychrotrophic member of the Bacillus cereus group that is widely distributed worldwide, especially in areas with continental cold climates. These thorough analyses made it possible to describe, for the first time, the B. mycoides pan-genome, phylogenetic relationship within this species, and the mechanisms behind the species ecology and evolutionary history. Our study indicates a set of functional properties and adaptive genes, in particular, those encoding sigma factors, associated with B. mycoides acclimatization to specific ecological niches and changing environmental conditions.
Collapse
|
40
|
Huang X, Sun W, Cheng Z, Chen M, Li X, Wang J, Sheng G, Gong W, Wang Y. Structural basis for two metal-ion catalysis of DNA cleavage by Cas12i2. Nat Commun 2020; 11:5241. [PMID: 33067443 PMCID: PMC7567891 DOI: 10.1038/s41467-020-19072-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
To understand how the RuvC catalytic domain of Class 2 Cas proteins cleaves DNA, it will be necessary to elucidate the structures of RuvC-containing Cas complexes in their catalytically competent states. Cas12i2 is a Class 2 type V-I CRISPR-Cas endonuclease that cleaves target dsDNA by an unknown mechanism. Here, we report structures of Cas12i2–crRNA–DNA complexes and a Cas12i2–crRNA complex. We reveal the mechanism of DNA recognition and cleavage by Cas12i2, and activation of the RuvC catalytic pocket induced by a conformational change of the Helical-II domain. The seed region (nucleotides 1–8) is dispensable for RuvC activation, but the duplex of the central spacer (nucleotides 9–15) is required. We captured the catalytic state of Cas12i2, with both metal ions and the ssDNA substrate bound in the RuvC catalytic pocket. Together, our studies provide significant insights into the DNA cleavage mechanism by RuvC-containing Cas proteins. Cas12i, class 2 type V CRISPR-Cas system protein, uses a single RuvC domain for cleavage of both strands of target DNA. Structures of Cas12i2–crRNA–DNA complexes not only provide insight into the mechanism of DNA recognition and cleavage by Cas12i2, but also the DNA cleavage mechanism by RuvC-containing Cas proteins.
Collapse
Affiliation(s)
- Xue Huang
- Hefei National Laboratory for Physical Sciences at the Microscales, University of Science and Technology of China, 230026, Hefei, Anhui, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhi Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Minxuan Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xueyan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiuyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Gang Sheng
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Weimin Gong
- Hefei National Laboratory for Physical Sciences at the Microscales, University of Science and Technology of China, 230026, Hefei, Anhui, China. .,School of Life Sciences, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Yanli Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|