1
|
Xu Q, Huang C, Ming J, Lu X, Liu L, Du Z, Chen Z, Na J, Li G, Xiang Y, Zhang Y, Xie W. H2A.Z is essential for oocyte maturation and fertility in female mouse. Nat Struct Mol Biol 2025:10.1038/s41594-025-01580-y. [PMID: 40514538 DOI: 10.1038/s41594-025-01580-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 04/30/2025] [Indexed: 06/16/2025]
Abstract
Oocyte maturation is essential for both gametogenesis and early development, when large amounts of transcripts are produced without DNA replication. Histone variants, which can be incorporated at cis-regulatory elements in a replication-independent manner, are naturally suited for such regulation. However, their roles during mammalian oocyte maturation remain elusive. Here we show that oocyte-specific depletion of H2A.Z, an evolutionarily conserved histone variant, in female mice results in profound epigenetic and transcriptional alterations, impedes resumption of oocyte meiosis II and causes infertility. Mechanistically, H2A.Z in mouse oocytes is incorporated into chromatin at active promoters and putative enhancers. Interestingly, H2A.Z is depleted from CG-rich silenced promoters, including poised Polycomb target genes, in fully grown oocytes (FGOs), unlike what occurs in growing oocytes, early embryos and mouse embryonic stem cells. In FGOs, the presence of H2A.Z correlates with histone acetylation, except in regions marked by DNA methylation and H3K36me3. Depletion of H2A.Z leads to impaired activities of a subset of promoters and enhancers, correlated with defective gene expression. Consistent with a role in gene activation, H2A.Z in FGOs is widely acetylated at the promoters and enhancers. Together, our findings uncover an essential role of H2A.Z in mammalian oocyte maturation and female fertility.
Collapse
Affiliation(s)
- Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chunyi Huang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia Ming
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Xukun Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Shandong, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhen Chen
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunlong Xiang
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
- Center for Medical Epigenetics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
2
|
Lukasak BJ, Korb E. Histone variants: expanding the epigenetic potential of neurons one amino acid at a time. Trends Biochem Sci 2025; 50:532-543. [PMID: 40268580 PMCID: PMC12145244 DOI: 10.1016/j.tibs.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Replication-independent histone variants play an essential role in postmitotic neurons. Here, we review how the subtle sequence differences of histone variants compared to their canonical counterparts underly neuronal function. We focus on variants H3.3, H2A.Z, H2A.X, macroH2A, and H2BE; all of which contain divergent sequences that coordinate a diverse set of outcomes. In particular, we highlight their role in neuronal development, plasticity, and memory, with an emphasis on how single amino acid changes can mediate these complex functions. Lastly, we comment on an emerging field of study evaluating the link between histone variants and neurological disorders. Future studies of histone variants will be important to furthering our understanding of neuronal function.
Collapse
Affiliation(s)
- Bradley J Lukasak
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erica Korb
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Quan H, Zhou H, Chen F, Chen J, He Y, Xiao H, Liu J, Shi L, Xie W, Chen P, Luo J. Acetylated KIAA1429 by TIP60 facilitates metastasis and immune evasion of hepatocellular carcinoma via N6-methyladenosine-KDM5B-mediated regulation of FoxO1. Cell Death Discov 2025; 11:210. [PMID: 40301310 PMCID: PMC12041376 DOI: 10.1038/s41420-025-02462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 05/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by programmed cell death ligand-1 (PD-L1)-mediated immune escape. This study aimed to elucidate the function and mechanism behind KIAA1429, a component of N6-methyladenosine (m6A) complex, in immune escape of HCC. PD-L1 expression was assessed through immunofluorescence staining, and flow cytometry was used to determine CD8+ T cell percentage. The level of IFN-γ was detected using enzyme-linked immunosorbent assay. Cell proliferation, migration, and invasion were evaluated through CCK-8, colony formation, and Transwell assays, respectively. The m6A modification level was measured using an RNA methylation quantification assay, m6A dot blot, and methylated RNA immunoprecipitation-qPCR. Molecule interaction was validated using RNA pulldown, RNA immunoprecipitation, chromatin immunoprecipitation, and co-immunoprecipitation assays. In vivo HCC growth was evaluated in NOD/SCID mice. We found that TIP60, KIAA1429 and KDM5B were highly expressed in HCC cells, while FoxO1 was poorly expressed. Functionally, TIP60/KIAA1429 silencing inhibited PD-L1-mediated HCC immune evasion, growth, migration, and invasion. Mechanistically, TIP60 led to acetylation of KIAA1429, which promoted KDM5B expression in an m6A-YTHDF1-dependent manner, and subsequently restrained the transcription and expression of FoxO1. Enforcing YTHDF1 expression or depleting FoxO1 expression markedly reversed the suppressive effect of shKIAA1429 on HCC immune evasion, growth, migration, and invasion. Overall, these findings suggest that acetylated KIAA1429-mediated m6A modification endows HCC cells with immune evasion through regulation of KDM5B/FoxO1 axis, which provide a treatment option for HCC by targeting KIAA1429.
