1
|
Tenjo-Castaño F, Rout SS, Dey S, Montoya G. Unlocking the potential of CRISPR-associated transposons: from structural to functional insights. Trends Genet 2025:S0168-9525(25)00080-0. [PMID: 40393858 DOI: 10.1016/j.tig.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/22/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposons (CASTs) are emerging genome-editing tools that enable RNA-guided DNA integration without inducing double-strand breaks (DSBs). Unlike CRISPR-associated (Cas) nucleases, CASTs use transposon machinery to insert large DNA segments with high precision, potentially reducing off-target effects and bypassing DNA damage responses. CASTs are categorized into classes 1 and 2, each employing distinct mechanisms for DNA targeting and integration. Recent structural insights have elucidated how CASTs recognize target sites, recruit transposases, and mediate insertion. These advances position CASTs as promising tools for genome engineering in bacteria and possibly in mammalian cells. Key challenges remain in enhancing efficiency and specificity, particularly for therapeutic use. Ongoing research aims to evolve CAST systems for precise, large-scale genome editing in human cells.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sweta Suman Rout
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sanjay Dey
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Liu J, Aliaga Goltsman DS, Alexander LM, Khayi KK, Hong JH, Dunham DT, Romano CA, Temoche-Diaz MM, Chadha S, Fregoso Ocampo R, Oki-O'Connell J, Janson OP, Turcios K, Gonzalez-Osorio L, Muysson J, Rahman J, Laperriere SM, Devoto AE, Castelle CJ, Butterfield CN, Cost GJ, Brown CT, Thomas BC. Integration of therapeutic cargo into the human genome with programmable type V-K CAST. Nat Commun 2025; 16:2427. [PMID: 40082411 PMCID: PMC11906591 DOI: 10.1038/s41467-025-57416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
CRISPR-associated (Cas) transposases (CAST) are RNA-guided systems capable of programmable integration of large segments of DNA without creating double-strand breaks. Engineered Cascade CAST function in human cells but are challenging to deploy due to the complexity of the targeting components. Unlike Cascade, which require three Cas proteins, type V-K CAST require a single Cas12k effector for targeting. Here, we show that compact type V-K CAST from uncultivated microbes are repurposable for programmable DNA integration into the genome of human cells. Engineering for nuclear localization and function enables integration of a therapeutically relevant transgene at a safe-harbor site in multiple human cell types. Notably, off-targets are rare events reproducibly found in specific genomic regions. These CAST advancements are expected to accelerate applications of genome editing to therapeutic development, biotechnology, and synthetic biology.
Collapse
Affiliation(s)
- Jason Liu
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | | | - Lisa M Alexander
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | - Khak Khak Khayi
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | - Jennifer H Hong
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | - Drew T Dunham
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | | | | | - Shailaja Chadha
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | | | | | - Owen P Janson
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | | | | | - Jared Muysson
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | - Jenat Rahman
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | | | - Audra E Devoto
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | - Cindy J Castelle
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | | | - Gregory J Cost
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| | | | - Brian C Thomas
- Metagenomi, Inc, Emeryville, CA, 94608, United States of America
| |
Collapse
|
3
|
Wang S, Chang L. Biochemical reconstitution of a type I-B CRISPR-associated transposon. Methods Enzymol 2025; 712:55-79. [PMID: 40121087 DOI: 10.1016/bs.mie.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
CRISPR-associated transposons (CASTs) are potential gene editing tools because of their RNA-guided DNA insertion activity. It is essential to understand the mechanisms underlying the transposition for the application of CASTs. Here, we provide protocols for the biochemical reconstitution of a type I-B CAST for RNA-guided transposition. The procedures may be applicable to other types of CASTs and facilitate the mechanism studies of various CASTs.
Collapse
Affiliation(s)
- Shukun Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
4
|
Ganguly C, Martin L, Aribam S, Thomas LM, Rajan R. Helical transition of the bridge helix of Cas12a is an allosteric regulator of R-loop formation and RuvC activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632262. [PMID: 39829887 PMCID: PMC11741254 DOI: 10.1101/2025.01.09.632262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
CRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Francisella novicida Cas12a variant (FnoCas12a KD2P ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH-mediated activation of Cas12a. We captured five structures of FnoCas12a KD2P at different states of conformational activation. Comparison with wild-type (FnoCas12a WT ) structures unravels a mechanism where BH acts as a trigger that allosterically activates REC lobe movements by tracking the number of base pairs in the growing RNA-DNA hybrid to undergo a loop-to-helical transition and bending to latch onto the hybrid. The transition of the BH is coupled to the previously reported loop-to-helix transition of the "lid", essential for opening RuvC endonuclease, through direct interactions of residues of the BH and the lid. We also observe structural details of cooperativity of BH and "helix-1" of RuvC for activation, a previously proposed interaction. Overall, our study enables development of high-fidelity Cas12a and Cas9 variants by BH-modifications.
Collapse
|
5
|
Chen C, Li YW, Zheng YY, Li XJ, Wu N, Guo Q, Shi TQ, Huang H. Expanding the frontiers of genome engineering: A comprehensive review of CRISPR-associated transposons. Biotechnol Adv 2025; 78:108481. [PMID: 39579910 DOI: 10.1016/j.biotechadv.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/30/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Genome engineering is extensively utilized in diverse scientific disciplines, advancing human welfare and addressing various challenges. Numerous genome engineering tools have been developed to modify genomic sequences. Among these, the CRISPR-Cas system has transformed the field and remains the most commonly employed genome-editing tool. However, the CRISPR-Cas system relies on induced double-strand breaks, with editing efficiency often limited by factors such as cell type and homologous recombination, impeding further progress. CRISPR-associated transposons (CASTs) represent programmable mobile genetic elements. CASTs identified as active were developed as CAST systems, which can perform RNA-guided DNA integration and are featured by high precision, programmability, and kilobase-level payload capacity. Moreover, CAST system allows for precise genome modifications independent of host DNA repair mechanisms, addressing the constraints of conventional CRISPR-Cas systems. It expands the genome engineering toolkit and is poised to become a representative of next-generation genome editing tools. This review thoroughly examines the research progress on CASTs, highlighting the current challenges faced in genome engineering based on CASTs, and offering insights into the ongoing development of this transformative technology.
