1
|
Li X, Wang G, Li D, Li Y. Multitask learning model for predicting non-coding RNA-disease associations: Incorporating local and global context. Methods 2025; 239:10-21. [PMID: 40113152 DOI: 10.1016/j.ymeth.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are crucial non-coding RNAs involved in various diseases. Understanding these interactions is vital for advancing diagnostic, preventive, and therapeutic strategies. Existing computational methods often address lncRNA-miRNA-disease associations as isolated tasks, resulting in sparse connections and limited generalizability. Additionally, these ncRNA-disease relationships involve higher-order topological information that is frequently overlooked. To address these challenges, we propose the MTL-NRDA model, which employs a multi-task learning framework to simultaneously predict lncRNA-disease associations, miRNA-disease associations, and lncRNA-miRNA interactions. The model integrates multi-source information through a heterogeneous network encompassing lncRNAs, miRNAs, and disease association networks as well as various similarity networks. Node embeddings are optimized by combining local and global contexts, and local features are aggregated using higher-order graph convolutional networks (HOGCN) to capture ncRNA-disease associations, while global features are extracted via a transformer encoder, effectively handling long-range dependencies. MTL-NRDA uses independent bilinear output layers for each task and dynamically adjusts the loss weights to calculate task-specific association probabilities. Experiments on two independent datasets show that MTL-NRDA outperforms existing models. Ablation studies confirmed the effectiveness of the model components and multi-task strategy, whereas hyperparameter tuning further improved the performance. Case studies on breast and liver cancers demonstrated the practical applicability of the model.
Collapse
Affiliation(s)
- Xiaohan Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Dan Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Yang Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Yan X, Yang Z, Cao X, Liang L, Duan Y, Zhang P, Feng Y, Wen T, Luo S, Jia L, Sun J, Han H. Targeting endothelial MYC using siRNA or miR-218 nanoparticles sensitizes chemo- and immuno-therapies by recapitulating the Notch activation-induced tumor vessel normalization. Theranostics 2025; 15:5381-5401. [PMID: 40303332 PMCID: PMC12036866 DOI: 10.7150/thno.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The chaotic, over-activated tumor vasculature promotes tumor growth and erodes most current therapies. Although Notch activation critically regulates angiogenesis, the broad roles of Notch has dampened its druggability. Methods: Gene-modified mice with a Cdh5-CreERT transgene were employed to activate/block Notch signaling in endothelial cells (ECs). Multiple transcriptome analyses were conducted to compare gene expression profiles. qRT-PCR and western blotting were used to determine gene expression level. Immunofluorescence and flow cytometry were used to observe morphological alterations and immune microenvironment in tumors. Nanoparticles (PEI-PEG-cRGD) were used to deliver siRNA into tumor ECs (TECs) in vivo. Results: Genetic Notch activation or blockade in TECs normalizes or deteriorates tumor vessels, respectively. Single-cell RNA sequencing showed that Notch activation selectively reduced the proliferating TEC subset, which accounted for about 30% of TECs and gave rise to other TEC subsets. Notch activation or blockade downregulated or upregulated MYC, respectively. MYC overexpression canceled Notch activation-induced proliferation arrest of TECs in vitro, and a MYC inhibitor normalized tumor vessels in RBPj deficient mice, suggesting that MYC is the authentic Notch target in normalizing tumor vessels. Nanoparticles encapsulated with MYC siRNA (EC-siMYC) or miR-218 (EC-miR-218), a Notch-downstream miRNA suppressing MYC, were able to mitigate Notch inhibition-induced tumor vessel defects. Combination of cisplatin with MYC blockade exhibited improved therapeutic effects. Moreover, MYC blockade promoted T cell infiltration and enhanced anti-PD1 immunotherapy. Conclusions: Together, our data have demonstrated that Notch activation normalizes tumor vessels by repressing the proliferating TEC subset via MYC, and targeting endothelial MYC using nanoparticles bearing siRNA or miRNA is an efficient strategy for tumor anti-angiogenic therapy.
Collapse
Affiliation(s)
- Xianchun Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ziyan Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Xiuli Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
- Department of Medical Genetic and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yanyan Duan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Peiran Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yixuan Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ting Wen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Shanqiang Luo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaxing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
3
|
Cruz-Ruiz S, Vidal R, Furlan-Magaril M, Lis JT, Zurita M. Transcriptional stress induces the overexpression of novel lncRNAs that regulate the BRCA1 locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642677. [PMID: 40161662 PMCID: PMC11952445 DOI: 10.1101/2025.03.11.642677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play a role during transcriptional regulation in response to stress. However, their function under stress caused by transcriptional inhibition has not yet been addressed. Using genome-wide assays to elucidate the transcriptional response in human cells caused by RNA polymerase II transcription inhibition, we found three novel regulatory lncRNAs, TILR-1 , TILR-2 , and LINC00910 , that are upregulated as a response to this transcriptional stress. Knockdown experiments showed that the expression of these RNAs is interdependent, and together, they regulate transcription of the nearby BRCA1 locus. The lack of these novel regulatory transcripts also resulted in an increase in cellular proliferation and survival. Public transcriptomic data from different cell lines treated with a variety of transcriptional inhibitors or with heat shock and arsenic stress showed that TILR-1 , TILR-2 , and LINC00910 are commonly upregulated in a broad array of stress conditions. Evolutionary analysis showed that TILR-1 , TILR-2 , and LINC00910 are highly conserved among primates, and their emergence correlates with the duplication of the bidirectional promoter of BRCA1 and NBR1 . We conclude that that coordinate transcription of TILR-1 , TILR-2 , and LINC00910 is stimulated generally by stress and the resulting lncRNAs are novel, functionally-conserved regulators of the BRCA1 locus.
Collapse
|
4
|
Xie X, Macknight HP, Lu AL, Chalfant CE. RNA splicing variants of the novel long non-coding RNA, CyKILR, possess divergent biological functions in non-small cell lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102412. [PMID: 39807365 PMCID: PMC11728077 DOI: 10.1016/j.omtn.2024.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene. This lncRNA, named cyclin-dependent kinase inhibitor 2A-regulated lncRNA (CyKILR), also correlated with an active WT STK11 gene, which encodes the tumor suppressor, liver kinase B1. CyKILR displayed two splice variants, CyKILRa (exon 3 included) and CyKILRb (exon 3 excluded), which are cooperatively regulated by CDKN2A and STK11 as knockdown of both tumor suppressor genes was required to induce a significant loss of exon 3 inclusion in mature CyKILR RNA. CyKILRa localized to the nucleus, and its downregulation using antisense RNA oligonucleotides enhanced cellular proliferation, migration, clonogenic survival, and tumor incidence. In contrast, CyKILRb localized to the cytoplasm, and its downregulation using small interfering RNA reduced cell proliferation, migration, clonogenic survival, and tumor incidence. Transcriptomics analyses revealed the enhancement of apoptotic pathways with concomitant suppression of key cell-cycle pathways by CyKILRa demonstrating its tumor-suppressive role. CyKILRb inhibited tumor suppressor miRNAs indicating an oncogenic nature. These findings elucidate the intricate roles of lncRNAs in cell signaling and tumorigenesis.
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - H. Patrick Macknight
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Amy L. Lu
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA
| | - Charles E. Chalfant
- Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Program in Cancer Biology, University of Virginia NCI Comprehensive Cancer Center, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Hossam Abdelmonem B, Kamal LT, Wardy LW, Ragheb M, Hanna MM, Elsharkawy M, Abdelnaser A. Non-coding RNAs: emerging biomarkers and therapeutic targets in cancer and inflammatory diseases. Front Oncol 2025; 15:1534862. [PMID: 40129920 PMCID: PMC11931079 DOI: 10.3389/fonc.2025.1534862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant role in gene regulation, especially in cancer and inflammatory diseases. ncRNAs, such as microRNA, long non-coding RNAs, and circular RNAs, alter the transcriptional, post-transcriptional, and epigenetic gene expression levels. These molecules act as biomarkers and possible therapeutic targets because aberrant ncRNA expression has been directly connected to tumor progression, metastasis, and response to therapy in cancer research. ncRNAs' interactions with multiple cellular pathways, including MAPK, Wnt, and PI3K/AKT/mTOR, impact cellular processes like proliferation, apoptosis, and immune responses. The potential of RNA-based therapeutics, such as anti-microRNA and microRNA mimics, to restore normal gene expression is being actively studied. Additionally, the tissue-specific expression patterns of ncRNAs offer unique opportunities for targeted therapy. Specificity, stability, and immune responses are obstacles to the therapeutic use of ncRNAs; however, novel strategies, such as modified oligonucleotides and targeted delivery systems, are being developed. ncRNA profiling may result in more individualized and successful treatments as precision medicine advances, improving patient outcomes and creating early diagnosis and monitoring opportunities. The current review aims to investigate the roles of ncRNAs as potential biomarkers and therapeutic targets in cancer and inflammatory diseases, focusing on their mechanisms in gene regulation and their implications for non-invasive diagnostics and targeted therapies. A comprehensive literature review was conducted using PubMed and Google Scholar, focusing on research published between 2014 and 2025. Studies were selected based on rigorous inclusion criteria, including peer-reviewed status and relevance to ncRNA roles in cancer and inflammatory diseases. Non-English, non-peer-reviewed, and inconclusive studies were excluded. This approach ensures that the findings presented are based on high-quality and relevant sources.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lereen T. Kamal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Lilian Waheed Wardy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Research and Development Department, Eva Pharma for Pharmaceuticals Industries, Cairo, Egypt
| | - Manon Ragheb
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- School of Medicine, New Giza University (NGU), Giza, Egypt
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed Elsharkawy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
6
|
Yang P, Gu H, Wu X, Chen G, Liu H, Chen Z. Tumour protein p53-activated lncRNA PGM5-AS1 suppresses lung cancer growth and stemness by targeting R-spondin1 via microRNA-1247-5p. Arch Physiol Biochem 2025:1-13. [PMID: 40035308 DOI: 10.1080/13813455.2025.2459318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/06/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025]
Abstract
OBJECTIVE This study was to investigated the inhibitory role of the tumour protein p53 (TP53)-activated PGM5-AS1 in lung cancer (LC) cell proliferation, invasion, and CSC-like properties and its underlying mechanisms. METHODS The effect of PGM5-AS1 on LC cell development was determined. Stem cell markers, aldehyde dehydrogenase activity in cells were tested, as well as the ability of stem cells to form spheroids. The interaction of PGM5-AS1 and TP53 was determined. The binding link of PGM5-AS1, miR-1247-5p, and R-spondin1 (RSPO1) was verified. RESULTS PGM5-AS1 was elevated by a combination of TP53 and PGM5-AS1 promoters. PGM5-AS1 was a molecular sponge of miR-1247-5p in LC cells, and miR-1247-5p targeted RSPO1. Elevating PGM5-AS1 or repressing miR-1247-5p restrained LC cell growth and stemness, which were reversed by depression of RSPO1. CONCLUSION This study conveys that TP53-elevated PGM5-AS1 mediates miR-1247-5p to target RSPO1, thereby inhibiting LC growth and stemness, representing a novel avenue for LC therapy.