Collapse
Affiliation(s)
- Hu Quan
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China
- Department of general Surgery, Turpan City People's Hospital, Tulufan, 838000, Xinjiang, P.R. China
| | - Huijun Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China
| | - Fei Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China
| | - Jie Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China
| | - Yun He
- The Central Hospital of Shaoyang, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, P.R. China
| | - Hua Xiao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China
| | - Jia Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China
| | - Lei Shi
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China
| | - Wei Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China.
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China.
| | - Jia Luo
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, P.R. China.
| |
Collapse
|
4
|
Wang X, Harty KR, Wan TC, Qu Z, Smith BC, Lough JW, Auchampach JA. Mitigation of Injury from Myocardial Infarction by Pentamidine, an Inhibitor of the Acetyltransferase Tip60. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07696-z. [PMID: 40202550 DOI: 10.1007/s10557-025-07696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE There is an urgent unmet need for new pharmacologic approaches that promote re-muscularization and repair following myocardial infarction (MI). We previously reported that genetic depletion of the acetyltransferase Tip60 after MI in a mouse model activates the CM cell-cycle, reduces scarring, and restores cardiac function, and that these beneficial effects are mimicked by the Tip60-selective inhibitor TH1834. Here, we investigated whether the FDA-approved anti-microbial agent pentamidine, a Tip60 inhibitor from which TH1834 is derived, also protects from the damaging effects of MI. METHODS Adult (10-14 weeks old) C57Bl/6 mice were subjected to permanent left coronary artery ligation to induce MI. Subsequently, echocardiography, electrocardiography, cardiac staining, and molecular analyses were performed to monitor the effects of treatment with pentamidine on cardiac injury and function. RESULTS We report that transient systemic administration of pentamidine on days 3-16 post-MI at a daily dose of 3 mg/kg efficiently improved cardiac function for up to ten months. This was accompanied by improved survival, diminished scarring, and increased activation of cell-cycle markers in CMs located in the infarct border zone in the absence of hypertrophy. Histological assessments suggested that post-MI treatment with pentamidine reduced site-specific acetylation of the minor histone variant H2A.Z at lysines K4 and K7 in CMs, indicative of the dedifferentiation process which must occur prior to CM proliferation. Treating mice with pentamidine post-MI produced no prominent electrophysiological changes. CONCLUSIONS These findings support the translational potential of pentamidine for treatment of MI, and provide evidence that functional improvement is mediated, in part, by CM renewal due to inhibition of the acetyltransferase activity of Tip60.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Katherine R Harty
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tina C Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zhuocheng Qu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - John W Lough
- Department of Cell Biology Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - John A Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
5
|
Mätlik K, Govek EE, Hatten ME. Histone bivalency in CNS development. Genes Dev 2025; 39:428-444. [PMID: 39880657 PMCID: PMC11960699 DOI: 10.1101/gad.352306.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Neuronal maturation is guided by changes in the chromatin landscape that control developmental gene expression programs. Histone bivalency, the co-occurrence of activating and repressive histone modifications, has emerged as an epigenetic feature of developmentally regulated genes during neuronal maturation. Although initially associated with early embryonic development, recent studies have shown that histone bivalency also exists in differentiated and mature neurons. In this review, we discuss methods to study bivalency in specific populations of neurons and summarize emerging studies on the function of bivalency in central nervous system neuronal maturation and in adult neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
6
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
7
|
