1
|
Li Y, Liu X, Wang Y, Liu Z, Ye M, Wang H. [Deciphering cellular processes responding to lethality of 17 β-estradiol by quantitative phosphoproteomics]. Se Pu 2024; 42:333-344. [PMID: 38566422 PMCID: PMC10988567 DOI: 10.3724/sp.j.1123.2023.04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 04/04/2024] Open
Abstract
17β-Estradiol (E2), an important endocrine hormone in the mammalian body, participates in the regulation of the physiological functions of the reproductive system, mammary glands, bone, and cardiovascular system, among others. Paradoxically, despite the physiological actions of endogenous E2 (0.2-1.0 nmol/L), numerous clinical and experimental studies have demonstrated that high-dose E2 treatment can cause tumor regression and exert pro-apoptotic actions in multiple cell types; however, the underlying mechanism remains undescribed. In particular, little information of the cellular processes responding to the lethality of E2 is available. In the present study, we attempted to characterize the cellular processes responding to high-dose (μmol/L) E2 treatment using quantitative phosphoproteomics to obtain a better understanding of the regulatory mechanism of E2-induced cell death. First, the cell phenotype induced by high-dose E2 was determined by performing Cell Counting Kit-8 assay (CCK8), cell cytotoxicity analysis by trypan blue staining, and microscopic imaging on HeLa cells treated with 1-10 μmol/L E2 or dimethyl sulfoxide (DMSO) for 1-3 d. E2 inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Compared with the DMSO-treated HeLa cells, the cells treated with 5 μmol/L E2 for 2 d demonstrated >74% growth inhibition and approximately 50% cell death. Thus, these cells were used for quantitative phosphoproteomic analysis. Next, a solid-phase extraction (SPE)-based immobilized titanium ion affinity chromatography (Ti4+-IMAC) phosphopeptide-enrichment method coupled with data-independent acquisition (DIA)-based quantitative proteomics was employed for the in-depth screening of high-dose E2-regulated phosphorylation sites to investigate the intracellular processes responding to high-dose E2 treatment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified over 10000 phosphorylation sites regulated by E2 and DMSO in HeLa cells. In comparison with the DMSO-treated cells, the cells treated with 5 μmol/L E2 showed 537 upregulated phosphorylation sites and 387 downregulated phosphorylation sites, with a threshold of p<0.01 and |log2(fold change)|≥1. A total of 924 phosphorylation sites on 599 proteins were significantly regulated by high-dose E2, and these sites were subjected to enrichment analysis. In addition, 453 differently regulated phosphorylation sites on 325 proteins were identified only in the E2- or DMSO-treated cell samples. These phosphorylation sites may be phosphorylated or dephosphorylated in response to high-dose E2 stimulation and were subjected to parallel enrichment analyses. Taken together, 1218 phosphorylation sites on 741 proteins were significantly regulated by high-dose E2 treatment. The functional phosphoproteins in these two groups were then analyzed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to determine the biological processes in which they participate and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Consistent with the cell-phenotype data, cell cycle-related proteins were highly enriched in the two groups of E2-regulated phosphoproteins (p<0.05), indicating that high-dose E2 treatment can regulate cell proliferation. In addition, E2-regulated phosphoproteins were highly enriched in the cellular processes of ribosome biogenesis, nucleocytoplasmic transport, and messenger ribonucleic acid (mRNA) processing/splicing (p<0.05), indicating that the activation of these processes may contribute to high-dose E2-induced cell death. These results further confirm that high-dose E2 treatment inhibits protein translation and induces cell death. Furthermore, the significant upregulation of multiple phosphorylation sites associated with epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPKs) MAPK1, MAPK4, and MAPK14 by high-dose E2 indicates that the EGFR and MAPK signaling pathways are likely involved in the regulation of E2-induced cell death. These phosphorylation sites likely play vital roles in E2-induced cell death in HeLa cells. Overall, our phosphoproteomic data could be a valuable resource for uncovering the regulatory mechanisms of E2 in the micromolar range.
