1
|
Shen Z, Adams K, Moreno R, Lera R, Kaufman E, Lang JD, Burkard M. Polo-like kinase 1 maintains transcription and chromosomal accessibility during mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637959. [PMID: 39990329 PMCID: PMC11844518 DOI: 10.1101/2025.02.12.637959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Transcription persists at low levels in mitotic cells and plays essential roles in mitotic fidelity and chromosomal dynamics. However, the detailed regulatory network of mitotic transcription remains largely unresolved. Here, we report the novel role of Polo-like kinase 1 (Plk1) in maintaining mitotic transcription. Using 5-ethynyl uridine (5-EU) labeling of nascent RNAs, we found that Plk1 inhibition leads to significant downregulation of nascent transcription in prometaphase cells. Chromatin-localized Plk1 activity is required for transcription regulation and mitotic fidelity. Plk1 sustains global chromosomal accessibility in mitosis, especially at promoter and transcription start site (promoter-TSS) regions, facilitating transcription factor binding and ensuring proper transcriptional activity. We identified SMC4, a common subunit of condensin I and II, as a potential Plk1 substrate. Plk1 activity is fundamental to these processes across non-transformed and transformed cell lines, underscoring its critical role in cell cycle regulation. This study elucidates a novel regulatory mechanism of global mitotic transcription, advancing our understanding of cell cycle control. Significance Statement Cells retain a low level of transcription during mitosis, while the regulatory network and specific contributions of mitotic transcription are not well understood.We identify Polo-like kinase 1 (Plk1) as a novel regulator of mitotic transcription, crucial for chromosome condensation, genome accessibility, and maintaining mitotic fidelity.This study enhances our understanding of Plk1's multifaceted role in mitotic progression, advancing cell cycle regulation knowledge, and informing new cancer therapies' development.
Collapse
|
2
|
Rutkauskas M, Kim E. In vitro dynamics of DNA loop extrusion by structural maintenance of chromosomes complexes. Curr Opin Genet Dev 2025; 90:102284. [PMID: 39591812 DOI: 10.1016/j.gde.2024.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Genomic DNA inside the cell's nucleus is highly organized and tightly controlled by the structural maintenance of chromosomes (SMC) protein complexes. These complexes fold genomes by creating and processively enlarging loops, a process called loop extrusion. After more than a decade of accumulating indirect evidence, recent in vitro single-molecule studies confirmed loop extrusion as an evolutionarily conserved function among eukaryotic and prokaryotic SMCs. These studies further provided important insights into mechanisms and regulations of these universal molecular machines, which will be discussed in this minireview.
Collapse
Affiliation(s)
- Marius Rutkauskas
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Eugene Kim
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Keszthelyi A, Mansoubi S, Whale A, Houseley J, Baxter J. The fork protection complex generates DNA topological stress-induced DNA damage while ensuring full and faithful genome duplication. Proc Natl Acad Sci U S A 2024; 121:e2413631121. [PMID: 39589889 PMCID: PMC11626154 DOI: 10.1073/pnas.2413631121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
The fork protection complex (FPC), composed of Mrc1, Tof1, and Csm3, supports rapid and stable DNA replication. Here, we show that FPC activity also introduces DNA damage by increasing DNA topological stress during replication. Mrc1 action increases DNA topological stress during plasmid replication, while Mrc1 or Tof1 activity causes replication stress and DNA damage within topologically constrained regions. We show that the recruitment of Top1 to the fork by Tof1 suppresses the DNA damage generated in these loci. While FPC activity introduces some DNA damage due to increased topological stress, the FPC is also necessary to prevent DNA damage in long replicons across the genome, indicating that the FPC is required for complete and faithful genome duplication. We conclude that FPC regulation must balance ensuring full genome duplication through rapid replication with minimizing the consequential DNA topological stress-induced DNA damage caused by rapid replication through constrained regions.