Collapse
Affiliation(s)
- Peng Yang
- Department of Cardiothoracic and Vascular Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Hong Gu
- Department of Cardiothoracic and Vascular Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Xuanqin Wu
- Department of Cardiothoracic and Vascular Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Geng Chen
- Department of Cardiothoracic and Vascular Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Heng Liu
- Department of Cardiothoracic and Vascular Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Zhongliang Chen
- Department of Cardiothoracic and Vascular Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Tan S, Li S, Xia L, Jiang X, Ren Z, Peng Q, Peng M, Yang W, Xu X, Oyang L, Shen M, Wang J, Li H, Wu N, Tang Y, Liao Q, Lin J, Zhou Y. Long non‑coding RNA ABHD11‑AS1 inhibits colorectal cancer progression through interacting with EGFR to suppress the EGFR/ERK signaling pathway. Int J Oncol 2025; 66:20. [PMID: 39950321 PMCID: PMC11844336 DOI: 10.3892/ijo.2025.5726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025] Open
Abstract
Long non‑coding (lnc)RNAs participate in colorectal cancer (CRC) occurrence and progression. The present study aimed to investigate whether lncRNA ABHD11‑AS1 regulates malignant biological behavior of CRC cells. Bioinformatic analysis, reverse transcription‑quantitative PCR and in situ hybridization revealed that ABHD11‑AS1 expression was decreased in CRC samples and associated with an unfavorable prognosis. ABHD11‑AS1 overexpression significantly decreased proliferation, migration and invasion of CRC cells, whereas ABHD11‑AS1 inhibition had the opposite effects. ABHD11‑AS1 interacted with EGFR to inhibit EGFR phosphorylation and attenuate EGFR/ERK signaling, which in turn suppressed the malignant biological behavior of CRC cells. The tumor suppressor function of ABHD11‑AS1 was attenuated by the EGFR agonist NSC228155. Finally, resveratrol (RSV) inhibited CRC cell proliferation, migration and invasion, which may be associated with RSV‑induced decrease in SPT6 homolog, histone chaperone and transcription elongation factor protein expression and increase in ABHD11‑AS1 transcript levels. ABHD11‑AS1 inhibited the phosphorylation of EGFR and decreased EGFR/ERK signaling by interacting with EGFR, thereby delaying the progression of CRC. The ABHD11‑AS1/EGFR/ERK axis may be a novel therapeutic target for preventing CRC progression.
Collapse
Affiliation(s)
- Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Shizhen Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
| | - Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Mengzhou Shen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Jiewen Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Haofan Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan 410013, P.R. China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoid Technology, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
8
|
Sun Y, Zhang H, Shi DB, Gao P. SP-1-activated LINC01016 overexpression promotes gastric cancer invasion and metastasis through inhibiting EIF4A3-mediated MMP9 mRNA decay. Cell Death Dis 2025; 16:54. [PMID: 39881131 PMCID: PMC11828860 DOI: 10.1038/s41419-024-07250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/31/2025]
Abstract
Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS). Furthermore, we found that LINC01016 is activated by transcriptional factor SP-1 and contributes to the overt promotion of cell migratory ability. EIF4A3 was identified as a binding partner of LINC01016 by RNA pull-down assay, mass spectrometry and western blot. We determined that LINC01016 can blocks the binding of EIF4A3 to MMP9 mRNA, thereby inhibiting EIF4A3-mediated nonsense-mediated RNA decay (NMD), increasing MMP9 mRNA level and protein expression levels to promote tumor progression. LINC01016 or LINC01016-mediated EIF4A3/MMP9 may be potential therapeutic targets for patients with GC.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China
- Department of Medical Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China
| | - Duan-Bo Shi
- Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China.
| | - Peng Gao
- Department of Pathology, Qilu Hospital and School of Basic Medical Sciences Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
9
|
Yuan Y, Daiterigele, Zhang Q, Du C. Whole transcriptome analysis and construction of gene regulatory networks of granulosa cells from patients with polycystic ovary syndrome (PCOS). Eur J Med Res 2025; 30:9. [PMID: 39773546 PMCID: PMC11706090 DOI: 10.1186/s40001-024-02237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a reproductive endocrine disease characterized by reproductive dysfunction and metabolic abnormalities. The purpose of this study was to explore the expression characteristics of coding and non-coding RNAs in granulosa cells of PCOS, and to provide data support for understanding the pathogenesis of PCOS. METHODS Three patients with PCOS (according to the 2003 Rotterdam diagnostic criteria) and three normal controls were selected. We used the standard long protocol to collect granulosa cells from two groups, who underwent assisted reproduction at the Reproductive Medicine Center of the Affiliated Hospital of Inner Mongolia Medical University, China. We performed whole-transcriptome sequencing using RNA-Seq technology to construct transcriptome patterns of messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). These patterns were then subjected to in-depth analysis using bioinformatics tools. RESULTS We identified a total of 2111 mRNAs and 4328 non-coding RNAs (ncRNAs) in the PCOS group as compared with the control group. Among the ncRNAs, there were 2047 lncRNAs, 892 circRNAs, and 1389 miRNAs. Based on the condition |log2(fold_change) |≥ 1 and a P-value of ≤ 0.05, we obtained 705 differentially expressed genes (DEGs), 204 differentially expressed lncRNAs, 111 differentially expressed circRNAs, and 88 differentially expressed miRNAs. The target genes were mainly enriched in metabolic pathways such as mitogen-activated protein kinase (MAPK), Wnt, transforming growth factor-beta (TGF-β), and the cell cycle. There were three types of circRNAs, among which the number of exon-type circRNAs accounted for more than 90%. Using co-expression network analysis, we identified several important candidate gene mRNAs (VLDLR, PPP2R2B, and MYOCD), lncRNAs (FBXO30, SNHG14, and PVT1), and miRNAs (miRNA-150); these mRNAs and ncRNAs could play a regulatory role in PCOS granulosa cells. CONCLUSION In this study, we discovered significant alterations in mRNAs, lncRNAs, circRNAs, and miRNAs in PCOS granulosa cells, indicating dysregulation in vital pathways. Notably, genes like VLDLR, PPP2R2B, and MYOCD, along with lncRNAs FBXO30, SNHG14, and PVT1, may contribute to PCOS pathology, shedding light on potential therapeutic targets.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Reproductive Medicine Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Daiterigele
- Department of Reproductive Medicine Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Qian Zhang
- Department of Reproductive Medicine Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Chen Du
- Department of Reproductive Medicine Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
10
|
Hsu CY, Hisham Ateya N, Felix Oghenemaro E, Nathiya D, Kaur P, Hjazi A, Eldesoqui M, Yumashev A, Kadhim Abosaoda M, Adnan Abdulrahman M. Correlation between lncRNAs with human molecular chaperons in cancer immunopathogenesis and drug resistance. Int Immunopharmacol 2024; 143:113309. [PMID: 39405942 DOI: 10.1016/j.intimp.2024.113309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024]
Abstract
The development of cancer immunology heavily relies on the interaction between long non-coding RNAs (lncRNAs) and molecular chaperones. By participating in gene regulation, lncRNAs interact with molecular chaperones, which play a critical role in protein folding and stress responses, to influence oncogenic pathways. This interaction has an impact on both the immune cells within the tumor microenvironment and the tumor cells themselves. Understanding these mechanisms provides valuable insights into innovative approaches for diagnosis and treatment. Targeting the lncRNA-chaperone axis has the potential to strengthen anti-tumor immunity and enhance cancer treatment outcomes. Further research is necessary to uncover specific associations, identify biomarkers, and develop personalized therapies aimed at disrupting this axis, which could potentially revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA.
| | - Nabaa Hisham Ateya
- Biotechnology Department, College of Applied Science, Fallujah University, Iraq.
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Abraka, Delta State, Nigeria.