Collapse
Affiliation(s)
- Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Yuan-Yuan Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Xiu-Juan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Na Wu
- College of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng 224057, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
6
|
Koonin EV, Makarova KS. CRISPR in mobile genetic elements: counter-defense, inter-element competition and RNA-guided transposition. BMC Biol 2024; 22:295. [PMID: 39696488 DOI: 10.1186/s12915-024-02090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
CRISPR are adaptive immunity systems that protect bacteria and archaea from viruses and other mobile genetic elements (MGE) via an RNA-guided interference mechanism. However, in the course of the host-parasite co-evolution, CRISPR systems have been recruited by MGE themselves for counter-defense or other functions. Some bacteriophages encode fully functional CRISPR systems that target host defense systems, and many others recruited individual components of CRISPR systems, such as single repeat units that inhibit host CRISPR systems and CRISPR mini-arrays that target related viruses contributing to inter-virus competition. Many plasmids carry type IV or subtype V-M CRISPR systems that appear to be involved in inter-plasmid competition. Numerous Tn7-like and Mu-like transposons encode CRISPR-associated transposases (CASTs) in which interference-defective CRISPR systems of type I or type V mediate RNA-guided, site-specific transposition. The recruitment of CRISPR systems and their components by MGE is a manifestation of extensive gene shuttling between host immune systems and MGE, a major trend in the coevolution of MGE with their hosts.
Collapse
Affiliation(s)
- Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
7
|
Wu WY, Adiego-Pérez B, van der Oost J. Biology and applications of CRISPR-Cas12 and transposon-associated homologs. Nat Biotechnol 2024; 42:1807-1821. [PMID: 39633151 DOI: 10.1038/s41587-024-02485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-associated Cas12 proteins are a highly variable collection of nucleic acid-targeting proteins. All Cas12 variants use RNA guides and a single nuclease domain to target complementary DNA or, in rare cases, RNA. The high variability of Cas12 effectors can be explained by a series of independent evolution events from different transposon-associated TnpB-like ancestors. Despite basic structural and functional similarities, this has resulted in unprecedented variation of the Cas12 effector proteins in terms of size, domain composition, guide structure, target identity and interference strategy. In this Review, we compare the unique molecular features of natural and engineered Cas12 and TnpB variants. Furthermore, we provide an overview of established genome editing and diagnostic applications and discuss potential future directions.
Collapse
Affiliation(s)
- Wen Y Wu
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.
| | - Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Wang S, Siddique R, Hall MC, Rice PA, Chang L. Structure of TnsABCD transpososome reveals mechanisms of targeted DNA transposition. Cell 2024; 187:6865-6881.e16. [PMID: 39383864 PMCID: PMC11606762 DOI: 10.1016/j.cell.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Tn7-like transposons are characterized by their ability to insert specifically into host chromosomes. Recognition of the attachment (att) site by TnsD recruits the TnsABC proteins to form the transpososome and facilitate transposition. Although this pathway is well established, atomic-level structural insights of this process remain largely elusive. Here, we present the cryo-electron microscopy (cryo-EM) structures of the TnsC-TnsD-att DNA complex and the TnsABCD transpososome from the Tn7-like transposon in Peltigera membranacea cyanobiont 210A, a type I-B CRISPR-associated transposon. Our structures reveal a striking bending of the att DNA, featured by the intercalation of an arginine side chain of TnsD into a CC/GG dinucleotide step. The TnsABCD transpososome structure reveals TnsA-TnsB interactions and demonstrates that TnsC not only recruits TnsAB but also directly participates in the transpososome assembly. These findings provide mechanistic insights into targeted DNA insertion by Tn7-like transposons, with implications for improving the precision and efficiency of their genome-editing applications.
Collapse
Affiliation(s)
- Shukun Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Romana Siddique
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
9
|
Zhang R, Chai N, Liu T, Zheng Z, Lin Q, Xie X, Wen J, Yang Z, Liu YG, Zhu Q. The type V effectors for CRISPR/Cas-mediated genome engineering in plants. Biotechnol Adv 2024; 74:108382. [PMID: 38801866 DOI: 10.1016/j.biotechadv.2024.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A plethora of CRISPR effectors, such as Cas3, Cas9, and Cas12a, are commonly employed as gene editing tools. Among these, Cas12 effectors developed based on Class II type V proteins exhibit distinct characteristics compared to Class II type VI and type II effectors, such as their ability to generate non-allelic DNA double-strand breaks, their compact structures, and the presence of a single RuvC-like nuclease domain. Capitalizing on these advantages, Cas12 family proteins have been increasingly explored and utilized in recent years. However, the characteristics and applications of different subfamilies within the type V protein family have not been systematically summarized. In this review, we focus on the characteristics of type V effector (CRISPR/Cas12) proteins and the current methods used to discover new effector proteins. We also summarize recent modifications based on engineering of type V effectors. In addition, we introduce the applications of type V effectors for gene editing in animals and plants, including the development of base editors, tools for regulating gene expression, methods for gene targeting, and biosensors. We emphasize the prospects for development and application of CRISPR/Cas12 effectors with the goal of better utilizing toolkits based on this protein family for crop improvement and enhanced agricultural production.
Collapse
Affiliation(s)
- Ruixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiupeng Lin
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zi Yang
- College of Natural & Agricultural Sciences, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Hsieh SC, Peters JE. Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons. Annu Rev Biochem 2024; 93:139-161. [PMID: 38598855 PMCID: PMC11406308 DOI: 10.1146/annurev-biochem-030122-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated nuclease) defense systems have been naturally coopted for guide RNA-directed transposition on multiple occasions. In all cases, cooption occurred with diverse elements related to the bacterial transposon Tn7. Tn7 tightly controls transposition; the transposase is activated only when special targets are recognized by dedicated target-site selection proteins. Tn7 and the Tn7-like elements that coopted CRISPR-Cas systems evolved complementary targeting pathways: one that recognizes a highly conserved site in the chromosome and a second pathway that targets mobile plasmids capable of cell-to-cell transfer. Tn7 and Tn7-like elements deliver a single integration into the site they recognize and also control the orientation of the integration event, providing future potential for use as programmable gene-integration tools. Early work has shown that guide RNA-directed transposition systems can be adapted to diverse hosts, even within microbial communities, suggesting great potential for engineering these systems as powerful gene-editing tools.