Collapse
Affiliation(s)
- Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
| | - Sahar Mansoubi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
- Biology Department, North Tehran Branch, Islamic Azad University, Tehran1477893855, Iran
| | - Alex Whale
- Epigenetics Programme The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, United Kingdom
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, East SussexBN1 9RQ, United Kingdom
| |
Collapse
|
4
|
Jia X, Gao X, Zhang S, Inman JT, Hong Y, Singh A, Patel S, Wang MD. Torsion is a Dynamic Regulator of DNA Replication Stalling and Reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618227. [PMID: 39464009 PMCID: PMC11507786 DOI: 10.1101/2024.10.14.618227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The inherent helical structure of DNA dictates that a replisome must rotate relative to DNA during replication, presenting inevitable topological challenges to replication. However, little is known about how the replisome progresses against torsional stress. Here, we developed a label-free, high-resolution, real-time assay to monitor replisome movement under torsion. We visualized the replisome rotation of DNA and determined how the replisome slows down under torsion. We found that while helicase or DNA polymerase (DNAP) individually is a weak torsional motor, the replisome composed of both enzymes is the most powerful DNA torsional motor studied to date. It generates ~ 22 pN·nm of torque before stalling, twice the stall torque of E. coli RNA polymerase. Upon replisome stalling, the specific interaction between helicase and DNAP stabilizes the fork junction; without it, the fork can regress hundreds of base pairs. We also discovered that prolonged torsion-induced stalling inactivates the replisome. Surprisingly, DNAP exchange, mediated by the helicase, is highly effective in facilitating replication restart, but only if excess DNAP is present during stalling. Thus, helicase and DNA polymerase work synergistically as a powerful torsional motor, and their dynamic and fluid interactions are crucial for maintaining fork integrity under torsional stress. This work demonstrates that torsion is a strong regulator of DNA replication stalling and reactivation.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Shuming Zhang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Smita Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Michelle D. Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Hong Y, Park SH, Wang H, Wang MD. Geometry of Braided DNA Dictates Supercoiling Partition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617221. [PMID: 39416030 PMCID: PMC11482784 DOI: 10.1101/2024.10.08.617221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
During DNA replication, the replisome must rotate relative to the DNA substrate, generating supercoiling that must be partitioned in front of or behind the replisome. Supercoiling partitioned behind the replisome may intertwine (or braid) daughter DNA molecules and restrict chromosome segregation. Supercoiling partitioning and torsional resistance at the replisome should depend on the geometry of the two daughter DNA molecules, determined by their end separations. However, experimental investigation of DNA braiding under well-defined DNA geometry has proven challenging. Here, we present methods to engineer braiding substrates of defined geometry, from minimal to significant end separations. We then directly measured the torque required to braid these substrates using an angular optical trap (AOT) and found that the torque required to initiate the braiding during the first 0.5 turn critically depends on the end separation. Once braiding started, we found that the subsequent effective twist persistence length of DNA braiding is about 20-30 nm, insensitive to the end separations. Our work highlights the crucial role of braiding geometry in dictating supercoiling partitioning and torque build-up during replication. It suggests that dynamic modulation of end separation on the daughter DNA molecules could serve as a mechanism to regulate replication progression in vivo.
Collapse
Affiliation(s)
- Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Seong ha Park
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Hanjie Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Smirnov AV, Ryzhkova AS, Yunusova AM. Effects of the auxin-dependent degradation of the cohesin and condensin complexes on the repair of distant DNA double-strand breaks in mouse embryonic stem cells. Vavilovskii Zhurnal Genet Selektsii 2024; 28:583-591. [PMID: 39440310 PMCID: PMC11491485 DOI: 10.18699/vjgb-24-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
The SMC protein family, including cohesin and condensin I/II, plays a pivotal role in maintaining the topological structure of chromosomes and influences many cellular processes, notably the repair of double-stranded DNA breaks (DSBs). The cohesin complex impacts DSB repair by spreading γH2AX signal and containing DNA ends in close proximity by loop extrusion. Cohesin supports DNA stability by sister chromatid cohesion during the S/G2 phase, which limits DNA end mobility. Cohesin knockdown was recently shown to stimulate frequencies of genomic deletions produced by distant paired DSBs, but does not affect DNA repair of a single or close DSBs. We examined how auxin-inducible protein degradation of Rad21 (cohesin) or Smc2 (condensins I+II) changes the frequencies of rearrangements between paired distant DSBs in mouse embryonic stem cells (mESCs). We used Cas9 RNP nucleofection to generate deletions and inversions with high efficiency without additional selection. We determined optimal Neon settings and deletion appearance timings. Two strategies for auxin addition were tested (4 independent experiments in total). We examined deletion/inversion frequencies for two regions spanning 3.5 and 3.9 kbp in size. Contrary to expectations, in our setting, Rad21 depletion did not increase deletion/inversion frequencies, not even for the region with an active Ctcf boundary. We actually observed a 12 % decrease in deletions (but not inversions). At the same time, double condensin depletion (Smc2 degron line) demonstrated high biological variability between experiments, complicating the analysis, and requires additional examination in the future. TIDE analysis revealed that editing frequency was consistent (30-50 %) for most experiments with a minor decrease after auxin addition. In the end, we discuss the Neon/ddPCR method for deletion generation and detection in mESCs.