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Doctor of Medicine, Professor. Sechenov First Moscow State Medical University, Russia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq; College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Pharmacy, the Islamic University of Babylon, Babylon, Iraq.
| | | |
Collapse
|
11
|
Nickerson JA, Momen-Heravi F. Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin. Nucleus 2024; 15:2350180. [PMID: 38773934 PMCID: PMC11123517 DOI: 10.1080/19491034.2024.2350180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Fatemeh Momen-Heravi
- College of Dental Medicine, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Xie X, Macknight HP, Lu AL, Chalfant CE. RNA splicing variants of the novel long non-coding RNA, CyKILR, possess divergent biological functions in non-small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602494. [PMID: 39026815 PMCID: PMC11257467 DOI: 10.1101/2024.07.08.602494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene. This lncRNA, named Cy clin-Dependent K inase I nhibitor 2A-regulated l nc R NA (CyKILR), also correlated with an active WT STK11 gene, which encodes the tumor suppressor, Liver kinase B1. CyKILR displayed two splice variants, CyKILRa (exon 3 included) and CyKILRb (exon 3 excluded), which are cooperatively regulated by CDKN2A and STK11 as knockdown of both tumor suppressor genes was required to induce a significant loss of exon 3 inclusion in mature CyKILR RNA. CyKILRa localized to the nucleus, and its downregulation using antisense RNA oligonucleotides enhanced cellular proliferation, migration, clonogenic survival, and tumor incidence. In contrast, CyKILRb localized to the cytoplasm, and its downregulation using siRNA reduced cell proliferation, migration, clonogenic survival, and tumor incidence. Transcriptomics analyses revealed enhancement of apoptotic pathways with concomitant suppression of key cell cycle pathways by CyKILRa demonstrating its tumor-suppressive role. CyKILRb inhibited tumor suppressor microRNAs indicating an oncogenic nature. These findings elucidate the intricate roles of lncRNAs in cell signaling and tumorigenesis.
Collapse
|
13
|
Bagheri-Mohammadi S, Karamivandishi A, Mahdavi SA, Siahposht-Khachaki A. New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism. Heliyon 2024; 10:e39744. [PMID: 39553554 PMCID: PMC11564028 DOI: 10.1016/j.heliyon.2024.e39744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Glioma or glioblastoma (GBM) is one of the aggressive and fatal primary cerebral malignancies, with the highest mortality rate among all brain-related tumors. Also, glioma mainly progresses as a more invasive phenotype after primary treatment. Cumulative evidence suggested that dysregulation of noncoding RNAs (ncRNAs) such as long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) are associated with tumor initiation, progression, and drug resistance, through epigenetic modifications, transcriptional, and post-transcriptional processes in the cells. Many scientific investigations have revealed that LncRNAs play important roles in various biological procedures linked with the development and progression of GBM. In recent years, it has been shown that dysregulation of molecular mechanisms in many LncRNAs such as MIR22HG, HULC, AGAP2-AS1, MALAT1, PVT1, TTTY14, HOTAIRM1, PTAR, LPP-AS2, LINC00336, and TINCR are connected with the GBM. Therefore, this scientific review paper focused on the molecular mechanisms of these LncRNAs in the context of GBM.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seif Ali Mahdavi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Das SK, Karmakar S, Venkatachalapathy H, Jha RK, Batchelor E, Levens D. Excessive MYC-topoisome activity triggers acute DNA damage, MYC degradation, and replacement by a p53-topoisome. Mol Cell 2024; 84:4059-4078.e10. [PMID: 39481385 PMCID: PMC11560571 DOI: 10.1016/j.molcel.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Hyperproliferation driven by the protooncogene MYC may lead to tumor suppressor p53 activating DNA damage that has been presumed to derive from hypertranscription and over-replication. Here, we report that excessive MYC-topoisome (MYC/topoisomerase 1/topoisomerase 2) activity acutely damages DNA-activating pATM and p53. In turn, MYC is shut off and degraded, releasing TOP1 and TOP2A from MYC topoisomes in vitro and in vivo. To manage the topological and torsional stress generated at its target genes, p53 assembles a separate topoisome. Because topoisomerase activity is intrinsically DNA damaging, p53 topoisomes provoke an initial burst of DNA damage. Because p53, unlike MYC, upregulates the DNA-damage response (DDR) and activates tyrosyl-DNA-phosphodiesterase (TDP) 1 and TDP2, it suppresses further topoisome-mediated damage. The physical coupling and activation of TOP1 and TOP2 by p53 creates a tool that supports p53-target expression while braking MYC-driven proliferation in mammalian cells.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sharmistha Karmakar
- Energy Storage and Technology Department, Energy and Environment Science and Technology Division, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | | | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Ratre P, Thareja S, Mishra PK. Identification of cell-free circulating epigenomic biomarkers for early diagnosis and response to therapies in breast cancer patients. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:95-134. [PMID: 39939079 DOI: 10.1016/bs.ircmb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The increasing prevalence of breast cancer presents a significant global health challenge, highlighting the urgent need for improved diagnostic and treatment monitoring methods. The non-invasive nature of cell-free circulating epigenomic biomarkers, such as methylated DNA (metDNA) and microRNAs (miRNAs), offers a reassuring approach to identifying breast cancer patients in the early stages and assessing their response to therapy. This approach holds great promise for diagnosis and treatment evaluation, prioritizing patient comfort and well-being. Cell-free circulating metDNA and miRNAs are released into the bloodstream from dying tumor cells through apoptosis and necrosis, carrying tumor-specific genetic and epigenetic changes. These changes encompass alterations in DNA methylation patterns, are pivotal in regulating gene expression, and are frequently disrupted in cancer. The interplay between these processes and the dynamic release of epigenomic biomarkers provides a real-time snapshot of the genetic and epigenetic features of the tumor. Integrating the analysis of metDNA and miRNA biomarkers into clinical practice can facilitate the early detection of breast cancer and improve the precision of treatment monitoring. By tracking changes in these biological markers, healthcare professionals can make informed decisions regarding modifications to therapy, ultimately enhancing patient outcomes. Gaining insights into the underlying mechanisms of cell-free circulating epigenomic biomarkers offers a groundbreaking approach to diagnosing and treating breast cancer.
Collapse
Affiliation(s)
- Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
16
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Liu K, Zhou X, Huang F, Liu L, Xu Z, Gao C, Zhang K, Hong J, Yao N, Cheng G. Aurora B facilitates cholangiocarcinoma progression by stabilizing c-Myc. Animal Model Exp Med 2024; 7:626-640. [PMID: 38247322 PMCID: PMC11528393 DOI: 10.1002/ame2.12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/09/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), a malignancy that arises from biliary epithelial cells, has a dismal prognosis, and few targeted therapies are available. Aurora B, a key mitotic regulator, has been reported to be involved in the progression of various tumors, yet its role in CCA is still unclarified. METHODS Human CCA tissues and murine spontaneous CCA models were used to assess Aurora B expression in CCA. A loss-of-function model was constructed in CCA cells to determine the role of Aurora B in CCA progression. Subcutaneous and liver orthotopic xenograft models were used to assess the therapeutic potential of Aurora B inhibitors in CCA. RESULTS In murine spontaneous CCA models, Aurora B was significantly upregulated. Elevated Aurora B expression was also observed in 62.3% of human specimens in our validation cohort (143 CCA specimens), and high Aurora B expression was positively correlated with pathological parameters of tumors and poor survival. Knockdown of Aurora B by siRNA and heteroduplex oligonucleotide (HDO) or an Aurora B kinase inhibitor (AZD1152) significantly suppressed CCA progression via G2/M arrest induction. An interaction between Aurora B and c-Myc was found in CCA cells. Targeting Aurora B significantly reduced this interaction and accelerated the proteasomal degradation of c-Myc, suggesting that Aurora B promoted the malignant properties of CCA by stabilizing c-Myc. Furthermore, sequential application of AZD1152 or Aurora B HDO drastically improved the efficacy of gemcitabine in CCA. CONCLUSIONS Aurora B plays an essential role in CCA progression by modulating c-Myc stability and represents a new target for treatment and chemosensitization in CCA.
Collapse
Affiliation(s)
- Ke Liu
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xuxuan Zhou
- Department of Pathophysiology, School of MedicineJinan UniversityGuangzhouChina
| | - Fei Huang
- College of PharmacyJinan UniversityGuangzhouChina
| | - Lihao Liu
- School of MedicineJinan UniversityGuangzhouChina
| | - Zijian Xu
- School of MedicineJinan UniversityGuangzhouChina
| | - Chongqing Gao
- Department of Pathophysiology, School of MedicineJinan UniversityGuangzhouChina
| | - Keke Zhang
- Department of Pathophysiology, School of MedicineJinan UniversityGuangzhouChina
| | - Jian Hong
- Department of Pathophysiology, School of MedicineJinan UniversityGuangzhouChina
| | - Nan Yao
- Department of Pathophysiology, School of MedicineJinan UniversityGuangzhouChina
| | - Guohua Cheng
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
18
|
Scholda J, Nguyen TTA, Kopp F. Long noncoding RNAs as versatile molecular regulators of cellular stress response and homeostasis. Hum Genet 2024; 143:813-829. [PMID: 37782337 PMCID: PMC11294412 DOI: 10.1007/s00439-023-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Normal cell and body functions need to be maintained and protected against endogenous and exogenous stress conditions. Different cellular stress response pathways have evolved that are utilized by mammalian cells to recognize, process and overcome numerous stress stimuli in order to maintain homeostasis and to prevent pathophysiological processes. Although these stress response pathways appear to be quite different on a molecular level, they all have in common that they integrate various stress inputs, translate them into an appropriate stress response and eventually resolve the stress by either restoring homeostasis or inducing cell death. It has become increasingly appreciated that non-protein-coding RNA species, such as long noncoding RNAs (lncRNAs), can play critical roles in the mammalian stress response. However, the precise molecular functions and underlying modes of action for many of the stress-related lncRNAs remain poorly understood. In this review, we aim to provide a framework for the categorization of mammalian lncRNAs in stress response and homeostasis based on their experimentally validated modes of action. We describe the molecular functions and physiological roles of selected lncRNAs and develop a concept of how lncRNAs can contribute as versatile players in mammalian stress response and homeostasis. These concepts may be used as a starting point for the identification of novel lncRNAs and lncRNA functions not only in the context of stress, but also in normal physiology and disease.