Collapse
Affiliation(s)
- Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
11
|
Chang CW, Truong VA, Pham NN, Hu YC. RNA-guided genome engineering: paradigm shift towards transposons. Trends Biotechnol 2024; 42:970-985. [PMID: 38443218 DOI: 10.1016/j.tibtech.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
CRISPR-Cas systems revolutionized the genome engineering field but need to induce double-strand breaks (DSBs) and may be difficult to deliver due to their large protein size. Tn7-like transposons such as CRISPR-associated transposons (CASTs) can be repurposed for RNA-guided DSB-free integration, and obligate mobile element guided activity (OMEGA) proteins of the IS200/IS605 transposon family have been developed as hypercompact RNA-guided genome editing tools. CASTs and OMEGA are exciting, innovative genome engineering tools that can improve the precision and efficiency of editing. This review explores the recent developments and uses of CASTs and OMEGA in genome editing across prokaryotic and eukaryotic cells. The pros and cons of these transposon-based systems are deliberated in comparison to other CRISPR systems.
Collapse
Affiliation(s)
- Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Vy Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
12
|
Jiao C, Peeck NL, Yu J, Ghaem Maghami M, Kono S, Collias D, Martinez Diaz SL, Larose R, Beisel CL. TracrRNA reprogramming enables direct PAM-independent detection of RNA with diverse DNA-targeting Cas12 nucleases. Nat Commun 2024; 15:5909. [PMID: 39003282 PMCID: PMC11246509 DOI: 10.1038/s41467-024-50243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Many CRISPR-Cas immune systems generate guide (g)RNAs using trans-activating CRISPR RNAs (tracrRNAs). Recent work revealed that Cas9 tracrRNAs could be reprogrammed to convert any RNA-of-interest into a gRNA, linking the RNA's presence to Cas9-mediated cleavage of double-stranded (ds)DNA. Here, we reprogram tracrRNAs from diverse Cas12 nucleases, linking the presence of an RNA-of-interest to dsDNA cleavage and subsequent collateral single-stranded DNA cleavage-all without the RNA necessarily encoding a protospacer-adjacent motif (PAM). After elucidating nuclease-specific design rules, we demonstrate PAM-independent RNA detection with Cas12b, Cas12e, and Cas12f nucleases. Furthermore, rationally truncating the dsDNA target boosts collateral cleavage activity, while the absence of a gRNA reduces background collateral activity and enhances sensitivity. Finally, we apply this platform to detect 16 S rRNA sequences from five different bacterial pathogens using a universal reprogrammed tracrRNA. These findings extend tracrRNA reprogramming to diverse dsDNA-targeting Cas12 nucleases, expanding the flexibility and versatility of CRISPR-based RNA detection.
Collapse
Affiliation(s)
- Chunlei Jiao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Natalia L Peeck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sarah Kono
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sandra L Martinez Diaz
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Rachael Larose
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Tenjo-Castaño F, Sofos N, Stutzke LS, Temperini P, Fuglsang A, Pape T, Mesa P, Montoya G. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly. Mol Cell 2024; 84:2353-2367.e5. [PMID: 38834066 DOI: 10.1016/j.molcel.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opt CRISPR-Cas systems for RNA-guided DNA transposition. CASTs integrate large DNA cargos into the attachment (att) site independently of homology-directed repair and thus hold promise for eukaryotic genome engineering. However, the functional diversity and complexity of CASTs hinder an understanding of their mechanisms. Here, we present the high-resolution cryoelectron microscopy (cryo-EM) structure of the reconstituted ∼1 MDa post-transposition complex of the type V-K CAST, together with different assembly intermediates and diverse TnsC filament lengths, thus enabling the recapitulation of the integration complex formation. The results of mutagenesis experiments probing the roles of specific residues and TnsB-binding sites show that transposition activity can be enhanced and suggest that the distance between the PAM and att sites is determined by the lengths of the TnsB C terminus and the TnsC filament. This singular model of RNA-guided transposition provides a foundation for repurposing the system for genome-editing applications.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nicholas Sofos
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Luisa S Stutzke
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Piero Temperini
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anders Fuglsang
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences University of Copenhagen; Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Pablo Mesa
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
14
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
15
|
Wu H, Sun Y, Wang Y, Luo L, Song Y. Advances in miniature CRISPR-Cas proteins and their applications in gene editing. Arch Microbiol 2024; 206:231. [PMID: 38652321 DOI: 10.1007/s00203-024-03962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The CRISPR-Cas system consists of Cas proteins and single-stranded RNAs that recruit Cas proteins and specifically target the nucleic acid. Some Cas proteins can accurately cleave the target nucleic acid under the guidance of the single-stranded RNAs. Due to its exceptionally high specificity, the CRISPR-Cas system is now widely used in various fields such as gene editing, transcription regulation, and molecular diagnosis. However, the huge size of the most frequently utilized Cas proteins (Cas9, Cas12a, and Cas13, which contain 950-1,400 amino acids) can limit their applicability, especially in eukaryotic gene editing, where larger Cas proteins are difficult to deliver into the target cells. Recently discovered miniature CRISPR-Cas proteins, consisting of only 400 to 800 amino acids, offer the possibility of overcoming this limitation. This article systematically reviews the latest research progress of several miniature CRISPR-Cas proteins (Cas12f, Cas12j, Cas12k, and Cas12m) and their practical applications in the field of gene editing.
Collapse
Affiliation(s)
- Huimin Wu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yixiang Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yimai Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, China.
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, China.
| |
Collapse
|
16
|
Arévalo S, Pérez Rico D, Abarca D, Dijkhuizen LW, Sarasa-Buisan C, Lindblad P, Flores E, Nierzwicki-Bauer S, Schluepmann H. Genome Engineering by RNA-Guided Transposition for Anabaena sp. PCC 7120. ACS Synth Biol 2024; 13:901-912. [PMID: 38445989 PMCID: PMC10949235 DOI: 10.1021/acssynbio.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in Escherichia coli. Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in Anabaena sp. strain PCC 7120. The comparatively large plasmids containing CAST and the engineered transposon were successfully transferred into Anabaena via conjugation using either suicide or replicative plasmids. Single guide (sg) RNA encoding the leading but not the reverse complement strand of the target were effective with the protospacer-associated motif (PAM) sequence included in the sgRNA. In four out of six cases analyzed over two distinct target loci, the insertion site was exactly 63 bases after the PAM. CAST on a replicating plasmid was toxic, which could be used to cure the plasmid. In all six cases analyzed, only the transposon cargo defined by the sequence ranging from left and right elements was inserted at the target loci; therefore, RNA-guided transposition resulted from cut and paste. No endogenous transposons were remobilized by exposure to CAST enzymes. This work is foundational for genome editing by RNA-guided transposition in filamentous cyanobacteria, whether in culture or in complex communities.