Collapse
Affiliation(s)
- A V Smirnov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A S Ryzhkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A M Yunusova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Jann JC, Hergott CB, Winkler M, Liu Y, Braun B, Charles A, Copson KM, Barua S, Meggendorfer M, Nadarajah N, Shimony S, Winer ES, Wadleigh M, Stone RM, DeAngelo DJ, Garcia JS, Haferlach T, Lindsley RC, Luskin MR, Stahl M, Tothova Z. Subunit-specific analysis of cohesin-mutant myeloid malignancies reveals distinct ontogeny and outcomes. Leukemia 2024; 38:1992-2002. [PMID: 39033241 PMCID: PMC11347381 DOI: 10.1038/s41375-024-02347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Mutations in the cohesin complex components (STAG2, RAD21, SMC1A, SMC3, and PDS5B) are recurrent genetic drivers in myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). Whether the different cohesin subunit mutations share clinical characteristics and prognostic significance is not known. We analyzed 790 cohesin-mutant patients from the Dana-Farber Cancer Institute (DFCI) and the Munich Leukemia Laboratory (MLL), 390 of which had available outcome data, and identified subunit-specific clinical, prognostic, and genetic characteristics suggestive of distinct ontogenies. We found that STAG2 mutations are acquired at MDS stage and are associated with secondary AML, adverse prognosis, and co-occurrence of secondary AML-type mutations. In contrast, mutations in RAD21, SMC1A and SMC3 share features with de novo AML with better prognosis, and co-occurrence with de novo AML-type lesions. The findings show the heterogeneous nature of cohesin complex mutations, and inform clinical and prognostic classification, as well as distinct biology of the cohesin complex.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Cancer Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Christopher B Hergott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Marisa Winkler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Element Iowa City (JMI Laboratories), North Liberty, IA, 52317, USA
| | - Yiwen Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Benjamin Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anne Charles
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kevin M Copson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Shougat Barua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Niroshan Nadarajah
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Eric S Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Martha Wadleigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Cancer Program, Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
8
|
Graham E, Esashi F. DNA strand breaks at centromeres: Friend or foe? Semin Cell Dev Biol 2024; 156:141-151. [PMID: 37872040 DOI: 10.1016/j.semcdb.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Peripolli S, Meneguello L, Perrod C, Singh T, Patel H, Rahman ST, Kiso K, Thorpe P, Calvanese V, Bertoli C, de Bruin RAM. Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner. Nat Commun 2024; 15:1579. [PMID: 38383676 PMCID: PMC10881979 DOI: 10.1038/s41467-024-45955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Oncogene-induced replication stress is a crucial driver of genomic instability and one of the key events contributing to the onset and evolution of cancer. Despite its critical role in cancer, the mechanisms that generate oncogene-induced replication stress remain not fully understood. Here, we report that an oncogenic c-Myc-dependent increase in cohesins on DNA contributes to the induction of replication stress. Accumulation of cohesins on chromatin is not sufficient to cause replication stress, but also requires cohesins to accumulate at specific sites in a CTCF-dependent manner. We propose that the increased accumulation of cohesins at CTCF site interferes with the progression of replication forks, contributing to oncogene-induced replication stress. This is different from, and independent of, previously suggested mechanisms of oncogene-induced replication stress. This, together with the reported protective role of cohesins in preventing replication stress-induced DNA damage, supports a double-edge involvement of cohesins in causing and tolerating oncogene-induced replication stress.
Collapse
Affiliation(s)
- Silvia Peripolli
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Leticia Meneguello
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
- UCL Cancer Institute, University College London, Gower Street, London, UK
| | - Chiara Perrod
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Tanya Singh
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | | | - Sazia T Rahman
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Koshiro Kiso
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Peter Thorpe
- Queen Mary University, Mile End Road, London, UK
| | - Vincenzo Calvanese
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Cosetta Bertoli
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK.
| | - Robertus A M de Bruin
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK.