Collapse
Affiliation(s)
- Yanan Li
- 1. School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- 2. State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- 3. CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Xiaoyan Liu
- 3. CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yan Wang
- 3. CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Zhen Liu
- 3. CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Mingliang Ye
- 3. CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Hailin Wang
- 1. School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- 2. State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Meanwell NA. Anagrelide: A Clinically Effective cAMP Phosphodiesterase 3A Inhibitor with Molecular Glue Properties. ACS Med Chem Lett 2023; 14:350-361. [PMID: 37077378 PMCID: PMC10108399 DOI: 10.1021/acsmedchemlett.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The mode of action by which the orphan drug anagrelide (1), a potent cAMP phosphodiesterase 3A inhibitor, reduces blood platelet count in humans is not well understood. Recent studies indicate that 1 stabilizes a complex between PDE3A and Schlafen 12, protecting it from degradation while activating its RNase activity.
Collapse
Affiliation(s)
- Nicholas A. Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
3
|
Läsche M, Gallwas J, Gründker C. Like Brothers in Arms: How Hormonal Stimuli and Changes in the Metabolism Signaling Cooperate, Leading HPV Infection to Drive the Onset of Cervical Cancer. Int J Mol Sci 2022; 23:5050. [PMID: 35563441 PMCID: PMC9103757 DOI: 10.3390/ijms23095050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all precautionary actions and the possibility of using vaccinations to counteract infections caused by human papillomaviruses (HPVs), HPV-related cancers still account for approximately 5% of all carcinomas. Worldwide, many women are still excluded from adequate health care due to their social position and origin. Therefore, immense efforts in research and therapy are still required to counteract the challenges that this disease entails. The special thing about an HPV infection is that it is not only able to trick the immune system in a sophisticated way, but also, through genetic integration into the host genome, to use all the resources available to the host cells to complete the replication cycle of the virus without activating the alarm mechanisms of immune recognition and elimination. The mechanisms utilized by the virus are the metabolic, immune, and hormonal signaling pathways that it manipulates. Since the virus is dependent on replication enzymes of the host cells, it also intervenes in the cell cycle of the differentiating keratinocytes and shifts their terminal differentiation to the uppermost layers of the squamocolumnar transformation zone (TZ) of the cervix. The individual signaling pathways are closely related and equally important not only for the successful replication of the virus but also for the onset of cervical cancer. We will therefore analyze the effects of HPV infection on metabolic signaling, as well as changes in hormonal and immune signaling in the tumor and its microenvironment to understand how each level of signaling interacts to promote tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, 37075 Göttingen, Germany; (M.L.); (J.G.)
| |
Collapse
|
4
|
Guo Y, Cheng L, Li X, Tang S, Zhang X, Gong Y. Transcriptional regulation of CYP19A1 expression in chickens: ESR1, ESR2 and NR5A2 form a functional network. Gen Comp Endocrinol 2022; 315:113939. [PMID: 34710471 DOI: 10.1016/j.ygcen.2021.113939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 11/04/2022]
Abstract
Aromatase, encoded by CYP19A1, is responsible for the conversion of androgen to estrogen, which plays a vital role in the development and function of the ovary and functions in many other physiological processes in both sexes. Instead of being expressed in ovarian granulosa cells, as in mammals, CYP19A1 is expressed in chickens in the theca cells of ovarian follicles, and the mechanism of CYP19A1 expression regulation remains unknown. Here, using immunofluorescence and western blotting assay, we first confirmed that CYP19A1 and FOXL2 (Forkheadbox L2) were coexpressed in pre-granulosa cells of female chicken embryonic gonads, while FOXL2 did not affect aromatase expression at embryonic stages. Second, our research showed that CYP19A1, ESR1 (estrogen receptor alpha), ESR2 (estrogen receptor beta) and NR5A2 (liver receptor homologue-1) were coexpressed in the theca cell layers of chicken small yellow follicles. There was cross-talk between CYP19A1 and candidate transcription factors (ESR1, ESR2 and NR5A2), which was identified by generating a reliable theca cell culture model. Using luciferase assays in theca cells and chicken embryonic fibroblast (DF-1) cells, the results suggested that ESR1 and NR5A2 had potential effects on CYP19A1 promoter activity in chickens. Overexpression of ESR1, ESR2 and NR5A2 in chicken embryonic fibroblast (DF-1) cells upregulated the protein expression of CYP19A1, mutually restricted each other and formed a potential regulatory network to coordinate the expression of CYP19A1. To conclude, our results indicated that FOXL2 cannot regulate the expression of CYP19A1 at chicken embryonic stages and after sexual maturity, ESR1, ESR2 and NR5A2 form a functional network to affect the expression of CYP19A1. These results laid a foundation for further research on the transcriptional regulation of chicken aromatase.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Lu Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Xiaxia Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