Collapse
Affiliation(s)
- Sergio Arévalo
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Microbial
Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751
20 Uppsala, Sweden
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad
de Sevilla, Avenida Americo Vespucio 49, Sevilla 41092, Spain
- Department
of Biological Sciences, Rensselaer Polytechnic
Institute, 110 Eighth
Street, Troy, New York 12180-3590, United
States
| | - Daniel Pérez Rico
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dolores Abarca
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Laura W. Dijkhuizen
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cristina Sarasa-Buisan
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad
de Sevilla, Avenida Americo Vespucio 49, Sevilla 41092, Spain
| | - Peter Lindblad
- Microbial
Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751
20 Uppsala, Sweden
| | - Enrique Flores
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad
de Sevilla, Avenida Americo Vespucio 49, Sevilla 41092, Spain
| | - Sandra Nierzwicki-Bauer
- Department
of Biological Sciences, Rensselaer Polytechnic
Institute, 110 Eighth
Street, Troy, New York 12180-3590, United
States
| | - Henriette Schluepmann
- Biology
Department, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
17
|
Dixit S, Kumar A, Srinivasan K, Vincent PMDR, Ramu Krishnan N. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Front Bioeng Biotechnol 2024; 11:1335901. [PMID: 38260726 PMCID: PMC10800897 DOI: 10.3389/fbioe.2023.1335901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing (GED) technologies have unlocked exciting possibilities for understanding genes and improving medical treatments. On the other hand, Artificial intelligence (AI) helps genome editing achieve more precision, efficiency, and affordability in tackling various diseases, like Sickle cell anemia or Thalassemia. AI models have been in use for designing guide RNAs (gRNAs) for CRISPR-Cas systems. Tools like DeepCRISPR, CRISTA, and DeepHF have the capability to predict optimal guide RNAs (gRNAs) for a specified target sequence. These predictions take into account multiple factors, including genomic context, Cas protein type, desired mutation type, on-target/off-target scores, potential off-target sites, and the potential impacts of genome editing on gene function and cell phenotype. These models aid in optimizing different genome editing technologies, such as base, prime, and epigenome editing, which are advanced techniques to introduce precise and programmable changes to DNA sequences without relying on the homology-directed repair pathway or donor DNA templates. Furthermore, AI, in collaboration with genome editing and precision medicine, enables personalized treatments based on genetic profiles. AI analyzes patients' genomic data to identify mutations, variations, and biomarkers associated with different diseases like Cancer, Diabetes, Alzheimer's, etc. However, several challenges persist, including high costs, off-target editing, suitable delivery methods for CRISPR cargoes, improving editing efficiency, and ensuring safety in clinical applications. This review explores AI's contribution to improving CRISPR-based genome editing technologies and addresses existing challenges. It also discusses potential areas for future research in AI-driven CRISPR-based genome editing technologies. The integration of AI and genome editing opens up new possibilities for genetics, biomedicine, and healthcare, with significant implications for human health.
Collapse
Affiliation(s)
- Shriniket Dixit
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - Anant Kumar
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - P. M. Durai Raj Vincent
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India
| | - Nadesh Ramu Krishnan
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
18
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
19
|
Badon IW, Oh Y, Kim HJ, Lee SH. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol Ther 2024; 32:32-43. [PMID: 37952084 PMCID: PMC10787141 DOI: 10.1016/j.ymthe.2023.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
In 2012, it was discovered that precise gene editing could be induced in target DNA using the reprogrammable characteristics of the CRISPR system. Since then, several studies have investigated the potential of the CRISPR system to edit various biological organisms. For the typical CRISPR system obtained from bacteria and archaea, many application studies have been conducted and have spread to various fields. To date, orthologs with various characteristics other than CRISPR-Cas9 have been discovered and are being intensively studied in the field of gene editing. CRISPR-Cas12 and its varied orthologs are representative examples of genome editing tools and have superior properties in terms of in vivo target gene editing compared with Cas9. Recently, TnpB and Fanzor of the OMEGA (obligate mobile element guided activity) system were identified to be the ancestor of CRISPR-Cas12 on the basis of phylogenetic analysis. Notably, the compact sizes of Cas12 and OMEGA endonucleases allow adeno-associated virus (AAV) delivery; hence, they are set to challenge Cas9 for in vivo gene therapy. This review is focused on these RNA-guided reprogrammable endonucleases: their structure, biochemistry, off-target effects, and applications in therapeutic gene editing.
Collapse
Affiliation(s)
- Isabel Wen Badon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea.
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
20
|
Lee Y, Oh Y, Lee SH. Recent advances in genome engineering by CRISPR technology. BMB Rep 2024; 57:12-18. [PMID: 38053294 PMCID: PMC10828434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 12/07/2023] Open
Abstract
Due to the development of CRISPR technology, the era of effective editing of target genes has arrived. However, the offtarget problem that occurs when recognizing target DNA due to the inherent nature of CRISPR components remains the biggest task to be overcome in the future. In this review, the principle of inducing such unintended off-target editing is analyzed from the structural aspect of CRISPR, and the methodology that has been developed to reduce off-target editing until now is summarized. [BMB Reports 2024; 57(1): 12-18].
Collapse
Affiliation(s)
- Youngsik Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
21
|
Schmitz M, Querques I. DNA on the move: mechanisms, functions and applications of transposable elements. FEBS Open Bio 2024; 14:13-22. [PMID: 38041553 PMCID: PMC10761935 DOI: 10.1002/2211-5463.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
Transposons are mobile genetic elements that have invaded all domains of life by moving between and within their host genomes. Due to their mobility (or transposition), transposons facilitate horizontal gene transfer in bacteria and foster the evolution of new molecular functions in prokaryotes and eukaryotes. As transposition can lead to detrimental genomic rearrangements, organisms have evolved a multitude of molecular strategies to control transposons, including genome defense mechanisms provided by CRISPR-Cas systems. Apart from their biological impacts on genomes, DNA transposons have been leveraged as efficient gene insertion vectors in basic research, transgenesis and gene therapy. However, the close to random insertion profile of transposon-based tools limits their programmability and safety. Despite recent advances brought by the development of CRISPR-associated genome editing nucleases, a strategy for efficient insertion of large, multi-kilobase transgenes at user-defined genomic sites is currently challenging. The discovery and experimental characterization of bacterial CRISPR-associated transposons (CASTs) led to the attractive hypothesis that these systems could be repurposed as programmable, site-specific gene integration technologies. Here, we provide a broad overview of the molecular mechanisms underpinning DNA transposition and of its biological and technological impact. The second focus of the article is to describe recent mechanistic and functional analyses of CAST transposition. Finally, current challenges and desired future advances of CAST-based genome engineering applications are briefly discussed.