- UCL Cancer Institute, University College London, Gower Street, London, UK.
| |
Collapse
|
10
|
Terrón-Bautista J, Martínez-Sánchez MDM, López-Hernández L, Vadusevan AA, García-Domínguez M, Williams RS, Aguilera A, Millán-Zambrano G, Cortés-Ledesma F. Topological regulation of the estrogen transcriptional response by ZATT-mediated inhibition of TOP2B activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576640. [PMID: 38328138 PMCID: PMC10849543 DOI: 10.1101/2024.01.22.576640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Human type-II topoisomerases, TOP2A and TOP2B, remove transcription associated DNA supercoiling, thereby affecting gene-expression programs, and have recently been associated with 3D genome architecture. Here, we study the regulatory roles of TOP2 paralogs in response to estrogen, which triggers an acute transcriptional induction that involves rewiring of genome organization. We find that, whereas TOP2A facilitates transcription, as expected for a topoisomerase, TOP2B limits the estrogen response. Consistent with this, TOP2B activity is locally downregulated upon estrogen treatment to favor the establishment and stabilization of regulatory chromatin contacts, likely through an accumulation of DNA supercoiling. We show that estrogen-mediated inhibition of TOP2B requires estrogen receptor α (ERα), a non-catalytic function of TOP2A, and the action of the atypical SUMO-ligase ZATT. This mechanism of topological transcriptional-control, which may be shared by additional gene-expression circuits, highlights the relevance of DNA topoisomerases as central actors of genome dynamics.
Collapse
Affiliation(s)
- José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | | | - Laura López-Hernández
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Ananda Ayyappan Vadusevan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario García-Domínguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - R. Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
- Lead contact
| |
Collapse
|
11
|
Bhattacharya SA, Dias E, Nieto-Aliseda A, Buschbeck M. The consequences of cohesin mutations in myeloid malignancies. Front Mol Biosci 2023; 10:1319804. [PMID: 38033389 PMCID: PMC10684907 DOI: 10.3389/fmolb.2023.1319804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Recurrent somatic mutations in the genes encoding the chromatin-regulatory cohesin complex and its modulators occur in a wide range of human malignancies including a high frequency in myeloid neoplasms. The cohesin complex has a ring-like structure which can enclose two strands of DNA. A first function for the complex was described in sister chromatid cohesion during metaphase avoiding defects in chromosome segregation. Later studies identified additional functions of the cohesin complex functions in DNA replication, DNA damage response, 3D genome organisation, and transcriptional regulation through chromatin looping. In this review, we will focus on STAG2 which is the most frequently mutated cohesin subunit in myeloid malignancies. STAG2 loss of function mutations are not associated with chromosomal aneuploidies or genomic instability. We hypothesize that this points to changes in gene expression as disease-promoting mechanism and summarize the current state of knowledge on affected genes and pathways. Finally, we discuss potential strategies for targeting cohesion-deficient disease cells.
Collapse
Affiliation(s)
- Shubhra Ashish Bhattacharya
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Eve Dias
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Andrea Nieto-Aliseda
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
12
|
Fragkos M, Choleza M, Papadopoulou P. The Role of γH2AX in Replication Stress-induced Carcinogenesis: Possible Links and Recent Developments. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:639-648. [PMID: 37927801 PMCID: PMC10619570 DOI: 10.21873/cdp.10266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cancer is a condition characterized by genomic instability and gross chromosomal aberrations. The inability of the cell to timely and efficiently complete its replication cycle before entering mitosis is one of the most common causes of DNA damage and carcinogenesis. Phosphorylation of histone 2AX (H2AX) on S139 (γH2AX) is an indispensable step in the response to DNA damage, as it is required for the assembly of repair factors at the sites of damage. γH2AX is also a marker of DNA replication stress, mainly due to fork collapse that often follows prolonged replication stalling or repair of arrested forks, which involves the generation of DNA breaks. Although the role of γH2AX in the repair of DNA breaks has been well defined, the function of γH2AX in replicative stress remains unclear. In this review, we present the recent advances in the field of replication stress, and highlight a novel function for γH2AX that is independent of its role in the response to DNA damage. We discuss studies that support a role for γΗ2ΑΧ early in the response to replicative stress, which does not involve the repair of DNA breaks. We also highlight recent data proposing that γH2AX acts as a chromatin remodeling component, implicated in the efficient resolution of stalled replication forks. Understanding the mechanism by which γH2AX enables cellular recovery after replication stress will allow identification of novel cancer biomarkers, as well as new targets for cancer therapies.