Sun L, Fu X, Xiao Z, Ma G, Zhou Y, Hu H, Shi L, Li D, Jauch R, Hutchins AP. BRD8 Guards the Pluripotent State by Sensing and Maintaining Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409160. [PMID: 39656858 PMCID: PMC11792058 DOI: 10.1002/advs.202409160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Epigenetic control of cell fates is a critical determinant to maintain cell type stability and permit differentiation during embryonic development. However, the epigenetic control mechanisms are not well understood. Here, it is shown that the histone acetyltransferase reader protein BRD8 impairs the conversion of primed mouse EpiSCs (epiblast stem cells) to naive mouse ESCs (embryonic stem cells). BRD8 works by maintaining histone acetylation on promoters and transcribed gene bodies. BRD8 is responsible for maintaining open chromatin at somatic genes, and histone acetylation at naive-specific genes. When Brd8 expression is reduced, chromatin accessibility is unchanged at primed-specific genes, but histone acetylation is reduced. Conversely, naive-specific genes has reduced repressive chromatin marks and acquired accessible chromatin more rapidly during the cell type conversion. It is shown that this process requires active histone deacetylation to promote the conversion of primed to naive. This data supports a model for BRD8 reading histone acetylation to accurately localize the genome-wide binding of the histone acetyltransferase KAT5. Overall, this study shows how the reading of the histone acetylation state by BRD8 maintains cell type stability and both enables and impairs stem cell differentiation.
Collapse
Affiliation(s)
- Li Sun
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Xiuling Fu
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Xiao
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Gang Ma
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Yibin Zhou
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Haoqing Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Liyang Shi
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Dongwei Li
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510799China
| | - Ralf Jauch
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Andrew Paul Hutchins
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
8
|
Wang X, Kulik K, Wan TC, Lough JW, Auchampach JA. Histone H2A.Z Deacetylation and Dedifferentiation in Infarcted/Tip60-depleted Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.11.575312. [PMID: 38260622 PMCID: PMC10802610 DOI: 10.1101/2024.01.11.575312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Myocardial infarction (MI) results in the loss of billions of cardiomyocytes (CMs), resulting in cardiac dysfunction. To re-muscularize injured myocardium, new CMs must be generated via renewed proliferation of surviving CMs. Approaches to induce proliferation of CMs after injury have been insufficient. Toward this end we are targeting the acetyltransferase Tip60, encoded by the Kat5 gene, based on the rationale that its pleiotropic functions combine to block CM proliferation at multiple checkpoints. We previously demonstrated that genetic depletion of Tip60 in a mouse model after MI reduces scarring, retains cardiac function, and activates the CM cell-cycle, although it remains unclear whether this culminates in the generation of daughter CMs. In order for pre-existing CMs in the adult heart to undergo proliferation, it has become accepted that they must first dedifferentiate, a process highlighted by loss of maturity, epithelial to mesenchymal transitioning (EMT), and reversion from fatty acid oxidation to glycolytic metabolism, accompanied by softening of the myocardial extracellular matrix (ECM). Based on recently published findings that Tip60 induces and maintains the differentiated state of hematopoietic stem cells and neurons via site-specific acetylation of the histone variant H2A.Z, we assessed levels of acetylated H2A.Z and dedifferentiation markers after depleting Tip60 in CMs post-MI. We report that genetic depletion of Tip60 from CMs after MI results in the near obliteration of acetylated H2A.Z in CM nuclei, accompanied by the altered expression of genes indicative of EMT induction, ECM softening, decreased fatty acid oxidation, and depressed expression of genes that regulate the TCA cycle. In accord with the possibility that site-specific acetylation of H2A.Z maintains adult CMs in a mature state of differentiation, CUT&Tag revealed enrichment of H2A.ZacK4/K7 in genetic motifs and in GO terms respectively associated with CM transcription factor binding and muscle development/differentiation. Along with our previous findings, these results support the notion that Tip60 has multiple targets in CMs that combine to maintain the differentiated state and prevent proliferation.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Katherine Kulik
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Tina C. Wan
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John W. Lough
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John A. Auchampach
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| |