Collapse
Affiliation(s)
| | - Irma Querques
- Department of BiochemistryUniversity of ZurichSwitzerland
- Max Perutz Labs, Vienna Biocenter Campus (VBC)Austria
- Department of Structural and Computational Biology, Center for Molecular BiologyUniversity of ViennaAustria
| |
Collapse
|
22
|
Tenjo-Castaño F, Montoya G, Carabias A. Transposons and CRISPR: Rewiring Gene Editing. Biochemistry 2023; 62:3521-3532. [PMID: 36130724 PMCID: PMC10734217 DOI: 10.1021/acs.biochem.2c00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Indexed: 11/30/2022]
Abstract
CRISPR-Cas is driving a gene editing revolution because of its simple reprogramming. However, off-target effects and dependence on the double-strand break repair pathways impose important limitations. Because homology-directed repair acts primarily in actively dividing cells, many of the current gene correction/replacement approaches are restricted to a minority of cell types. Furthermore, current approaches display low efficiency upon insertion of large DNA cargos (e.g., sequences containing multiple gene circuits with tunable functionalities). Recent research has revealed new links between CRISPR-Cas systems and transposons providing new scaffolds that might overcome some of these limitations. Here, we comment on two new transposon-associated RNA-guided mechanisms considering their potential as new gene editing solutions. Initially, we focus on a group of small RNA-guided endonucleases of the IS200/IS605 family of transposons, which likely evolved into class 2 CRISPR effector nucleases (Cas9s and Cas12s). We explore the diversity of these nucleases (named OMEGA, obligate mobile element-guided activity) and analyze their similarities with class 2 gene editors. OMEGA nucleases can perform gene editing in human cells and constitute promising candidates for the design of new compact RNA-guided platforms. Then, we address the co-option of the RNA-guided activity of different CRISPR effector nucleases by a specialized group of Tn7-like transposons to target transposon integration. We describe the various mechanisms used by these RNA-guided transposons for target site selection and integration. Finally, we assess the potential of these new systems to circumvent some of the current gene editing challenges.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| | - Arturo Carabias
- Structural Molecular Biology Group,
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, Copenhagen 2200, Denmark
| |
Collapse
|
23
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. Science 2023; 382:eadj8543. [PMID: 37972161 PMCID: PMC10771339 DOI: 10.1126/science.adj8543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 11/19/2023]
Abstract
CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to catalyze RNA-guided transposition of large genetic payloads. Type V-K CASTs offer potential technology advantages but lack accuracy, and the molecular basis for this drawback has remained elusive. Here, we reveal that type V-K CASTs maintain an RNA-independent, "untargeted" transposition pathway alongside RNA-dependent integration, driven by the local availability of TnsC filaments. Using cryo-electron microscopy, single-molecule experiments, and high-throughput sequencing, we found that a minimal, CRISPR-less transpososome preferentially directs untargeted integration at AT-rich sites, with additional local specificity imparted by TnsB. By exploiting this knowledge, we suppressed untargeted transposition and increased type V-K CAST specificity up to 98.1% in cells without compromising on-target integration efficiency. These findings will inform further engineering of CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Wang S, Gabel C, Siddique R, Klose T, Chang L. Molecular mechanism for Tn7-like transposon recruitment by a type I-B CRISPR effector. Cell 2023; 186:4204-4215.e19. [PMID: 37557170 PMCID: PMC11027886 DOI: 10.1016/j.cell.2023.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/23/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Tn7-like transposons have co-opted CRISPR-Cas systems to facilitate the movement of their own DNA. These CRISPR-associated transposons (CASTs) are promising tools for programmable gene knockin. A key feature of CASTs is their ability to recruit Tn7-like transposons to nuclease-deficient CRISPR effectors. However, how Tn7-like transposons are recruited by diverse CRISPR effectors remains poorly understood. Here, we present the cryo-EM structure of a recruitment complex comprising the Cascade complex, TniQ, TnsC, and the target DNA in the type I-B CAST from Peltigera membranacea cyanobiont 210A. Target DNA recognition by Cascade induces conformational changes in Cas6 and primes TniQ recruitment through its C-terminal domain. The N-terminal domain of TniQ is bound to the seam region of the TnsC spiral heptamer. Our findings provide insights into the diverse mechanisms for the recruitment of Tn7-like transposons to CRISPR effectors and will aid in the development of CASTs as gene knockin tools.
Collapse
Affiliation(s)
- Shukun Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Clinton Gabel
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Romana Siddique
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
25
|
Omura SN, Nakagawa R, Südfeld C, Villegas Warren R, Wu WY, Hirano H, Laffeber C, Kusakizako T, Kise Y, Lebbink JHG, Itoh Y, van der Oost J, Nureki O. Mechanistic and evolutionary insights into a type V-M CRISPR-Cas effector enzyme. Nat Struct Mol Biol 2023; 30:1172-1182. [PMID: 37460897 PMCID: PMC10442227 DOI: 10.1038/s41594-023-01042-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/22/2023] [Indexed: 08/23/2023]
Abstract
RNA-guided type V CRISPR-Cas12 effectors provide adaptive immunity against mobile genetic elements (MGEs) in bacteria and archaea. Among diverse Cas12 enzymes, the recently identified Cas12m2 (CRISPR-Cas type V-M) is highly compact and has a unique RuvC active site. Although the non-canonical RuvC triad does not permit dsDNA cleavage, Cas12m2 still protects against invading MGEs through transcriptional silencing by strong DNA binding. However, the molecular mechanism of RNA-guided genome inactivation by Cas12m2 remains unknown. Here we report cryo-electron microscopy structures of two states of Cas12m2-CRISPR RNA (crRNA)-target DNA ternary complexes and the Cas12m2-crRNA binary complex, revealing structural dynamics during crRNA-target DNA heteroduplex formation. The structures indicate that the non-target DNA strand is tightly bound to a unique arginine-rich cluster in the recognition (REC) domains and the non-canonical active site in the RuvC domain, ensuring strong DNA-binding affinity of Cas12m2. Furthermore, a structural comparison of Cas12m2 with TnpB, a putative ancestor of Cas12 enzymes, suggests that the interaction of the characteristic coiled-coil REC2 insertion with the protospacer-adjacent motif-distal region of the heteroduplex is crucial for Cas12m2 to engage in adaptive immunity. Collectively, our findings improve mechanistic understanding of diverse type V CRISPR-Cas effectors and provide insights into the evolution of TnpB to Cas12 enzymes.