Collapse
Affiliation(s)
- Michalis Fragkos
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| | - Maria Choleza
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| | - Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, Athens, Greece
| |
Collapse
|
13
|
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K. Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Front Cell Dev Biol 2022; 10:1068347. [PMID: 36589746 PMCID: PMC9800887 DOI: 10.3389/fcell.2022.1068347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In eukaryotic cells, the genome is organized in the form of chromatin composed of DNA and histones that organize and regulate gene expression. The dysregulation of chromatin remodeling, including the aberrant incorporation of histone variants and their consequent post-translational modifications, is prevalent across cancers. Additionally, nuclear envelope proteins are often deregulated in cancers, which impacts the 3D organization of the genome. Altered nuclear morphology, genome organization, and gene expression are defining features of cancers. With advances in single-cell sequencing, imaging technologies, and high-end data mining approaches, we are now at the forefront of designing appropriate small molecules to selectively inhibit the growth and proliferation of cancer cells in a genome- and epigenome-specific manner. Here, we review recent advances and the emerging significance of aberrations in nuclear envelope proteins, histone variants, and oncohistones in deregulating chromatin organization and gene expression in oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
14
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
15
|
Condensin-driven loop extrusion on supercoiled DNA. Nat Struct Mol Biol 2022; 29:719-727. [PMID: 35835864 DOI: 10.1038/s41594-022-00802-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
Condensin, a structural maintenance of chromosomes (SMC) complex, has been shown to be a molecular motor protein that organizes chromosomes by extruding loops of DNA. In cells, such loop extrusion is challenged by many potential conflicts, for example, the torsional stresses that are generated by other DNA-processing enzymes. It has so far remained unclear how DNA supercoiling affects loop extrusion. Here, we use time-lapse single-molecule imaging to study condensin-driven DNA loop extrusion on supercoiled DNA. We find that condensin binding and DNA looping are stimulated by positively supercoiled DNA, and condensin preferentially binds near the tips of supercoiled plectonemes. Upon loop extrusion, condensin collects nearby plectonemes into a single supercoiled loop that is highly stable. Atomic force microscopy imaging shows that condensin generates supercoils in the presence of ATP. Our findings provide insight into the topology-regulated loading and formation of supercoiled loops by SMC complexes and clarify the interplay of loop extrusion and supercoiling.
Collapse
|
16
|
Van Ravenstein SX, Mehta KP, Kavlashvili T, Byl JAW, Zhao R, Osheroff N, Cortez D, Dewar JM. Topoisomerase II poisons inhibit vertebrate DNA replication through distinct mechanisms. EMBO J 2022; 41:e110632. [PMID: 35578785 PMCID: PMC9194788 DOI: 10.15252/embj.2022110632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Topoisomerase II (TOP2) unlinks chromosomes during vertebrate DNA replication. TOP2 "poisons" are widely used chemotherapeutics that stabilize TOP2 complexes on DNA, leading to cytotoxic DNA breaks. However, it is unclear how these drugs affect DNA replication, which is a major target of TOP2 poisons. Using Xenopus egg extracts, we show that the TOP2 poisons etoposide and doxorubicin both inhibit DNA replication through different mechanisms. Etoposide induces TOP2-dependent DNA breaks and TOP2-dependent fork stalling by trapping TOP2 behind replication forks. In contrast, doxorubicin does not lead to appreciable break formation and instead intercalates into parental DNA to stall replication forks independently of TOP2. In human cells, etoposide stalls forks in a TOP2-dependent manner, while doxorubicin stalls forks independently of TOP2. However, both drugs exhibit TOP2-dependent cytotoxicity. Thus, etoposide and doxorubicin inhibit DNA replication through distinct mechanisms despite shared genetic requirements for cytotoxicity.
Collapse
Affiliation(s)
| | - Kavi P Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tamar Kavlashvili
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
17
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. Nucleases and Co-Factors in DNA Replication Stress Responses. DNA 2022; 2:68-85. [PMID: 36203968 PMCID: PMC9534323 DOI: 10.3390/dna2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
19
|
Abstract
The compaction of linear DNA into micrometer-sized nuclear boundaries involves the establishment of specific three-dimensional (3D) DNA structures complexed with histone proteins that form chromatin. The resulting structures modulate essential nuclear processes such as transcription, replication, and repair to facilitate or impede their multi-step progression and these contribute to dynamic modification of the 3D-genome organization. It is generally accepted that protein–protein and protein–DNA interactions form the basis of 3D-genome organization. However, the constant generation of mechanical forces, torques, and other stresses produced by various proteins translocating along DNA could be playing a larger role in genome organization than currently appreciated. Clearly, a thorough understanding of the mechanical determinants imposed by DNA transactions on the 3D organization of the genome is required. We provide here an overview of our current knowledge and highlight the importance of DNA and chromatin mechanics in gene expression.
Collapse
Affiliation(s)
- Rajiv Kumar Jha
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - Fedor Kouzine
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| |
Collapse
|
20
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
21
|
Kawasumi R, Abe T, Psakhye I, Miyata K, Hirota K, Branzei D. Vertebrate CTF18 and DDX11 essential function in cohesion is bypassed by preventing WAPL-mediated cohesin release. Genes Dev 2021; 35:1368-1382. [PMID: 34503989 PMCID: PMC8494208 DOI: 10.1101/gad.348581.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 01/26/2023]
Abstract
The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.