Collapse
Affiliation(s)
- Julia Scholda
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Thi Thuy Anh Nguyen
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Florian Kopp
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Martinez-Terroba E, Plasek-Hegde LM, Chiotakakos I, Li V, de Miguel FJ, Robles-Oteiza C, Tyagi A, Politi K, Zamudio JR, Dimitrova N. Overexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment. Sci Immunol 2024; 9:eadh5462. [PMID: 38875320 DOI: 10.1126/sciimmunol.adh5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Expression of the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) correlates with tumor progression and metastasis in many tumor types. However, the impact and mechanism of action by which MALAT1 promotes metastatic disease remain elusive. Here, we used CRISPR activation (CRISPRa) to overexpress MALAT1/Malat1 in patient-derived lung adenocarcinoma (LUAD) cell lines and in the autochthonous K-ras/p53 LUAD mouse model. Malat1 overexpression was sufficient to promote the progression of LUAD to metastatic disease in mice. Overexpression of MALAT1/Malat1 enhanced cell mobility and promoted the recruitment of protumorigenic macrophages to the tumor microenvironment through paracrine secretion of CCL2/Ccl2. Ccl2 up-regulation was the result of increased global chromatin accessibility upon Malat1 overexpression. Macrophage depletion and Ccl2 blockade counteracted the effects of Malat1 overexpression. These data demonstrate that a single lncRNA can drive LUAD metastasis through reprogramming of the tumor microenvironment.
Collapse
Affiliation(s)
- Elena Martinez-Terroba
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Leah M Plasek-Hegde
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ioannis Chiotakakos
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Vincent Li
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | - Camila Robles-Oteiza
- Departments of Pathology and Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT 06511, USA
| | - Antariksh Tyagi
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06516, USA
| | - Katerina Politi
- Yale Cancer Center, Yale University, New Haven, CT 06511, USA
- Departments of Pathology and Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT 06511, USA
| | - Jesse R Zamudio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Cancer Center, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
20
|
Lu L, Jifu C, Xia J, Wang J. E3 ligases and DUBs target ferroptosis: A potential therapeutic strategy for neurodegenerative diseases. Biomed Pharmacother 2024; 175:116753. [PMID: 38761423 DOI: 10.1016/j.biopha.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Ferroptosis is a form of cell death mediated by iron and lipid peroxidation (LPO). Recent studies have provided compelling evidence to support the involvement of ferroptosis in the pathogenesis of various neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD). Therefore, understanding the mechanisms that regulate ferroptosis in NDDs may improve disease management. Ferroptosis is regulated by multiple mechanisms, and different degradation pathways, including autophagy and the ubiquitinproteasome system (UPS), orchestrate the complex ferroptosis response by directly or indirectly regulating iron accumulation or lipid peroxidation. Ubiquitination plays a crucial role as a protein posttranslational modification in driving ferroptosis. Notably, E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are key enzymes in the ubiquitin system, and their dysregulation is closely linked to the progression of NDDs. A growing body of evidence highlights the role of ubiquitin system enzymes in regulating ferroptosis sensitivity. However, reports on the interaction between ferroptosis and ubiquitin signaling in NDDs are scarce. In this review, we first provide a brief overview of the biological processes and roles of the UPS, summarize the core molecular mechanisms and potential biological functions of ferroptosis, and explore the pathophysiological relevance and therapeutic implications of ferroptosis in NDDs. In addition, reviewing the roles of E3s and DUBs in regulating ferroptosis in NDDs aims to provide new insights and strategies for the treatment of NDDs. These include E3- and DUB-targeted drugs and ferroptosis inhibitors, which can be used to prevent and ameliorate the progression of NDDs.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, People's Republic of China.
| |
Collapse
|
21
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
22
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
23
|
Arimura K, Kammer M, Rahman SMJ, Sheau-Chiann C, Zhao S, Heidi C, Eisenberg R, Zou Y, Antic S, Richmond B, Tagaya E, Grogan E, Massion P, Maldonado F. Elucidating the role of EPPK1 in lung adenocarcinoma development. BMC Cancer 2024; 24:441. [PMID: 38594604 PMCID: PMC11005125 DOI: 10.1186/s12885-024-12185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND We recently found that epiplakin 1 (EPPK1) alterations were present in 12% of lung adenocarcinoma (LUAD) cases and were associated with a poor prognosis in early-stage LUAD when combined with other molecular alterations. This study aimed to identify a probable crucial role for EPPK1 in cancer development. METHODS EPPK1 mRNA and protein expression was analyzed with clinical variables. Normal bronchial epithelial cell lines were exposed to cigarette smoke for 16 weeks to determine whether EPPK1 protein expression was altered after exposure. Further, we used CRISPR-Cas9 to knock out (KO) EPPK1 in LUAD cell lines and observed how the cancer cells were altered functionally and genetically. RESULTS EPPK1 protein expression was associated with smoking and poor prognosis in early-stage LUAD. Moreover, a consequential mesenchymal-to-epithelial transition was observed, subsequently resulting in diminished cell proliferation and invasion after EPPK1 KO. RNA sequencing revealed that EPPK1 KO induced downregulation of 11 oncogenes, 75 anti-apoptosis, and 22 angiogenesis genes while upregulating 8 tumor suppressors and 12 anti-cell growth genes. We also observed the downregulation of MYC and upregulation of p53 expression at both protein and RNA levels following EPPK1 KO. Gene ontology enrichment analysis of molecular functions highlighted the correlation of EPPK1 with the regulation of mesenchymal cell proliferation, mesenchymal differentiation, angiogenesis, and cell growth after EPPK1 KO. CONCLUSIONS Our data suggest that EPPK1 is linked to smoking, epithelial to mesenchymal transition, and the regulation of cancer progression, indicating its potential as a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Ken Arimura
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Michael Kammer
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S M Jamshedur Rahman
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chen Sheau-Chiann
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chen Heidi
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rosana Eisenberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yong Zou
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sanja Antic
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley Richmond
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Etsuko Tagaya
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Eric Grogan
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pierre Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fabien Maldonado
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Yang Z, Zhou J, Su N, Zhang Z, Chen J, Liu P, Ling P. Insights into the defensive roles of lncRNAs during Mycoplasma pneumoniae infection. Front Microbiol 2024; 15:1330660. [PMID: 38585701 PMCID: PMC10995346 DOI: 10.3389/fmicb.2024.1330660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Mycoplasma pneumoniae causes respiratory tract infections, affecting both children and adults, with varying degrees of severity ranging from mild to life-threatening. In recent years, a new class of regulatory RNAs called long non-coding RNAs (lncRNAs) has been discovered to play crucial roles in regulating gene expression in the host. Research on lncRNAs has greatly expanded our understanding of cellular functions involving RNAs, and it has significantly increased the range of functions of lncRNAs. In lung cancer, transcripts associated with lncRNAs have been identified as regulators of airway and lung inflammation in a process involving protein complexes. An excessive immune response and antibacterial immunity are closely linked to the pathogenesis of M. pneumoniae. The relationship between lncRNAs and M. pneumoniae infection largely involves lncRNAs that participate in antibacterial immunity. This comprehensive review aimed to examine the dysregulation of lncRNAs during M. pneumoniae infection, highlighting the latest advancements in our understanding of the biological functions and molecular mechanisms of lncRNAs in the context of M. pneumoniae infection and indicating avenues for investigating lncRNAs-related therapeutic targets.