5
|
Transcriptomic Analysis of Laying Hens Revealed the Role of Aging-Related Genes during Forced Molting. Genes (Basel) 2021; 12:genes12111767. [PMID: 34828373 PMCID: PMC8621152 DOI: 10.3390/genes12111767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
Molting in birds provides us with an ideal genetic model for understanding aging and rejuvenation since birds present younger characteristics for reproduction and appearance after molting. Forced molting (FM) by fasting in chickens causes aging of their reproductive system and then promotes cell redevelopment by providing water and feed again. To reveal the genetic mechanism of rejuvenation, we detected blood hormone indexes and gene expression levels in the hypothalamus and ovary of hens from five different periods during FM. Three hormones were identified as participating in FM. Furthermore, the variation trends of gene expression levels in the hypothalamus and ovary at five different stages were found to be basically similar using transcriptome analysis. Among them, 45 genes were found to regulate cell aging during fasting stress and 12 genes were found to promote cell development during the recovery period in the hypothalamus. In addition, five hub genes (INO80D, HELZ, AGO4, ROCK2, and RFX7) were identified by WGCNA. FM can restart the reproductive function of aged hens by regulating expression levels of genes associated with aging and development. Our study not only enriches the theoretical basis of FM but also provides insights for the study of antiaging in humans and the conception mechanism in elderly women.
Collapse
|
6
|
R S J. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions-Evidence for Estrogen as an Immunomodulator. Front Cell Infect Microbiol 2021; 11:649815. [PMID: 33996630 PMCID: PMC8120286 DOI: 10.3389/fcimb.2021.649815] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Globally, human papilloma virus (HPV) infection is a common sexually transmitted disease. However, most of the HPV infections eventually resolve aided by the body’s efficient cell-mediated immune responses. In the vast majority of the small group of patients who develop overt disease too, it is the immune response that culminates in regression of lesions. It is therefore a rarity that persistent infection by high-risk genotypes of HPV compounded by other risk factors progresses through precancer (various grades of cervical intraepithelial neoplasia—CIN) to cervical cancer (CxCa). Hence, although CxCa is a rare culmination of HPV infection, the latter is nevertheless causally linked to >90% of cancer. The three ‘Es’ of cancer immunoediting viz. elimination, equilibrium, and escape come into vogue during the gradual evolution of CIN 1 to CxCa. Both cell-intrinsic and extrinsic mechanisms operate to eliminate virally infected cells: cell-extrinsic players are anti-tumor/antiviral effectors like Th1 subset of CD4+ T cells, CD8+ cytotoxic T cells, Natural Killer cells, etc. and pro-tumorigenic/immunosuppressive cells like regulatory T cells (Tregs), Myeloid-Derived Suppressor Cells (MDSCs), type 2 macrophages, etc. And accordingly, when immunosuppressive cells overpower the effectors e.g., in high-grade lesions like CIN 2 or 3, the scale is tilted towards immune escape and the disease progresses to cancer. Estradiol has long been considered as a co-factor in cervical carcinogenesis. In addition to the gonads, the Peyer’s patches in the gut synthesize estradiol. Over and above local production of the hormone in the tissues, estradiol metabolism by the gut microbiome: estrobolome versus tryptophan non-metabolizing microbiome, regulates free estradiol levels in the intestine and extraintestinal mucosal sites. Elevated tissue levels of the hormone serve more than one purpose: besides a direct growth-promoting action on cervical epithelial cells, estradiol acting genomically via Estrogen Receptor-α also boosts the function of the stromal and infiltrating immunosuppressive cells viz. Tregs, MDSCs, and carcinoma-associated fibroblasts. Hence as a corollary, therapeutic repurposing of Selective Estrogen Receptor Disruptors or aromatase inhibitors could be useful for modulating immune function in cervical precancer/cancer. The immunomodulatory role of estradiol in HPV-mediated cervical lesions is reviewed.