Collapse
Affiliation(s)
- Ryotaro Kawasumi
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Takuya Abe
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ivan Psakhye
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Keiji Miyata
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Dana Branzei
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| |
Collapse
|
22
|
Topoisomerase II deficiency leads to a postreplicative structural shift in all Saccharomyces cerevisiae chromosomes. Sci Rep 2021; 11:14940. [PMID: 34294749 PMCID: PMC8298500 DOI: 10.1038/s41598-021-93875-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The key role of Topoisomerase II (Top2) is the removal of topological intertwines between sister chromatids. In yeast, inactivation of Top2 brings about distinct cell cycle responses. In the case of the conditional top2-5 allele, interphase and mitosis progress on schedule but cells suffer from a chromosome segregation catastrophe. We here show that top2-5 chromosomes fail to enter a Pulsed-Field Gel Electrophoresis (PFGE) in the first cell cycle, a behavior traditionally linked to the presence of replication and recombination intermediates. We distinguished two classes of affected chromosomes: the rDNA-bearing chromosome XII, which fails to enter a PFGE at the beginning of S-phase, and all the other chromosomes, which fail at a postreplicative stage. In synchronously cycling cells, this late PFGE retention is observed in anaphase; however, we demonstrate that this behavior is independent of cytokinesis, stabilization of anaphase bridges, spindle pulling forces and, probably, anaphase onset. Strikingly, once the PFGE retention has occurred it becomes refractory to Top2 re-activation. DNA combing, two-dimensional electrophoresis, genetic analyses, and GFP-tagged DNA damage markers suggest that neither recombination intermediates nor unfinished replication account for the postreplicative PFGE shift, which is further supported by the fact that the shift does not trigger the G2/M checkpoint. We propose that the absence of Top2 activity leads to a general chromosome structural/topological change in mitosis.
Collapse
|
23
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
24
|
Maio N, Lafont BAP, Sil D, Li Y, Bollinger JM, Krebs C, Pierson TC, Linehan WM, Rouault TA. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science 2021; 373:236-241. [PMID: 34083449 PMCID: PMC8892629 DOI: 10.1126/science.abi5224] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes. We found that the catalytic subunit of the RdRp, nsp12, ligates two iron-sulfur metal cofactors in sites that were modeled as zinc centers in the available cryo-electron microscopy structures of the RdRp complex. These metal binding sites are essential for replication and for interaction with the viral helicase. Oxidation of the clusters by the stable nitroxide TEMPOL caused their disassembly, potently inhibited the RdRp, and blocked SARS-CoV-2 replication in cell culture. These iron-sulfur clusters thus serve as cofactors for the SARS-CoV-2 RdRp and are targets for therapy of COVID-19.
Collapse
Affiliation(s)
- Nunziata Maio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Bonnell E, Pasquier E, Wellinger RJ. Telomere Replication: Solving Multiple End Replication Problems. Front Cell Dev Biol 2021; 9:668171. [PMID: 33869233 PMCID: PMC8047117 DOI: 10.3389/fcell.2021.668171] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes are highly complex and divided into linear chromosomes that require end protection from unwarranted fusions, recombination, and degradation in order to maintain genomic stability. This is accomplished through the conserved specialized nucleoprotein structure of telomeres. Due to the repetitive nature of telomeric DNA, and the unusual terminal structure, namely a protruding single stranded 3' DNA end, completing telomeric DNA replication in a timely and efficient manner is a challenge. For example, the end replication problem causes a progressive shortening of telomeric DNA at each round of DNA replication, thus telomeres eventually lose their protective capacity. This phenomenon is counteracted by the recruitment and the activation at telomeres of the specialized reverse transcriptase telomerase. Despite the importance of telomerase in providing a mechanism for complete replication of telomeric ends, the majority of telomere replication is in fact carried out by the conventional DNA replication machinery. There is significant evidence demonstrating that progression of replication forks is hampered at chromosomal ends due to telomeric sequences prone to form secondary structures, tightly DNA-bound proteins, and the heterochromatic nature of telomeres. The telomeric loop (t-loop) formed by invasion of the 3'-end into telomeric duplex sequences may also impede the passage of replication fork. Replication fork stalling can lead to fork collapse and DNA breaks, a major cause of genomic instability triggered notably by unwanted repair events. Moreover, at chromosomal ends, unreplicated DNA distal to a stalled fork cannot be rescued by a fork coming from the opposite direction. This highlights the importance of the multiple mechanisms involved in overcoming fork progression obstacles at telomeres. Consequently, numerous factors participate in efficient telomeric DNA duplication by preventing replication fork stalling or promoting the restart of a stalled replication fork at telomeres. In this review, we will discuss difficulties associated with the passage of the replication fork through telomeres in both fission and budding yeasts as well as mammals, highlighting conserved mechanisms implicated in maintaining telomere integrity during replication, thus preserving a stable genome.