Collapse
|
9
|
Azzarelli R, Gillen S, Connor F, Lundie-Brown J, Puletti F, Drummond R, Raffaelli A, Philpott A. Phospho-regulation of ASCL1-mediated chromatin opening during cellular reprogramming. Development 2024; 151:dev204329. [PMID: 39575884 DOI: 10.1242/dev.204329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
The proneural transcription factor ASCL1 regulates neurogenesis and drives somatic cell reprogramming into neurons. However, not all cell types can be reprogrammed by ASCL1, raising the questions of what provides competence and how we can overcome barriers to enable directed differentiation. Here, we investigate how levels of ASCL1 and its phosphorylation modulate its activity over progressive lineage restriction of mouse embryonic stem cells. We find that inhibition of ASCL1 phosphorylation enhances reprogramming of both mesodermal and neuroectodermal cells, while pluripotent cells remain refractory to ASCL1-directed neuronal differentiation. By performing RNA-seq and ATAC-seq in neuroectoderm, we find that un(der)phosphorylated ASCL1 causes increased chromatin accessibility at sites proximal to neuronal genes, accompanied by their increased expression. Combined analysis of protein stability and proneural function of phosphomutant and phosphomimetic ASCL1 reveals that protein stability plays only a marginal role in regulating activity, while changes in amino acid charge cannot fully explain enhanced activity of the serine-proline mutant variants of ASCL1. Our work provides new insights into proneural factor activity and regulation, and suggests ways to optimize reprogramming protocols in cancer and regenerative medicine.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sarah Gillen
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Frances Connor
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Jethro Lundie-Brown
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Francesca Puletti
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Rosalind Drummond
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Ana Raffaelli
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Anna Philpott
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| |
Collapse
|
10
|
Yang Z, Mameri A, Cattoglio C, Lachance C, Ariza AJF, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, Fradet-Turcotte A, Lambert JP, Ranish JA, Côté J, Nogales E. Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science 2024; 385:eadl5816. [PMID: 39088653 PMCID: PMC11995519 DOI: 10.1126/science.adl5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024]
Abstract
The human nucleosome acetyltransferase of histone H4 (NuA4)/Tat-interactive protein, 60 kilodalton (TIP60) coactivator complex, a fusion of the yeast switch/sucrose nonfermentable related 1 (SWR1) and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4, H2A, and H2A.Z to regulate gene expression and maintain genome stability. Our cryo-electron microscopy studies show that, within the NuA4/TIP60 complex, the E1A binding protein P400 (EP400) subunit serves as a scaffold holding the different functional modules in specific positions, creating a distinct arrangement of the actin-related protein (ARP) module. EP400 interacts with the transformation/transcription domain-associated protein (TRRAP) subunit by using a footprint that overlaps with that of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome, emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.
Collapse
Affiliation(s)
- Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Arul Banerjea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Amélie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Endocrinology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
11
|
Chen K, Wang L, Yu Z, Yu J, Ren Y, Wang Q, Xu Y. Structure of the human TIP60 complex. Nat Commun 2024; 15:7092. [PMID: 39154037 PMCID: PMC11330486 DOI: 10.1038/s41467-024-51259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.2-Å resolution. The structures show that EP400 acts as a backbone integrating the motor module, the ARP module, and the TRRAP module. The RUVBL1-RUVBL2 hexamer serves as a rigid core for the assembly of EP400 ATPase and YL1 in the motor module. In the ARP module, an ACTL6A-ACTB heterodimer and an extra ACTL6A make hydrophobic contacts with EP400 HSA helix, buttressed by network interactions among DMAP1, EPC1, and EP400. The ARP module stably associates with the motor module but is flexibly tethered to the TRRAP module, exhibiting a unique feature of human TIP60. The architecture of the nucleosome-bound human TIP60 reveals an unengaged nucleosome that is located between the core subcomplex and the TRRAP module. Our work illustrates the molecular architecture of human TIP60 and provides architectural insights into how this complex is bound by the nucleosome.