Collapse
Affiliation(s)
- Zhujun Yang
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Junjun Zhou
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Nana Su
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Zifan Zhang
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Jiaxin Chen
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Peng Liu
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Peng Ling
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
| |
Collapse
|
25
|
Podralska M, Sajek MP, Bielicka A, Żurawek M, Ziółkowska-Suchanek I, Iżykowska K, Kolenda T, Kazimierska M, Kasprzyk ME, Sura W, Pietrucha B, Cukrowska B, Rozwadowska N, Dzikiewicz-Krawczyk A. Identification of ATM-dependent long non-coding RNAs induced in response to DNA damage. DNA Repair (Amst) 2024; 135:103648. [PMID: 38382170 DOI: 10.1016/j.dnarep.2024.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
DNA damage response (DDR) is a complex process, essential for cell survival. Especially deleterious type of DNA damage are DNA double-strand breaks (DSB), which can lead to genomic instability and malignant transformation if not repaired correctly. The central player in DSB detection and repair is the ATM kinase which orchestrates the action of several downstream factors. Recent studies have suggested that long non-coding RNAs (lncRNAs) are involved in DDR. Here, we aimed to identify lncRNAs induced upon DNA damage in an ATM-dependent manner. DNA damage was induced by ionizing radiation (IR) in immortalized lymphoblastoid cell lines derived from 4 patients with ataxia-telangiectasia (AT) and 4 healthy donors. RNA-seq revealed 10 lncRNAs significantly induced 1 h after IR in healthy donors, whereas none in AT patients. 149 lncRNAs were induced 8 h after IR in the control group, while only three in AT patients. Among IR-induced mRNAs, we found several genes with well-known functions in DDR. Gene Set Enrichment Analysis and Gene Ontology revealed delayed induction of key DDR pathways in AT patients compared to controls. The induction and dynamics of selected 9 lncRNAs were confirmed by RT-qPCR. Moreover, using a specific ATM inhibitor we proved that the induction of those lncRNAs is dependent on ATM. Some of the detected lncRNA genes are localized next to protein-coding genes involved in DDR. We observed that induction of lncRNAs after IR preceded changes in expression of adjacent genes. This indicates that IR-induced lncRNAs may regulate the transcription of nearby genes. Subcellular fractionation into chromatin, nuclear, and cytoplasmic fractions revealed that the majority of studied lncRNAs are localized in chromatin. In summary, our study revealed several lncRNAs induced by IR in an ATM-dependent manner. Their genomic co-localization and co-expression with genes involved in DDR suggest that those lncRNAs may be important players in cellular response to DNA damage.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marcin Piotr Sajek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Antonina Bielicka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Marta Kazimierska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Weronika Sura
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Barbara Pietrucha
- Children's Memorial Health Institute, Department of Immunology, Warsaw, Poland
| | - Bożena Cukrowska
- Children's Memorial Health Institute, Department of Pathomorphology, Immunology Laboratorium, Warsaw, Poland
| | | | | |
Collapse
|
26
|
Wu Z, Jiang S, Chen Y. Non-coding RNA and Drug resistance in cholangiocarcinoma. Noncoding RNA Res 2024; 9:194-202. [PMID: 38125756 PMCID: PMC10730441 DOI: 10.1016/j.ncrna.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer with a dismal prognosis and limited resectability. Chemotherapy has demonstrated tremendous benefits for patients with advanced and inoperable cancer, but drug resistance poses a significant obstacle. Despite recent progress in cancer therapy, the mechanisms driving drug resistance are multifaceted and not completely comprehended. Non-coding RNA refers to RNA molecules that are endogenous and do not code for proteins. Particularly microRNAs, long non-coding RNAs, circular RNAs, are widely acknowledged to be involved in cancer initiation, proliferation, and metastasis. Recently, evidences suggests that abnormal expression of non-coding RNAs contributes to resistance to different type of cancer therapies in cholangiocarcinoma. This occurs via the rewiring of signaling pathways including the reduction of anticancer drugs, apoptosis, interaction between cholangiocarcinoma and tumor-infiltrating immune cells, and cancer stemness. Thus, our review aims to demonstrate the potential of targeting non-coding RNA to override drug resistance and summarize the molecular mechanisms of how non-coding RNA contributes to drug resistance in cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhaowei Wu
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| | - Shiming Jiang
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| | - Yong Chen
- Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Medical College Street, Yuzhong District, 404100, Chongqing, China
| |
Collapse
|
27
|
Rehman SU, Ullah N, Zhang Z, Zhen Y, Din AU, Cui H, Wang M. Recent insights into the functions and mechanisms of antisense RNA: emerging applications in cancer therapy and precision medicine. Front Chem 2024; 11:1335330. [PMID: 38274897 PMCID: PMC10809404 DOI: 10.3389/fchem.2023.1335330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The antisense RNA molecule is a unique DNA transcript consisting of 19-23 nucleotides, characterized by its complementary nature to mRNA. These antisense RNAs play a crucial role in regulating gene expression at various stages, including replication, transcription, and translation. Additionally, artificial antisense RNAs have demonstrated their ability to effectively modulate gene expression in host cells. Consequently, there has been a substantial increase in research dedicated to investigating the roles of antisense RNAs. These molecules have been found to be influential in various cellular processes, such as X-chromosome inactivation and imprinted silencing in healthy cells. However, it is important to recognize that in cancer cells; aberrantly expressed antisense RNAs can trigger the epigenetic silencing of tumor suppressor genes. Moreover, the presence of deletion-induced aberrant antisense RNAs can lead to the development of diseases through epigenetic silencing. One area of drug development worth mentioning is antisense oligonucleotides (ASOs), and a prime example of an oncogenic trans-acting long noncoding RNA (lncRNA) is HOTAIR (HOX transcript antisense RNA). NATs (noncoding antisense transcripts) are dysregulated in many cancers, and researchers are just beginning to unravel their roles as crucial regulators of cancer's hallmarks, as well as their potential for cancer therapy. In this review, we summarize the emerging roles and mechanisms of antisense RNA and explore their application in cancer therapy.
Collapse
Affiliation(s)
- Shahab Ur Rehman
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Numan Ullah
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Zhenbin Zhang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| | - Aziz-Ud Din
- Department of Human Genetics, Hazara University Mansehra, Mansehra, Pakistan
| | - Hengmi Cui
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics Yangzhou University, College of Animal Nutrition Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Peng L, Huang L, Su Q, Tian G, Chen M, Han G. LDA-VGHB: identifying potential lncRNA-disease associations with singular value decomposition, variational graph auto-encoder and heterogeneous Newton boosting machine. Brief Bioinform 2023; 25:bbad466. [PMID: 38127089 PMCID: PMC10734633 DOI: 10.1093/bib/bbad466] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in various biological processes and have close linkages with diseases. In vivo and in vitro experiments have validated many associations between lncRNAs and diseases. However, biological experiments are time-consuming and expensive. Here, we introduce LDA-VGHB, an lncRNA-disease association (LDA) identification framework, by incorporating feature extraction based on singular value decomposition and variational graph autoencoder and LDA classification based on heterogeneous Newton boosting machine. LDA-VGHB was compared with four classical LDA prediction methods (i.e. SDLDA, LDNFSGB, IPCARF and LDASR) and four popular boosting models (XGBoost, AdaBoost, CatBoost and LightGBM) under 5-fold cross-validations on lncRNAs, diseases, lncRNA-disease pairs and independent lncRNAs and independent diseases, respectively. It greatly outperformed the other methods with its prominent performance under four different cross-validations on the lncRNADisease and MNDR databases. We further investigated potential lncRNAs for lung cancer, breast cancer, colorectal cancer and kidney neoplasms and inferred the top 20 lncRNAs associated with them among all their unobserved lncRNAs. The results showed that most of the predicted top 20 lncRNAs have been verified by biomedical experiments provided by the Lnc2Cancer 3.0, lncRNADisease v2.0 and RNADisease databases as well as publications. We found that HAR1A, KCNQ1DN, ZFAT-AS1 and HAR1B could associate with lung cancer, breast cancer, colorectal cancer and kidney neoplasms, respectively. The results need further biological experimental validation. We foresee that LDA-VGHB was capable of identifying possible lncRNAs for complex diseases. LDA-VGHB is publicly available at https://github.com/plhhnu/LDA-VGHB.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, 412007, Hunan, China
- College of Life Sciences and Chemistry, Hunan University of Technology, 412007, Hunan, China
| | - Liangliang Huang
- School of Computer Science, Hunan University of Technology, 412007, Hunan, China
| | - Qiongli Su
- Department of Pharmacy, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, 412007, Hunan, China
| | - Geng Tian
- Geneis (Beijing) Co. Ltd, China, 100102, Beijing, China
| | - Min Chen
- School of Computer Science, Hunan Institute of Technology, 421002, No. 18 Henghua Road, Zhuhui District, Hengyang, Hunan, China
| | - Guosheng Han
- School of Mathematics and Computational Science, Xiangtan University, 411105, Yuhu District, Xiangtan, Hunan, China
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, 411105, Yuhu District, Xiangtan, Hunan, China
| |
Collapse
|
30
|
Yang K, Xiao Y, Zhong L, Zhang W, Wang P, Ren Y, Shi L. p53-regulated lncRNAs in cancers: from proliferation and metastasis to therapy. Cancer Gene Ther 2023; 30:1456-1470. [PMID: 37679529 DOI: 10.1038/s41417-023-00662-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as master gene regulators through various mechanisms such as transcription, translation, protein modification and RNA-protein complexes. LncRNA dysregulation is frequently associated with a variety of biological functions and human diseases including cancer. The p53 network is a key tumor-suppressive mechanism that transcriptionally activates target genes to suppress cellular proliferation in human malignancies. Recent research indicates that lncRNAs play an important role in the p53 signaling pathway. In this review, we summarize the current knowledge of lncRNAs in p53-relevant functions and provide an overview of how these altered lncRNAs contribute to tumor initiation and progression. We also discuss the association between lncRNA and up- or downstream genes of p53. These findings imply that lncRNAs can help identify cellular vulnerabilities that may prove to be promising potential biomarkers and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, People's Republic of China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
31
|
Feng Y, Dong Y, Rao B, Yu Y, Su W, Zeng J, Zhao E, Chen Y, Fang S, Zhou Y, Lu J, Qiu F. A novel LINC00478 serves as a tumor suppressor in endometrial carcinoma progression. J Cancer Res Clin Oncol 2023; 149:14927-14940. [PMID: 37603104 DOI: 10.1007/s00432-023-05282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are involved in the pathogenesis and progression of various cancers, but their roles in endometrial cancer (EC) are largely unknown. METHODS The expressions of LINC00478 and PTBP1 in EC tissues were determined by RT-qPCR. Cell counting kit-8, flow cytometry and Transwell assays were executed for detecting the roles of LINC00478 in EC cells proliferation, migration and invasion. The mouse-xenograft models were established by subcutaneous injection in vivo. The interaction between LINC00478 and PTBP1 was confirmed by RNA pull-down assay and RNA-binding protein immunoprecipitation assay. RESULTS LINC00478 was significantly down-regulated in EC tissues while compared to that in their paracancerous samples, and a higher expression level of LINC00478 was negatively correlated with clinical progress of EC patients. Functional experiments in vivo and in vitro revealed that LINC00478 overexpression could dramatically retard the proliferation of EC cells, decrease the rate of colony formation, suppress the migration and invasion abilities of EC cells in vitro and inhibit tumor growth in vivo. Mechanistically, LINC00478 regulated the expression of PTBP1, a key factor in the Warburg effect, and affected the metabolic process of EC cells. CONCLUSIONS LINC00478 acts as a tumor suppressor in EC by negatively controlling PTBP1 expression and influencing the Warburg effect, providing a potential biomarker and therapeutic target for patients with EC.
