1
|
Wang G, Ren Z, Zheng L, Kang Y, Luo N, Qiao Z. Pulsed Airstream-Driven Hierarchical Micro-Nano Pore Structured Triboelectric Nanogenerator for Wireless Self-Powered Formaldehyde Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406500. [PMID: 39139056 DOI: 10.1002/smll.202406500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Formaldehyde (HCHO), as a common volatile organic compound, has a serious impact on human health in the daily lives and industrial production scenarios. Given the security issue of HCHO detection and danger warning, a ZIF-8/copper foam based pulsed airstream-driven triboelectric nanogenerator (ZCP-TENG) is designed to develop the self-powered HCHO sensors. By combining contact electrification and electrostatic induction, the ZCP-TENG can be utilized for airflow energy harvesting and HCHO concentration detection. The short-circuit current and output power of the ZCP-TENG can reach 2.0 µA and 81 µW (20 ppm). With the high surface area, abundant micro-nano pores, and excellent permeation flux, the ZCP-TENGs exhibit excellent HCHO sensing response (61.3% at 100 ppm), low detection limit (≈2 ppm), and rapid response/recovery time (14/15 s), which can be served as a highly sensitive and selective HCHO sensor. By connecting an intelligent wireless alarm, the ZCP-TENGs are designed to construct a self-powered warning system to monitor and remind the HCHO of exceedance situations. Moreover, by combining a support vector machine model, the difference concentrations can be quickly identified with an average prediction accuracy of 100%. This study illustrates that ZCP-TENGs have broad application prospects and provide guidance for HCHO monitoring and danger warnings.
Collapse
Affiliation(s)
- Gang Wang
- Shandong Laboratory of Advanced Material and Green Manufacturing at Yantai, Yantai, 264006, P. R. China
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, P. R. China
| | - Zhongkan Ren
- Shandong Laboratory of Advanced Material and Green Manufacturing at Yantai, Yantai, 264006, P. R. China
| | - Longkui Zheng
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Yajie Kang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Ning Luo
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Zhuhui Qiao
- Shandong Laboratory of Advanced Material and Green Manufacturing at Yantai, Yantai, 264006, P. R. China
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Li L. Transcription reprogramming and endogenous DNA damage. DNA Repair (Amst) 2024; 142:103754. [PMID: 39232366 DOI: 10.1016/j.dnarep.2024.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Transcription reprogramming is essential to carry out a variety of cell dynamics such as differentiation and stress response. During reprogramming of transcription, a number of adverse effects occur and potentially compromise genomic stability. Formaldehyde as an obligatory byproduct is generated in the nucleus via oxidative protein demethylation at regulatory regions, leading to the formation of DNA crosslinking damage. Elevated levels of transcription activities can result in the accumulation of unscheduled R-loop. DNA strand breaks can form if processed 5-methylcytosines are exercised by DNA glycosylase during imprint reversal. When cellular differentiation involves a large number of genes undergoing transcription reprogramming, these endogenous DNA lesions and damage-prone structures may pose a significant threat to genome stability. In this review, we discuss how DNA damage is formed during cellular differentiation, cellular mechanisms for their removal, and diseases associated with transcription reprogramming.
Collapse
Affiliation(s)
- Lei Li
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| |
Collapse
|
3
|
Mu A, Hira A, Mori M, Okamoto Y, Takata M. Fanconi anemia and Aldehyde Degradation Deficiency Syndrome: Metabolism and DNA repair protect the genome and hematopoiesis from endogenous DNA damage. DNA Repair (Amst) 2023; 130:103546. [PMID: 37572579 DOI: 10.1016/j.dnarep.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
We have identified a set of Japanese children with hypoplastic anemia caused by combined defects in aldehyde degrading enzymes ADH5 and ALDH2. Their clinical characteristics overlap with a hereditary DNA repair disorder, Fanconi anemia. Our discovery of this disorder, termed Aldehyde Degradation Deficiency Syndrome (ADDS), reinforces the notion that endogenously generated aldehydes exert genotoxic effects; thus, the coupled actions of metabolism and DNA repair are required to maintain proper hematopoiesis and health.
Collapse
Affiliation(s)
- Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minako Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Wang Y, Wang J, Lv Q, He YK. ADH2/GSNOR1 is a key player in limiting genotoxic damage mediated by formaldehyde and UV-B in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:378-391. [PMID: 34919280 DOI: 10.1111/pce.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Maintenance of genome stability is an essential requirement for all living organisms. Formaldehyde and UV-B irradiation cause DNA damage and affect genome stability, growth and development, but the interplay between these two genotoxic factors is poorly understood in plants. We show that Arabidopsis adh2/gsnor1 mutant, which lacks alcohol dehydrogenase 2/S-nitrosoglutathione reductase 1 (ADH2/GSNOR1), are hypersensitive to low fluence UV-B irradiation or UV-B irradiation-mimetic chemicals. Although the ADH2/GSNOR1 enzyme can act on different substrates, notably on S-hydroxymethylglutathione (HMG) and S-nitrosoglutathione (GSNO), our study provides several lines of evidence that the sensitivity of gsnor1 to UV-B is caused mainly by UV-B-induced formaldehyde accumulation rather than other factors such as alteration of the GSNO concentration. Our results demonstrate an interplay between formaldehyde and UV-B that exacerbates genome instability, leading to severe DNA damage and impaired growth and development in Arabidopsis, and show that ADH2/GSNOR1 is a key player in combating these effects.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jinzheng Wang
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yi-Kun He
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
5
|
Accumulation of formaldehyde causes motor deficits in an in vivo model of hindlimb unloading. Commun Biol 2021; 4:933. [PMID: 34413463 PMCID: PMC8376875 DOI: 10.1038/s42003-021-02448-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
During duration spaceflight, or after their return to earth, astronauts have often suffered from gait instability and cerebellar ataxia. Here, we use a mouse model of hindlimb unloading (HU) to explore a mechanism of how reduced hindlimb burden may contribute to motor deficits. The results showed that these mice which have experienced HU for 2 weeks exhibit a rapid accumulation of formaldehyde in the gastrocnemius muscle and fastigial nucleus of cerebellum. The activation of semicarbazide-sensitive amine oxidase and sarcosine dehydrogenase induced by HU-stress contributed to formaldehyde generation and loss of the abilities to maintain balance and coordinate motor activities. Further, knockout of formaldehyde dehydrogenase (FDH-/-) in mice caused formaldehyde accumulation in the muscle and cerebellum that was associated with motor deficits. Remarkably, formaldehyde injection into the gastrocnemius muscle led to gait instability; especially, microinfusion of formaldehyde into the fastigial nucleus directly induced the same symptoms as HU-induced acute ataxia. Hence, excessive formaldehyde damages motor functions of the muscle and cerebellum.
Collapse
|