Collapse
Affiliation(s)
- Satoshi N Omura
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Ryoya Nakagawa
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Christian Südfeld
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Wen Y Wu
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hisato Hirano
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Yoshiaki Kise
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
- Curreio, the University of Tokyo, Tokyo, Japan
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
26
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548620. [PMID: 37503092 PMCID: PMC10370016 DOI: 10.1101/2023.07.14.548620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Unlike canonical CRISPR-Cas systems that rely on RNA-guided nucleases for target cleavage, CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to facilitate RNA-guided transposition of large genetic payloads. Type V-K CASTs offer several potential upsides for genome engineering, due to their compact size, easy programmability, and unidirectional integration. However, these systems are substantially less accurate than type I-F CASTs, and the molecular basis for this difference has remained elusive. Here we reveal that type V-K CASTs undergo two distinct mobilization pathways with remarkably different specificities: RNA-dependent and RNA-independent transposition. Whereas RNA-dependent transposition relies on Cas12k for accurate target selection, RNA-independent integration events are untargeted and primarily driven by the local availability of TnsC filaments. The cryo-EM structure of the untargeted complex reveals a TnsB-TnsC-TniQ transpososome that encompasses two turns of a TnsC filament and otherwise resembles major architectural aspects of the Cas12k-containing transpososome. Using single-molecule experiments and genome-wide meta-analyses, we found that AT-rich sites are preferred substrates for untargeted transposition and that the TnsB transposase also imparts local specificity, which collectively determine the precise insertion site. Knowledge of these motifs allowed us to direct untargeted transposition events to specific hotspot regions of a plasmid. Finally, by exploiting TnsB's preference for on-target integration and modulating the availability of TnsC, we suppressed RNA-independent transposition events and increased type V-K CAST specificity up to 98.1%, without compromising the efficiency of on-target integration. Collectively, our results reveal the importance of dissecting target site selection mechanisms and highlight new opportunities to leverage CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
27
|
Zeng T, Yin J, Liu Z, Li Z, Zhang Y, Lv Y, Lu ML, Luo M, Chen M, Xiao Y. Mechanistic insights into transposon cleavage and integration by TnsB of ShCAST system. Cell Rep 2023; 42:112698. [PMID: 37379212 DOI: 10.1016/j.celrep.2023.112698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/02/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
The type V-K CRISPR-associated transposons (CASTs) allow RNA-guided DNA integration and have great potential as a programmable site-specific gene insertion tool. Although all core components have been independently characterized structurally, the mechanism of how the transposase TnsB associates with AAA+ ATPase TnsC and catalyzes donor DNA cleavage and integration remains ambiguous. In this study, we demonstrate that TniQ-dCas9 fusion can direct site-specific transposition by TnsB/TnsC in ShCAST. TnsB is a 3'-5' exonuclease that specifically cleaves donor DNA at the end of the terminal repeats and integrates the left end prior to the right end. The nucleotide preference and the cleavage site of TnsB are markedly different from those of the well-documented MuA. We also find that TnsB/TnsC association is enhanced in a half-integration state. Overall, our results provide valuable insights into the mechanism and application expansion of CRISPR-mediated site-specific transposition by TnsB/TnsC.
Collapse
Affiliation(s)
- Ting Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Yin
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ziwen Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Lv
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Ling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Min Luo
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Meirong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China.
| |
Collapse
|
28
|
Yang Y, Wang D, Lü P, Ma S, Chen K. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol Biol Rep 2023; 50:3723-3738. [PMID: 36648696 PMCID: PMC9843688 DOI: 10.1007/s11033-023-08240-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE This work characterizes the applications of CRISPR/Cas12 system, including nucleic acid detection, animal, plant and microbial genome editing. METHODS The literature on CRISPR/Cas12 system was collected and reviewed. RESULTS CRISPR/Cas system is an acquired immune system derived from bacteria and archaea, which has become the most popular technology around the world because of its outstanding contribution in genome editing. Type V CRISPR/Cas systems are distinguished by a single RNA-guided RuvC nuclease domain with single effector molecule. Cas12a, the first reported type V CRISPR/Cas system, targets double-stranded DNA (dsDNA) adjacent to PAM sequences and trans-cleaves single-stranded DNA (ssDNA). We present the applications of CRISPR/Cas12 system for nucleic acid detection and genome editing in animals, plants and microorganisms. Furthermore, this review also summarizes the applications of other Cas12 proteins, such as Cas12b, Cas12c, Cas12d, and so on, which further widen the application prospects of CRISPR/Cas12 system. CONCLUSIONS Knowledge of the applications of CRISPR/Cas12 system is necessary for improving the understanding of the functional diversity of CRISPR/Cas12 system and also provides significant references for further research and utilization of CRISPR/Cas12 in other new fields.
Collapse
Affiliation(s)
- Yanhua Yang
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
| | - Dandan Wang
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| |
Collapse
|
29
|
Ziemann M, Reimann V, Liang Y, Shi Y, Ma H, Xie Y, Li H, Zhu T, Lu X, Hess WR. CvkR is a MerR-type transcriptional repressor of class 2 type V-K CRISPR-associated transposase systems. Nat Commun 2023; 14:924. [PMID: 36801863 PMCID: PMC9938897 DOI: 10.1038/s41467-023-36542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Certain CRISPR-Cas elements integrate into Tn7-like transposons, forming CRISPR-associated transposon (CAST) systems. How the activity of these systems is controlled in situ has remained largely unknown. Here we characterize the MerR-type transcriptional regulator Alr3614 that is encoded by one of the CAST (AnCAST) system genes in the genome of cyanobacterium Anabaena sp. PCC 7120. We identify a number of Alr3614 homologs across cyanobacteria and suggest naming these regulators CvkR for Cas V-K repressors. Alr3614/CvkR is translated from leaderless mRNA and represses the AnCAST core modules cas12k and tnsB directly, and indirectly the abundance of the tracr-CRISPR RNA. We identify a widely conserved CvkR binding motif 5'-AnnACATnATGTnnT-3'. Crystal structure of CvkR at 1.6 Å resolution reveals that it comprises distinct dimerization and potential effector-binding domains and that it assembles into a homodimer, representing a discrete structural subfamily of MerR regulators. CvkR repressors are at the core of a widely conserved regulatory mechanism that controls type V-K CAST systems.