Collapse
Affiliation(s)
- Yingyi Feng
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Yongshun Dong
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Boqi Rao
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Yonghui Yu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Wenpeng Su
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Jie Zeng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150, People's Republic of China
| | - Eryong Zhao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, People's Republic of China
| | - Yongxiu Chen
- Department of Gynaecology and Obstetrics, Guangdong Women's and Children's Hospital, Guangzhou, 511400, People's Republic of China
| | - Shenying Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, People's Republic of China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, People's Republic of China
| | - Jiachun Lu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Fuman Qiu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
32
|
Ntini E, Budach S, Vang Ørom UA, Marsico A. Genome-wide measurement of RNA dissociation from chromatin classifies transcripts by their dynamics and reveals rapid dissociation of enhancer lncRNAs. Cell Syst 2023; 14:906-922.e6. [PMID: 37857083 DOI: 10.1016/j.cels.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Long non-coding RNAs (lncRNAs) are involved in gene expression regulation in cis. Although enriched in the cell chromatin fraction, to what degree this defines their regulatory potential remains unclear. Furthermore, the factors underlying lncRNA chromatin tethering, as well as the molecular basis of efficient lncRNA chromatin dissociation and its impact on enhancer activity and target gene expression, remain to be resolved. Here, we developed chrTT-seq, which combines the pulse-chase metabolic labeling of nascent RNA with chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their transcription on chromatin to release and allows the quantification of dissociation dynamics. By incorporating genomic, transcriptomic, and epigenetic metrics, as well as RNA-binding protein propensities, in machine learning models, we identify features that define transcript groups of different chromatin dissociation dynamics. Notably, lncRNAs transcribed from enhancers display reduced chromatin retention, suggesting that, in addition to splicing, their chromatin dissociation may shape enhancer activity.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biotechnology, IMBB-FORTH, 70013 Heraklio, Greece.
| | - Stefan Budach
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany
| | - Ulf A Vang Ørom
- Aarhus University, Department of Molecular Biology and Genetics, 8000 Aarhus, Denmark
| | - Annalisa Marsico
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Computational Health Center, Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
33
|
Guo M, Xiong Y. Sex-biased genome-editing effects of CRISPR-Cas9 across cancer cells dependent on p53 status. iScience 2023; 26:107529. [PMID: 37636042 PMCID: PMC10448110 DOI: 10.1016/j.isci.2023.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/12/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
The CRISPR-Cas9 system has emerged as the dominant technology for gene editing and clinical applications. One major concern is its off-target effect after the introduction of exogenous CRISPR-Cas9 into cells. Several previous studies have investigated either Cas9 alone or CRISPR-Cas9 interactions with p53. Here, we reanalyzed previously reported data of p53-associated Cas9 activities and observed large significant sex differences between p53-wildtype and p53-mutant cells. To expand the impact of this finding, we further examined all protein-coding genes for sex-specific dependencies in a large-scale CRISPR-Cas9 screening dataset from the DepMap project. We highlighted the p53-dependent sex bias of gene knockouts (including MYC, PIK3CA, KAT2B, KDM4E, SUV39H1, FANCB, TLR7, and APC2) across cancer types and potential mechanisms (mediated by transcriptional factors, including SOX9, FOXO4, LEF1, and RYBP) underlying this phenomenon. Our results suggest that the p53-dependent sex bias may need to be considered in future clinical applications of CRISPR-Cas9, especially in cancer.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
34
|
Zhao B, Lv Y. A biomechanical view of epigenetic tumor regulation. J Biol Phys 2023; 49:283-307. [PMID: 37004697 PMCID: PMC10397176 DOI: 10.1007/s10867-023-09633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/12/2023] [Indexed: 04/04/2023] Open
Abstract
The occurrence and development of tumors depend on a complex regulation by not only biochemical cues, but also biomechanical factors in tumor microenvironment. With the development of epigenetic theory, the regulation of biomechanical stimulation on tumor progress genetically is not enough to fully illustrate the mechanism of tumorigenesis. However, biomechanical regulation on tumor progress epigenetically is still in its infancy. Therefore, it is particularly important to integrate the existing relevant researches and develop the potential exploration. This work sorted out the existing researches on the regulation of tumor by biomechanical factors through epigenetic means, which contains summarizing the tumor epigenetic regulatory mode by biomechanical factors, exhibiting the influence of epigenetic regulation under mechanical stimulation, illustrating its existing applications, and prospecting the potential. This review aims to display the relevant knowledge through integrating the existing studies on epigenetic regulation in tumorigenesis under mechanical stimulation so as to provide theoretical basis and new ideas for potential follow-up research and clinical applications. Mechanical factors under physiological conditions stimulate the tumor progress through epigenetic ways, and new strategies are expected to be found with the development of epidrugs and related delivery systems.
Collapse
Affiliation(s)
- Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei Province, 430200, People's Republic of China.
| |
Collapse
|
35
|
Zhang J, Meng X, Zhou Y, Jiang Z, Chen H, Meng Z, Zhang Q, Chen W. Lnc-LRRTM4 promotes proliferation, metastasis and EMT of colorectal cancer through activating LRRTM4 transcription. Cancer Cell Int 2023; 23:142. [PMID: 37468908 DOI: 10.1186/s12935-023-02986-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Numerous mechanisms have shown that long noncoding RNAs (lncRNAs) promote the development of colorectal cancer (CRC), but the role of lnc-LRRTM4 in the progression of CRC remains unclear. In this article, we found that lnc-LRRTM4 was highly expressed in CRC tissues and cell lines and that lnc-LRRTM4 could promote the proliferation and metastasis of CRC cells. These consequences were achieved by lnc-LRRTM4 directly binding to the promoter of LRRTM4 to induce its transcription. Moreover, lnc-LRRTM4 enhanced the growth of CRC cells in vivo by promoting cell cycle progression and reducing apoptosis. Taken together, our results revealed that lnc-LRRTM4 promotes the proliferation and metastasis of CRC cells, suggesting that it may be a potential diagnostic and therapeutic target for CRC.
Collapse
Affiliation(s)
- Jingjie Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Xianmei Meng
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Yi Zhou
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Zhengyu Jiang
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Hongsuo Chen
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Zhiyi Meng
- Center of Digestive Endoscopy, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, China
| | - Qi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China.
| |
Collapse
|
36
|
Vock IW, Simon MD. bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with Bayesian hierarchical modeling. RNA (NEW YORK, N.Y.) 2023; 29:958-976. [PMID: 37028916 PMCID: PMC10275263 DOI: 10.1261/rna.079451.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Differential expression analysis of RNA sequencing (RNA-seq) data can identify changes in cellular RNA levels, but provides limited information about the kinetic mechanisms underlying such changes. Nucleotide recoding RNA-seq methods (NR-seq; e.g., TimeLapse-seq, SLAM-seq, etc.) address this shortcoming and are widely used approaches to identify changes in RNA synthesis and degradation kinetics. While advanced statistical models implemented in user-friendly software (e.g., DESeq2) have ensured the statistical rigor of differential expression analyses, no such tools that facilitate differential kinetic analysis with NR-seq exist. Here, we report the development of Bayesian analysis of the kinetics of RNA (bakR; https:// github.com/simonlabcode/bakR), an R package to address this need. bakR relies on Bayesian hierarchical modeling of NR-seq data to increase statistical power by sharing information across transcripts. Analyses of simulated data confirmed that bakR implementations of the hierarchical model outperform attempts to analyze differential kinetics with existing models. bakR also uncovers biological signals in real NR-seq data sets and provides improved analyses of existing data sets. This work establishes bakR as an important tool for identifying differential RNA synthesis and degradation kinetics.
Collapse
Affiliation(s)
- Isaac W Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| |
Collapse
|
37
|
Xu R, Wang W, Zhang W. Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov 2023; 9:197. [PMID: 37386007 DOI: 10.1038/s41420-023-01517-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron-mediated lipid peroxidation, in contrast with apoptosis, autophagy, and necrosis. It can be triggered by many pathological processes, including cellular metabolism, tumors, neurodegenerative diseases, cardiovascular diseases, and ischemia-reperfusion injuries. In recent years, ferroptosis has been discovered to be associated with p53. P53 is a tumor suppressor protein with multiple and powerful functions in cell cycle arrest, senescence, cell death, repair of DNA damage, and mitophagy. Emerging evidence shows that ferroptosis plays a crucial role in tumor suppression by p53. P53 functions as a key bidirectional regulator of ferroptosis by adjusting metabolism of iron, lipids, glutathione peroxidase 4, reactive oxygen species, and amino acids via a canonical pathway. In addition, a noncanonical pathway of p53 that regulates ferroptosis has been discovered in recent years. The specific details require to be further clarified. These mechanisms provide new ideas for clinical applications, and translational studies of ferroptosis have been performed to treat various diseases.