Collapse
Affiliation(s)
| | | | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
26
|
Bolaños-Villegas P. The Role of Structural Maintenance of Chromosomes Complexes in Meiosis and Genome Maintenance: Translating Biomedical and Model Plant Research Into Crop Breeding Opportunities. FRONTIERS IN PLANT SCIENCE 2021; 12:659558. [PMID: 33868354 PMCID: PMC8044525 DOI: 10.3389/fpls.2021.659558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Cohesin is a multi-unit protein complex from the structural maintenance of chromosomes (SMC) family, required for holding sister chromatids together during mitosis and meiosis. In yeast, the cohesin complex entraps sister DNAs within tripartite rings created by pairwise interactions between the central ring units SMC1 and SMC3 and subunits such as the α-kleisin SCC1 (REC8/SYN1 in meiosis). The complex is an indispensable regulator of meiotic recombination in eukaryotes. In Arabidopsis and maize, the SMC1/SMC3 heterodimer is a key determinant of meiosis. In Arabidopsis, several kleisin proteins are also essential: SYN1/REC8 is meiosis-specific and is essential for double-strand break repair, whereas AtSCC2 is a subunit of the cohesin SCC2/SCC4 loading complex that is important for synapsis and segregation. Other important meiotic subunits are the cohesin EXTRA SPINDLE POLES (AESP1) separase, the acetylase ESTABLISHMENT OF COHESION 1/CHROMOSOME TRANSMISSION FIDELITY 7 (ECO1/CTF7), the cohesion release factor WINGS APART-LIKE PROTEIN 1 (WAPL) in Arabidopsis (AtWAPL1/AtWAPL2), and the WAPL antagonist AtSWITCH1/DYAD (AtSWI1). Other important complexes are the SMC5/SMC6 complex, which is required for homologous DNA recombination during the S-phase and for proper meiotic synapsis, and the condensin complexes, featuring SMC2/SMC4 that regulate proper clustering of rDNA arrays during interphase. Meiotic recombination is the key to enrich desirable traits in commercial plant breeding. In this review, I highlight critical advances in understanding plant chromatid cohesion in the model plant Arabidopsis and crop plants and suggest how manipulation of crossover formation during meiosis, somatic DNA repair and chromosome folding may facilitate transmission of desirable alleles, tolerance to radiation, and enhanced transcription of alleles that regulate sexual development. I hope that these findings highlight opportunities for crop breeding.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, Alajuela, Costa Rica
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| |
Collapse
|
27
|
Zuilkoski CM, Skibbens RV. PCNA antagonizes cohesin-dependent roles in genomic stability. PLoS One 2020; 15:e0235103. [PMID: 33075068 PMCID: PMC7571713 DOI: 10.1371/journal.pone.0235103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/04/2020] [Indexed: 12/23/2022] Open
Abstract
PCNA sliding clamp binds factors through which histone deposition, chromatin remodeling, and DNA repair are coupled to DNA replication. PCNA also directly binds Eco1/Ctf7 acetyltransferase, which in turn activates cohesins and establishes cohesion between nascent sister chromatids. While increased recruitment thus explains the mechanism through which elevated levels of chromatin-bound PCNA rescue eco1 mutant cell growth, the mechanism through which PCNA instead worsens cohesin mutant cell growth remains unknown. Possibilities include that elevated levels of long-lived chromatin-bound PCNA reduce either cohesin deposition onto DNA or cohesin acetylation. Instead, our results reveal that PCNA increases the levels of both chromatin-bound cohesin and cohesin acetylation. Beyond sister chromatid cohesion, PCNA also plays a critical role in genomic stability such that high levels of chromatin-bound PCNA elevate genotoxic sensitivities and recombination rates. At a relatively modest increase of chromatin-bound PCNA, however, fork stability and progression appear normal in wildtype cells. Our results reveal that even a moderate increase of PCNA indeed sensitizes cohesin mutant cells to DNA damaging agents and in a process that involves the DNA damage response kinase Mec1(ATR), but not Tel1(ATM). These and other findings suggest that PCNA mis-regulation results in genome instabilities that normally are resolved by cohesin. Elevating levels of chromatin-bound PCNA may thus help target cohesinopathic cells linked that are linked to cancer.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
28
|