Collapse
Affiliation(s)
- Marcus Ziemann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Viktoria Reimann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Yajing Liang
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yue Shi
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Honglei Ma
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuman Xie
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany.
| |
Collapse
|
30
|
First full views of a CRISPR-guided system for gene insertion. Nature 2023; 613:634-635. [PMID: 36631579 DOI: 10.1038/d41586-022-04584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Park JU, Tsai AWL, Rizo AN, Truong VH, Wellner TX, Schargel RD, Kellogg EH. Structures of the holo CRISPR RNA-guided transposon integration complex. Nature 2023; 613:775-782. [PMID: 36442503 PMCID: PMC9876797 DOI: 10.1038/s41586-022-05573-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
CRISPR-associated transposons (CAST) are programmable mobile genetic elements that insert large DNA cargos using an RNA-guided mechanism1-3. CAST elements contain multiple conserved proteins: a CRISPR effector (Cas12k or Cascade), a AAA+ regulator (TnsC), a transposase (TnsA-TnsB) and a target-site-associated factor (TniQ). These components are thought to cooperatively integrate DNA via formation of a multisubunit transposition integration complex (transpososome). Here we reconstituted the approximately 1 MDa type V-K CAST transpososome from Scytonema hofmannii (ShCAST) and determined its structure using single-particle cryo-electon microscopy. The architecture of this transpososome reveals modular association between the components. Cas12k forms a complex with ribosomal subunit S15 and TniQ, stabilizing formation of a full R-loop. TnsC has dedicated interaction interfaces with TniQ and TnsB. Of note, we observe TnsC-TnsB interactions at the C-terminal face of TnsC, which contribute to the stimulation of ATPase activity. Although the TnsC oligomeric assembly deviates slightly from the helical configuration found in isolation, the TnsC-bound target DNA conformation differs markedly in the transpososome. As a consequence, TnsC makes new protein-DNA interactions throughout the transpososome that are important for transposition activity. Finally, we identify two distinct transpososome populations that differ in their DNA contacts near TniQ. This suggests that associations with the CRISPR effector can be flexible. This ShCAST transpososome structure enhances our understanding of CAST transposition systems and suggests ways to improve CAST transposition for precision genome-editing applications.
Collapse
Affiliation(s)
- Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Amy Wei-Lun Tsai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Alexandrea N Rizo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Vinh H Truong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tristan X Wellner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Richard D Schargel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Elizabeth H Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
32
|
Schmitz M, Querques I, Oberli S, Chanez C, Jinek M. Structural basis for the assembly of the type V CRISPR-associated transposon complex. Cell 2022; 185:4999-5010.e17. [PMID: 36435179 PMCID: PMC9798831 DOI: 10.1016/j.cell.2022.11.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
CRISPR-Cas systems have been co-opted by Tn7-like transposable elements to direct RNA-guided transposition. Type V-K CRISPR-associated transposons rely on the concerted activities of the pseudonuclease Cas12k, the AAA+ ATPase TnsC, the Zn-finger protein TniQ, and the transposase TnsB. Here we present a cryo-electron microscopic structure of a target DNA-bound Cas12k-transposon recruitment complex comprised of RNA-guided Cas12k, TniQ, a polymeric TnsC filament and, unexpectedly, the ribosomal protein S15. Complex assembly, mediated by a network of interactions involving the guide RNA, TniQ, and S15, results in R-loop completion. TniQ contacts two TnsC protomers at the Cas12k-proximal filament end, likely nucleating its polymerization. Transposition activity assays corroborate our structural findings, implying that S15 is a bona fide component of the type V crRNA-guided transposon machinery. Altogether, our work uncovers key mechanistic aspects underpinning RNA-mediated assembly of CRISPR-associated transposons to guide their development as programmable tools for site-specific insertion of large DNA payloads.
Collapse
Affiliation(s)
- Michael Schmitz
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Irma Querques
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Seraina Oberli
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Christelle Chanez
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
33
|
Baranova SV, Zhdanova PV, Lomzov AA, Koval VV, Chernonosov AA. Structure- and Content-Dependent Efficiency of Cas9-Assisted DNA Cleavage in Genome-Editing Systems. Int J Mol Sci 2022; 23:ijms232213889. [PMID: 36430368 PMCID: PMC9693425 DOI: 10.3390/ijms232213889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Genome-editing systems, being some of the key tools of molecular biologists, represent a reasonable hope for progress in the field of personalized medicine. A major problem with such systems is their nonideal accuracy and insufficient selectivity. The selectivity of CRISPR-Cas9 systems can be improved in several ways. One efficient way is the proper selection of the consensus sequence of the DNA to be cleaved. In the present work, we attempted to evaluate the effect of formed non-Watson-Crick pairs in a DNA duplex on the efficiency of DNA cleavage in terms of the influence of the structure of the formed partially complementary pairs. We also studied the effect of the location of such pairs in DNA relative to the PAM (protospacer-adjacent motif) on the cleavage efficiency. We believe that the stabilization of the Cas9-sgRNA complex with a DNA substrate containing noncomplementary pairs is due to loop reorganization in the RuvC domain of the enzyme. In addition, PAM-proximal mismatches in the DNA substrate lower enzyme efficiency because the "seed" region is involved in binding and cleavage, whereas PAM-distal mismatches have no significant impact on target DNA cleavage. Our data suggest that in the case of short duplexes with mismatches, the stages of recognition and binding of dsDNA substrates by the enzyme determine the reaction rate and time rather than the thermodynamic parameters affected by the "unwinding" of DNA. The results will provide a theoretical basis for predicting the efficiency and accuracy of CRISPR-Cas9 systems at cleaving target DNA.