Collapse
Affiliation(s)
- Jayshree R S
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| |
Collapse
|
7
|
James CD, Morgan IM, Bristol ML. The Relationship between Estrogen-Related Signaling and Human Papillomavirus Positive Cancers. Pathogens 2020; 9:E403. [PMID: 32455952 PMCID: PMC7281727 DOI: 10.3390/pathogens9050403] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
High risk-human papillomaviruses (HPVs) are known carcinogens. Numerous reports have linked the steroid hormone estrogen, and the expression of estrogen receptors (ERs), to HPV-related cancers, although the exact nature of the interactions remains to be fully elucidated. Here we will focus on estrogen signaling and describe both pro and potentially anti-cancer effects of this hormone in HPV-positive cancers. This review will summarize: (1) cell culture-related evidence, (2) animal model evidence, and (3) clinical evidence demonstrating an interaction between estrogen and HPV-positive cancers. This comprehensive review provides insights into the potential relationship between estrogen and HPV. We suggest that estrogen may provide a potential therapeutic for HPV-related cancers, however additional studies are necessary.
Collapse
Affiliation(s)
- Claire D. James
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| | - Iain M. Morgan
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
- VCU Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Molly L. Bristol
- School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
| |
Collapse
|
8
|
Abstract
Human papillomaviruses cause around 5% of all human cancers, yet there are no specific antiviral therapeutic approaches available for combatting these cancers. These cancers are currently treated with standard chemoradiation therapy (CRT). Specific antiviral reagents are desperately required, particularly for HPV+HNSCC whose incidence is increasing and for which there are no diagnostic tools available for combatting this disease. Using data from The Cancer Genome Atlas (TCGA), we and others determined that the estrogen receptor alpha (ERα) is overexpressed in HPV+HNSCC and that elevated levels are associated with an improved disease outcome. This has led to the proposal that estrogen treatment could be a novel therapeutic approach for combatting HPV+cancers. Here, we demonstrate that estrogen attenuates the growth of HPV+epithelial cells using multiple mechanisms, supporting the idea that estrogen has potential as a therapeutic agent for the treatment of HPV+HNSCC. Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that are significant risk factors in the development of cancer, and HPV accounts for approximately 5% of all worldwide cancers. Recent studies using data from The Cancer Genome Atlas (TCGA) have demonstrated that elevated levels of estrogen receptor alpha (ERα) are associated with improved survival in oropharyngeal cancers, and these elevated receptor levels were linked with human papillomavirus-positive cancers (HPV+cancers). There has been a dramatic increase in HPV-related head and neck squamous cell carcinomas (HPV+HNSCCs) over the last 2 decades, and therapeutic options for this ongoing health crisis are a priority; currently, there are no antiviral therapeutics available for combatting HPV+cancers. During our TGCA studies on head and neck cancer, we had also discovered the overexpression of ERα in HPV+cancers. Here, we demonstrate that 17β-estradiol (estrogen) attenuates the growth/cell viability of HPV+cancers in vitro, but not HPV-negative cancer cells. In addition, N/Tert-1 cells (foreskin keratinocytes immortalized with human telomerase reverse transcriptase [hTERT]) containing human papillomavirus 16 (HPV16) have elevated levels of ERα and growth sensitivity after estrogen treatment compared with parental N/Tert-1 cells. Finally, we demonstrate that there are potentially two mechanisms contributing to the attenuation of HPV+ cell growth following estrogen treatment. First, estrogen represses the viral transcriptional long control region (LCR) downregulating early gene expression, including E6/E7. Second, expression of E6 and E7 by themselves sensitizes cells to estrogen. Overall, our results support the recent proposal that estrogen could be exploited therapeutically for the treatment of HPV-positive oral cancers. IMPORTANCE Human papillomaviruses cause around 5% of all human cancers, yet there are no specific antiviral therapeutic approaches available for combatting these cancers. These cancers are currently treated with standard chemoradiation therapy (CRT). Specific antiviral reagents are desperately required, particularly for HPV+HNSCC whose incidence is increasing and for which there are no diagnostic tools available for combatting this disease. Using data from The Cancer Genome Atlas (TCGA), we and others determined that the estrogen receptor alpha (ERα) is overexpressed in HPV+HNSCC and that elevated levels are associated with an improved disease outcome. This has led to the proposal that estrogen treatment could be a novel therapeutic approach for combatting HPV+cancers. Here, we demonstrate that estrogen attenuates the growth of HPV+epithelial cells using multiple mechanisms, supporting the idea that estrogen has potential as a therapeutic agent for the treatment of HPV+HNSCC.
Collapse
|