Collapse
Affiliation(s)
- Ren Xu
- Pulmonary and Critical Care Medicine Department, First Hospital of Jiliwn University, 130021, Changchun, China
| | - Wanning Wang
- Nephrology Department, First Hospital of Jilin University, 130021, Changchun, China
| | - Wenlong Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, China.
| |
Collapse
|
38
|
Mafi A, Keshavarzmotamed A, Hedayati N, Boroujeni ZY, Reiter RJ, Dehmordi RM, Aarabi MH, Rezaee M, Asemi Z. Melatonin targeting non-coding RNAs in cancer: Focus on mechanisms and potential therapeutic targets. Eur J Pharmacol 2023; 950:175755. [PMID: 37119959 DOI: 10.1016/j.ejphar.2023.175755] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Despite, melatonin is mainly known as a regulatory factor for circadian rhythm, its notable role in other fundamental biological processes, such as redox homeostasis and programmed cell death, has been found. In this line, a growing body of evidence indicated that melatonin could apply an inhibitory effect on the tumorigenic processes. Hence, melatonin might be considered an efficient adjuvant agent for cancer treatment. Besides, the physiological and pathological functions of non-coding RNAs (ncRNAs) in various disease, particularly cancers, have been expanded over the past two decades. It is well-established that ncRNAs can modulate the gene expression at various levels, thereby, ncRNAs. can regulate the numerous biological processes, including cell proliferation, cell metabolism, apoptosis, and cell cycle. Recently, targeting the ncRNAs expression provides a novel insight in the therapeutic approaches for cancer treatment. Moreover, accumulating investigations have revealed that melatonin could impact the expression of different ncRNAs in a multiple disorders, including cancer. Therefore, in the precent study, we discuss the potential roles of melatonin in modulating the expression of ncRNAs and the related molecular pathways in different types of cancer. Also, we highlighted its importance in therapeutic application and translational medicine in cancer treatment.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Zahra Yeganeh Boroujeni
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
39
|
Han C, Qi Y, She Y, Zhang M, Xie H, Zhang J, Zhao Z, Peng C, Liu Y, Lin Y, Wang J, Zeng D. Long noncoding RNA SENCR facilitates the progression of acute myeloid leukemia through the miR-4731-5p/IRF2 pathway. Pathol Res Pract 2023; 245:154483. [PMID: 37120908 DOI: 10.1016/j.prp.2023.154483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a type of hematological tumor caused by malignant clone hematopoietic stem cells. The relationship between lncRNAs and tumor occurrence and progression has been gaining attention. Research has shown that Smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) is abnormally expressed in various diseases, whereas its role in AML is still poorly understood. METHODS The expression of SENCR, microRNA-4731-5p (miR-4731-5p) and Interferon regulatory factor 2 (IRF2) were measured using qRT-PCR. The proliferation, cycle and apoptosis of AML cells with or without knockdown of SENCR were detected by CCK-8 assay, EdU assay, flow cytometry, western blotting and TUNEL assay, respectively. Consistently, SENCR knockdown was impaired the AML progression in immunodeficient mice. In addition, the binding of miR-4731-5p to SENCR or IRF2 was confirmed by luciferase reporter genes assay. Finally, rescue experiments were conducted to confirm the role of SENCR/miR-4731-5p/IRF2 axis in AML. RESULTS SENCR is highly expressed in AML patients and cell lines. The patients with high SENCR expression had poorer prognosis compared with those with low SENCR expression. Interestingly, knockdown of SENCR inhibits the growth of AML cells. Further results demonstrated that the reduction of SENCR slows the progression of AML in vivo. SENCR could function as a competing endogenous RNA (ceRNA) to negatively regulate miR-4731-5p in AML cells. Furthermore, IRF2 was validated as a direct target gene of miR-4731-5p in AML cells. CONCLUSIONS Our findings underscore the important role of SENCR in regulating the malignant phenotype of AML cells by targeting the miR-4731-5p/IRF2 axis.
Collapse
Affiliation(s)
- Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yuanting She
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Meijuan Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Huan Xie
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jing Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Zhongyue Zhao
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Cuicui Peng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yu Liu
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yizhang Lin
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jin Wang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
40
|
Wang WF, Zhong HJ, Cheng S, Fu D, Zhao Y, Cai HM, Xiong J, Zhao WL. A nuclear NKRF interacting long noncoding RNA controls EBV eradication and suppresses tumor progression in natural killer/T-cell lymphoma. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166722. [PMID: 37084822 DOI: 10.1016/j.bbadis.2023.166722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are differentially expressed in EBV-infected cells and play an essential role in tumor progression. Molecular pathogenesis of lincRNAs in EBV-driven natural killer T cell lymphoma (NKTCL) remains unclear. Here we investigated the ncRNA profile using high-throughput RNA sequencing data of 439 lymphoma samples and screened out LINC00486, whose downregulation was further validated by quantitative real-time polymerase chain reaction in EBV-encoded RNA (EBER)-positive lymphoma, particularly NKTCL. Both in vitro and in vivo studies revealed the tumor suppressive function of LINC00486 through inhibiting tumor cell growth and inducing G0/G1 cell cycle arrest. As mechanism of action, LINC00486 specifically interacted with NKRF to abrogate its binding with phosphorylated p65, activated NF-κB/TNF-α signaling and subsequently enhanced EBV eradication. Solute carrier family 1 member 1 (SLC1A1), upregulated and mediated the glutamine-addiction and tumor progression in NKTCL, was negatively correlated with the expression of NKRF. NKRF specifically bound to the promoter and transcriptionally downregulated the expression of SLC1A1, as evidenced by Chromatin Immunoprecipitation (ChIP) and luciferase assay. Collectively, LINC00486 functioned as a tumor suppressor and counteracted EBV infection in NKTCL. Our study improved the knowledge of EBV-driven oncogenesis in NKTCL and provided the clinical rationale of EBV eradication in anti-cancer treatment.
Collapse
Affiliation(s)
- Wen-Fang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Juan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Man Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
41
|
Tang J, Zhang J, Lu Y, He J, Wang H, Liu B, Tu C, Li Z. Novel insights into the multifaceted roles of m 6A-modified LncRNAs in cancers: biological functions and therapeutic applications. Biomark Res 2023; 11:42. [PMID: 37069649 PMCID: PMC10111779 DOI: 10.1186/s40364-023-00484-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
N6-methyladenosine (m6A) is considered as the most common and important internal transcript modification in several diseases like type 2 diabetes, schizophrenia and especially cancer. As a main target of m6A methylation, long non-coding RNAs (lncRNAs) have been proved to regulate cellular processes at various levels, including epigenetic modification, transcriptional, post-transcriptional, translational and post-translational regulation. Recently, accumulating evidence suggests that m6A-modified lncRNAs greatly participate in the tumorigenesis of cancers. In this review, we systematically summarized the biogenesis of m6A-modified lncRNAs and the identified m6A-lncRNAs in a variety of cancers, as well as their potential diagnostic and therapeutic applications as biomarkers and therapeutic targets, hoping to shed light on the novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jinhui Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Yu Lu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
42
|
Mart Nez-Terroba E, de Miguel FJ, Li V, Robles-Oteiza C, Politi K, Zamudio JR, Dimitrova N. Overexpressed Malat1 Drives Metastasis through Inflammatory Reprogramming of Lung Adenocarcinoma Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533534. [PMID: 36993368 PMCID: PMC10055261 DOI: 10.1101/2023.03.20.533534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Metastasis is the main cause of cancer deaths but the molecular events leading to metastatic dissemination remain incompletely understood. Despite reports linking aberrant expression of long noncoding RNAs (lncRNAs) with increased metastatic incidence , in vivo evidence establishing driver roles for lncRNAs in metastatic progression is lacking. Here, we report that overexpression of the metastasis-associated lncRNA Malat1 (metastasis-associated lung adenocarcinoma transcript 1) in the autochthonous K-ras/p53 mouse model of lung adenocarcinoma (LUAD) is sufficient to drive cancer progression and metastatic dissemination. We show that increased expression of endogenous Malat1 RNA cooperates with p53 loss to promote widespread LUAD progression to a poorly differentiated, invasive, and metastatic disease. Mechanistically, we observe that Malat1 overexpression leads to the inappropriate transcription and paracrine secretion of the inflammatory cytokine, Ccl2, to augment the mobility of tumor and stromal cells in vitro and to trigger inflammatory responses in the tumor microenvironment in vivo . Notably, Ccl2 blockade fully reverses cellular and organismal phenotypes of Malat1 overexpression. We propose that Malat1 overexpression in advanced tumors activates Ccl2 signaling to reprogram the tumor microenvironment to an inflammatory and pro-metastatic state.