Majumder K, Boftsi M, Whittle FB, Wang J, Fuller MS, Joshi T, Pintel DJ. The NS1 protein of the parvovirus MVM Aids in the localization of the viral genome to cellular sites of DNA damage. PLoS Pathog 2020; 16:e1009002. [PMID: 33064772 PMCID: PMC7592911 DOI: 10.1371/journal.ppat.1009002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomous parvovirus Minute Virus of Mice (MVM) localizes to cellular DNA damage sites to establish and sustain viral replication centers, which can be visualized by focal deposition of the essential MVM non-structural phosphoprotein NS1. How such foci are established remains unknown. Here, we show that NS1 localized to cellular sites of DNA damage independently of its ability to covalently bind the 5’ end of the viral genome, or its consensus DNA binding sequence. Many of these sites were identical to those occupied by virus during infection. However, localization of the MVM genome to DNA damage sites occurred only when wild-type NS1, but not its DNA-binding mutant was expressed. Additionally, wild-type NS1, but not its DNA binding mutant, could localize a heterologous DNA molecule containing the NS1 binding sequence to DNA damage sites. These findings suggest that NS1 may function as a bridging molecule, helping the MVM genome localize to cellular DNA damage sites to facilitate ongoing virus replication. Parvoviruses are among the simplest of viruses, depending almost exclusively on host cell factors to successfully replicate. We have previously shown that the parvovirus Minute Virus of Mice (MVM) establishes replication centers at sites that are associated with cellular regions of DNA damage. These sites are primed to contain factors necessary to efficiently initiate vigorous virus lytic infection. The process by which viral proteins and viral DNA specifically localize to these sites has previously remained unknown. In this study we show that the essential viral protein NS1 possesses the intrinsic ability to localize to cellular sites of DNA damage. Additionally, wild-type NS1, but not its DNA binding mutant, could localize to sites of DNA damage both the MVM genome, or a heterologous DNA molecule engineered to contain NS1 binding sites. This work provides the first evidence that NS1 may function as a bridging molecule to localize the MVM genome to cellular sites of DNA damage to facilitate ongoing replication.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (KM); (DJP)
| | - Maria Boftsi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Pathobiology Area Graduate Program, University of Missouri, Columbia, Missouri, United States of America
| | - Fawn B. Whittle
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Juexin Wang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew S. Fuller
- Ultragenyx Gene Therapy, Cambridge, Massachusetts, United States of America
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Department of Health Management and Informatics, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri, United States of America
| | - David J. Pintel
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (KM); (DJP)
| |
Collapse
|
29
|
Chromatin Architectural Factors as Safeguards against Excessive Supercoiling during DNA Replication. Int J Mol Sci 2020; 21:ijms21124504. [PMID: 32599919 PMCID: PMC7349988 DOI: 10.3390/ijms21124504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Key DNA transactions, such as genome replication and transcription, rely on the speedy translocation of specialized protein complexes along a double-stranded, right-handed helical template. Physical tethering of these molecular machines during translocation, in conjunction with their internal architectural features, generates DNA topological strain in the form of template supercoiling. It is known that the build-up of transient excessive supercoiling poses severe threats to genome function and stability and that highly specialized enzymes—the topoisomerases (TOP)—have evolved to mitigate these threats. Furthermore, due to their intracellular abundance and fast supercoil relaxation rates, it is generally assumed that these enzymes are sufficient in coping with genome-wide bursts of excessive supercoiling. However, the recent discoveries of chromatin architectural factors that play important accessory functions have cast reasonable doubts on this concept. Here, we reviewed the background of these new findings and described emerging models of how these accessory factors contribute to supercoil homeostasis. We focused on DNA replication and the generation of positive (+) supercoiling in front of replisomes, where two accessory factors—GapR and HMGA2—from pro- and eukaryotic cells, respectively, appear to play important roles as sinks for excessive (+) supercoiling by employing a combination of supercoil constrainment and activation of topoisomerases. Looking forward, we expect that additional factors will be identified in the future as part of an expanding cellular repertoire to cope with bursts of topological strain. Furthermore, identifying antagonists that target these accessory factors and work synergistically with clinically relevant topoisomerase inhibitors could become an interesting novel strategy, leading to improved treatment outcomes.
Collapse
|