Collapse
Affiliation(s)
- Svetlana V. Baranova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
| | - Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
| | - Alexander A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia
| |
Collapse
|
34
|
Wang JY, Pausch P, Doudna JA. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Nat Rev Microbiol 2022; 20:641-656. [PMID: 35562427 DOI: 10.1038/s41579-022-00739-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
CRISPR-Cas systems provide resistance against foreign mobile genetic elements and have a wide range of genome editing and biotechnological applications. In this Review, we examine recent advances in understanding the molecular structures and mechanisms of enzymes comprising bacterial RNA-guided CRISPR-Cas immune systems and deployed for wide-ranging genome editing applications. We explore the adaptive and interference aspects of CRISPR-Cas function as well as open questions about the molecular mechanisms responsible for genome targeting. These structural insights reflect close evolutionary links between CRISPR-Cas systems and mobile genetic elements, including the origins and evolution of CRISPR-Cas systems from DNA transposons, retrotransposons and toxin-antitoxin modules. We discuss how the evolution and structural diversity of CRISPR-Cas systems explain their functional complexity and utility as genome editing tools.
Collapse
Affiliation(s)
- Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Patrick Pausch
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| |
Collapse
|
35
|
Tenjo-Castaño F, Sofos N, López-Méndez B, Stutzke LS, Fuglsang A, Stella S, Montoya G. Structure of the TnsB transposase-DNA complex of type V-K CRISPR-associated transposon. Nat Commun 2022; 13:5792. [PMID: 36184667 PMCID: PMC9527255 DOI: 10.1038/s41467-022-33504-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
CRISPR-associated transposons (CASTs) are mobile genetic elements that co-opted CRISPR-Cas systems for RNA-guided transposition. Here we present the 2.4 Å cryo-EM structure of the Scytonema hofmannii (sh) TnsB transposase from Type V-K CAST, bound to the strand transfer DNA. The strand transfer complex displays an intertwined pseudo-symmetrical architecture. Two protomers involved in strand transfer display a catalytically competent active site composed by DDE residues, while other two, which play a key structural role, show active sites where the catalytic residues are not properly positioned for phosphodiester hydrolysis. Transposon end recognition is accomplished by the NTD1/2 helical domains. A singular in trans association of NTD1 domains of the catalytically competent subunits with the inactive DDE domains reinforces the assembly. Collectively, the structural features suggest that catalysis is coupled to protein-DNA assembly to secure proper DNA integration. DNA binding residue mutants reveal that lack of specificity decreases activity, but it could increase transposition in some cases. Our structure sheds light on the strand transfer reaction of DDE transposases and offers new insights into CAST transposition. The cryo-EM structure of the type VK CRISPR-associated TnsB transposase sheds light onto RNA-guided transposition, providing new possibilities to redesign CRISPR-associated transposon systems.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Nicholas Sofos
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Blanca López-Méndez
- Protein Purification and Characterisation Facility, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Luisa S Stutzke
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders Fuglsang
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - Stefano Stella
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.,Twelve Bio ApS, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
36
|
Mitrofanov A, Ziemann M, Alkhnbashi OS, Hess WR, Backofen R. CRISPRtracrRNA: robust approach for CRISPR tracrRNA detection. Bioinformatics 2022; 38:ii42-ii48. [PMID: 36124799 PMCID: PMC9486595 DOI: 10.1093/bioinformatics/btac466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION The CRISPR-Cas9 system is a Type II CRISPR system that has rapidly become the most versatile and widespread tool for genome engineering. It consists of two components, the Cas9 effector protein, and a single guide RNA that combines the spacer (for identifying the target) with the tracrRNA, a trans-activating small RNA required for both crRNA maturation and interference. While there are well-established methods for screening Cas effector proteins and CRISPR arrays, the detection of tracrRNA remains the bottleneck in detecting Class 2 CRISPR systems. RESULTS We introduce a new pipeline CRISPRtracrRNA for screening and evaluation of tracrRNA candidates in genomes. This pipeline combines evidence from different components of the Cas9-sgRNA complex. The core is a newly developed structural model via covariance models from a sequence-structure alignment of experimentally validated tracrRNAs. As additional evidence, we determine the terminator signal (required for the tracrRNA transcription) and the RNA-RNA interaction between the CRISPR array repeat and the 5'-part of the tracrRNA. Repeats are detected via an ML-based approach (CRISPRidenify). Providing further evidence, we detect the cassette containing the Cas9 (Type II CRISPR systems) and Cas12 (Type V CRISPR systems) effector protein. Our tool is the first for detecting tracrRNA for Type V systems. AVAILABILITY AND IMPLEMENTATION The implementation of the CRISPRtracrRNA is available on GitHub upon requesting the access permission, (https://github.com/BackofenLab/CRISPRtracrRNA). Data generated in this study can be obtained upon request to the corresponding person: Rolf Backofen (backofen@informatik.uni-freiburg.de). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
37
|
Park JU, Tsai AWL, Chen TH, Peters JE, Kellogg EH. Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM. Proc Natl Acad Sci U S A 2022; 119:e2202590119. [PMID: 35914146 PMCID: PMC9371665 DOI: 10.1073/pnas.2202590119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022] Open
Abstract
CRISPR-associated transposons (CASTs) are Tn7-like elements that are capable of RNA-guided DNA integration. Although structural data are known for nearly all core transposition components, the transposase component, TnsB, remains uncharacterized. Using cryo-electron microscopy (cryo-EM) structure determination, we reveal the conformation of TnsB during transposon integration for the type V-K CAST system from Scytonema hofmanni (ShCAST). Our structure of TnsB is a tetramer, revealing strong mechanistic relationships with the overall architecture of RNaseH transposases/integrases in general, and in particular the MuA transposase from bacteriophage Mu. However, key structural differences in the C-terminal domains indicate that TnsB's tetrameric architecture is stabilized by a different set of protein-protein interactions compared with MuA. We describe the base-specific interactions along the TnsB binding site, which explain how different CAST elements can function on cognate mobile elements independent of one another. We observe that melting of the 5' nontransferred strand of the transposon end is a structural feature stabilized by TnsB and furthermore is crucial for donor-DNA integration. Although not observed in the TnsB strand-transfer complex, the C-terminal end of TnsB serves a crucial role in transposase recruitment to the target site. The C-terminal end of TnsB adopts a short, structured 15-residue "hook" that decorates TnsC filaments. Unlike full-length TnsB, C-terminal fragments do not appear to stimulate filament disassembly using two different assays, suggesting that additional interactions between TnsB and TnsC are required for redistributing TnsC to appropriate targets. The structural information presented here will help guide future work in modifying these important systems as programmable gene integration tools.
Collapse
Affiliation(s)
- Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Amy Wei-Lun Tsai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Tiffany H Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Elizabeth H Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
38
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|