Collapse
|
43
|
Yu S, Liang Z, Fan Z, Cao B, Wang N, Wu R, Sun H. A Comprehensive Analysis Revealing FBXW9 as a Potential Prognostic and Immunological Biomarker in Breast Cancer. Int J Mol Sci 2023; 24:5262. [PMID: 36982338 PMCID: PMC10049633 DOI: 10.3390/ijms24065262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
The WD40 repeat-containing F-box proteins (FBXWs) family belongs to three major classes of F-box proteins. Consistent with the function of other F-box proteins, FBXWs are E3 ubiquitin ligases to mediate protease-dependent protein degradation. However, the roles of several FBXWs remain elusive. In the present study, via integrative analysis of transcriptome profiles from The Cancer Genome Atlas (TCGA) datasets, we found that FBXW9 was upregulated in the majority of cancer types, including breast cancer. FBXW expression was correlated with the prognosis of patients with various types of cancers, especially for FBXW4, 5, 9, and 10. Moreover, FBXWs were associated with infiltration of immune cells, and expression of FBXW9 was associated with poor prognosis of patients receiving anti-PD1 therapy. We predicted several substrates of FBXW9, and TP53 was the hub gene in the list. Downregulation of FBXW9 increased the expression of p21, a target of TP53, in breast cancer cells. FBXW9 was also strongly correlated with cancer cell stemness, and genes correlated with FBXW9 were associated with several MYC activities according to gene enrichment analysis in breast cancer. Cell-based assays showed that silencing of FBXW9 inhibited cell proliferation and cell cycle progression in breast cancer cells. Our study highlights the potential role of FBXW9 as a biomarker and promising target for patients with breast cancer.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Binjie Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Rui Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| |
Collapse
|
44
|
Yeo SJ, Ying C, Fullwood MJ, Tergaonkar V. Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains. Trends Genet 2023; 39:217-232. [PMID: 36642680 DOI: 10.1016/j.tig.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Topologically associating domains (TADs) are integral to spatial genome organization, instructing gene expression, and cell fate. Recently, several advances have uncovered roles for noncoding RNAs (ncRNAs) in the regulation of the form and function of mammalian TADs. Phase separation has also emerged as a potential arbiter of ncRNAs in the regulation of TADs. In this review we discuss the implications of these novel findings in relation to how ncRNAs might structurally and functionally regulate TADs from two perspectives: moderating loop extrusion through interactions with architectural proteins, and facilitating TAD phase separation. Additionally, we propose future studies and directions to investigate these phenomena.
Collapse
Affiliation(s)
- Samuel Jianjie Yeo
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 308232, Singapore
| | - Chen Ying
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Pathology and the Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| |
Collapse
|
45
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 339] [Impact Index Per Article: 169.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
46
|
The Expression of Serum lncRNA MIR17HG in Patients with Multiple Myeloma and Its Clinical Significance. Eur J Cancer Care (Engl) 2023. [DOI: 10.1155/2023/1728909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Objective. Multiple myeloma (MM) represents a malignant tumor with abnormal proliferation of plasma cells. The current study sought to investigate the changes in serum lncRNA MIR17HG (long noncoding RNA miR-17-92a-1 cluster host gene) levels in MM patients and its values in assessing the accuracy of MM diagnosis and predicting diagnosis. Methods. First, 108MM patients and 85 healthy controls were enrolled as the study subjects. The serum levels of MIR17HG in all subjects were determined by RT-qPCR. MM patients were clinically staged according to the Durie-Salmon (DS) and international staging system (ISS), and the levels of serum MIR17HG were compared among patients at different stages. The correlation of serum MIR17H level with serum creatinine (Scr), lactate dehydrogenase (LDH), and albumin (ALB) was analyzed using the Pearson method. The accuracy of the serum MIR17HG level in identifying MM was evaluated using receiver operating characteristic curves. The progression-free survival (PFS) and overall survival (OS) curves of MM patients were plotted using the Kaplan–Meier method. Results. Serum MIR17HG levels were up-regulated in MM patients and elevated with the development of DS and ISS stages. The serum MIR17HG was positively correlated with Scr and LDH and negatively correlated with ALB in MM patients. Serum MIR17HG level >1.485 could evaluate the accuracy of identifying MM. The PFS and OS were significantly shortened in MM patients with elevated MIR17HG levels. Conclusion. Our findings collectively indicate that the serum MIR17HG can aid the evaluation of accurate MM identification, and a high serum MIR17HG level can predict poor prognosis of patients with MM.
Collapse
|
47
|
Sethi B, Kumar V, Jayasinghe TD, Dong Y, Ronning DR, Zhong HA, Coulter DW, Mahato RI. Targeting BRD4 and PI3K signaling pathways for the treatment of medulloblastoma. J Control Release 2023; 354:80-90. [PMID: 36599397 PMCID: PMC9974792 DOI: 10.1016/j.jconrel.2022.12.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor which shows upregulation of MYC and sonic hedgehog (SHH) signaling. SHH inhibitors face acquired resistance, which is a major cause of relapse. Further, direct MYC oncogene inhibition is challenging, inhibition of MYC upstream insulin-like growth factor/ phosphatidylinositol-4,5-bisphosphate 3-kinase (IGF/PI3K) is a promising alternative. While PI3K inhibition activates resistance mechanisms, simultaneous inhibition of bromodomain-containing protein 4 (BRD4) and PI3K can overcome resistance. We synthesized a new molecule 8-(2,3-dihydrobenzo[b] [1, 4] dioxin-6-yl)-2-morpholino-4H-chromen-4-one (MDP5) that targets both BRD4 and PI3K pathways. We used X-ray crystal structures and a molecular modeling approach to confirm the interactions between MDP5 with bromo domains (BDs) from both BRD2 and BRD4, and molecular modeling for PI3K binding. MDP5 was shown to inhibit target pathways and MB cell growth in vitro and in vivo. MDP5 showed higher potency in DAOY cells (IC50 5.5 μM) compared to SF2523 (IC50 12.6 μM), and its IC50 values in HD-MB03 cells were like SF2523. Treatment of MB cells with MDP5 significantly decreased colony formation, increased apoptosis, and halted cell cycle progression. Further, MDP5 was well tolerated in NSG mice bearing either xenograft or orthotopic MB tumors at the dose of 20 mg/kg, and significantly reduced tumor growth and prolonged animal survival.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thilina D Jayasinghe
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haizhen A Zhong
- Department of Chemistry, the University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE 68182, USA
| | - Donald W Coulter
- Department of Pediatrics, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
48
|
Liu S, Liu T, Jiang J, Guo H, Yang R. p53 mutation and deletion contribute to tumor immune evasion. Front Genet 2023; 14:1088455. [PMID: 36891151 PMCID: PMC9986462 DOI: 10.3389/fgene.2023.1088455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 02/22/2023] Open
Abstract
TP53 (or p53) is widely accepted to be a tumor suppressor. Upon various cellular stresses, p53 mediates cell cycle arrest and apoptosis to maintain genomic stability. p53 is also discovered to suppress tumor growth through regulating metabolism and ferroptosis. However, p53 is always lost or mutated in human and the loss or mutation of p53 is related to a high risk of tumors. Although the link between p53 and cancer has been well established, how the different p53 status of tumor cells help themselves evade immune response remains largely elusive. Understanding the molecular mechanisms of different status of p53 and tumor immune evasion can help optimize the currently used therapies. In this context, we discussed the how the antigen presentation and tumor antigen expression mode altered and described how the tumor cells shape a suppressive tumor immune microenvironment to facilitate its proliferation and metastasis.
Collapse
Affiliation(s)
- Siyang Liu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaxuan Jiang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Yang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
49
|
Abstract
C-Myc overexpression is a common finding in pancreatic cancer and predicts the aggressive behavior of cancer cells. It binds to the promoter of different genes, thereby regulating their transcription. C-Myc is downstream of KRAS and interacts with several oncogenic and proliferative pathways in pancreatic cancer. C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. It provides enough energy for cancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. C-Myc overexpression is associated with chemoresistance, intra-tumor angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis in pancreatic cancer. Despite its title, c-Myc is not "undruggable" and recent studies unveiled that it can be targeted, directly or indirectly. Small molecules that accelerate c-Myc ubiquitination and degradation have been effective in preclinical studies. Small molecules that hinder c-Myc-MAX heterodimerization or c-Myc/MAX/DNA complex formation can functionally inhibit c-Myc. In addition, c-Myc can be targeted through transcriptional, post-transcriptional, and translational modifications.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
50
|
[NDRG2 inhibits tumorigenesis of hepatocellular carcinoma by regulating metabolism of phospholipids and triglyceride: a metabonomic analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1765-1773. [PMID: 36651243 PMCID: PMC9878422 DOI: 10.12122/j.issn.1673-4254.2022.12.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To explore the role of the tumor suppressor gene NDRG2 in regulating lipid metabolism in hepatoma cells. METHODS We analyzed the differential expression of NDRG2 gene between hepatocellular carcinoma tissues (n=809) and normal liver tissues (n=379) based on data from TNMplot database, and investigated the correlation between NDRG2 mRNA expression and the overall survival of the patients with hepatocellular carcinoma using THPA database, which was also used for analysis of NDRG2 expression levels in tumor cell lines for screening hepatoma cell lines. Human hepatoma cell line HepG2 was infected with a lentivirus containing NDRG2 cDNA, and the expression level of NDRG2 in the infected cells was detected using qPCR and Western blotting. Lipid metabolomics analysis was performed to analyze the regulatory effect of NDRG2 overexpression on lipid metabolism in HepG2 cells, and ELISA and Oil Red O staining were used to examine the changes in contents of phospholipids and triglyceride in NDRG2-overexpressing HepG2 cells. RESULTS Analysis of the TNMplot database showed that NDRG2 expression level was significantly lower in hepatocellular carcinoma tissues than in normal liver tissues (P < 0.001). Analysis of THPA database showed that the patients with high NDRG2 mRNA levels had a longer survival time than those with low NDRG2 mRNA levels, and NDRG2 expression level was the highest in HepG2 cell line among the tumor cell lines. Metabolomics analysis showed that in HepG2 cells, NDRG2 overexpression led to changes in the contents of phospholipids, and among them lecithin PC, phosphatidyl glycerol PG, phosphatidyl ethanolamine PE, sphinophosphatidyl serine SM, and ceramide Cer exhibited significant changes. The results of ELISA and Oil Red O staining demonstrated that NDRG2 overexpression obviously reduced the contents of multiple phospholipids and significantly lowered the contents of triglyceride in HepG2 cells. CONCLUSION NDRG2 regulates tumorigenesis of hepatocellular carcinoma by modulating the metabolism of phospholipids and triglyceride.
Collapse
|