Collapse
Affiliation(s)
- Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Zhong H, Liu T, Shang Y, Huang C, Pan S. Breaking the vicious cycle: Targeting the NLRP3 inflammasome for treating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117042. [PMID: 39004064 DOI: 10.1016/j.biopha.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a collection of clinical syndromes resulting from sepsis and characterized by widespread brain dysfunction. The high prevalence of SAE has adverse outcomes on the clinical management and prognosis of sepsis patients. However, currently, there are no effective treatments to ameliorate SAE. The pathogenesis of SAE is complex, including neuroinflammation and microglia activation, destruction of the blood-brain barrier (BBB), neurotransmitter dysfunction, cerebral metabolism and mitochondrial impairment, accumulation of amyloid beta and tauopathy, complement activation, among others. Furthermore, these mechanisms intertwine with each other, further complicating the comprehension of SAE. Among them, neuroinflammation mediated by hyperactivated microglia is considered the primary etiology of SAE. This instigates a detrimental cycle wherein BBB permeability escalates, facilitating direct damage to the central nervous system (CNS) by various neurotoxic substances. Activation of the NLRP3 inflammasome, situated within microglia, can be triggered by diverse danger signals, leading to cell pyroptosis, apoptosis, and tauopathy. These complex processes intricately regulate the onset and progression of neuroinflammation. In this review, we focus on elucidating the inhibitory regulatory mechanism of the NLRP3 inflammasome in microglia, which ultimately manifests as suppression of the inflammatory response. Our ultimate objective is to augment comprehension regarding the role of microglial NLRP3 inflammasome as we explore potential targets for therapeutic interventions against SAE.
Collapse
Affiliation(s)
- Hui Zhong
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences,
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,.
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ,.
| |
Collapse
|
13
|
Park G, Patel AB, Wu C, Louder RK. Structures of H2A.Z-associated human chromatin remodelers SRCAP and TIP60 reveal divergent mechanisms of chromatin engagement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605802. [PMID: 39131301 PMCID: PMC11312561 DOI: 10.1101/2024.07.30.605802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
H2A.Z is a conserved histone variant that is localized to specific genomic regions where it plays important roles in transcription, DNA repair, and replication. Central to the biochemistry of human H2A.Z are the SRCAP and TIP60 chromatin remodelers, homologs of yeast SWR1 which catalyzes ATP-dependent H2A.Z exchange. Here, we use cryo-electron microscopy to resolve six structural states of the native SRCAP complex, uncovering conformational intermediates interpreted as a stepwise path to full nucleosome engagement. We also resolve the structure of the native TIP60 complex which consists of a structured core from which flexibly tethered chromatin binding domains emerge. Despite the shared subunit composition, the core of TIP60 displays divergent architectures from SRCAP that structurally disfavor nucleosome engagement, suggesting a distinct biochemical function.
Collapse
Affiliation(s)
- Giho Park
- Biochemistry, Cellular and Molecular Graduate Program, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
| | - Avinash B. Patel
- Department of Biophysics, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Carl Wu
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Robert K. Louder
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Zhang H, Li S, Zhou R, Dong T, Zhang X, Yu M, Lin J, Shi M, Geng E, Li J, Wang M, Huang L, Yang XP, Sun S. SRCAP complex promotes lung cancer progression by reprograming the oncogenic transcription of Hippo-YAP/TAZ signaling pathway. Cancer Lett 2024; 585:216667. [PMID: 38280479 DOI: 10.1016/j.canlet.2024.216667] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
The activation of YAP/TAZ, a pair of paralogs of transcriptional coactivators, initiates a dysregulated transcription program, which is a key feature of human cancer cells. However, it is not fully understood how YAP/TAZ promote dysregulated transcription for tumor progression. In this study, we employed the BioID method to identify the interactome of YAP/TAZ and discovered that YAP/TAZ interact with multiple components of SRCAP complex, a finding that was further validated through endogenous and exogenous co-immunoprecipitation, as well as immunofluorescence experiments. CUT&Tag analysis revealed that SRCAP complex facilitates the deposition of histone variant H2A.Z at target promoters. The depletion of SRCAP complex resulted in a decrease in H2A.Z occupancy and the oncogenic transcription of YAP/TAZ target genes. Additionally, the blockade of SRCAP complex suppressed YAP-driven tumor growth. In a genetically engineered lung adenocarcinoma mouse model and non-small cell lung cancer patients, SRCAP complex and H2A.Z deposition were found to be upregulated. This upregulation was statistically correlated with YAP expression, pathological stages, and poor survival in lung cancer patients. Together, our study uncovers that SRCAP complex plays a critical role in YAP/TAZ oncogenic transcription by coordinating H2A.Z deposition during cancer progression, providing potential targets for cancer diagnosis and prevention.
Collapse
Affiliation(s)
- Huixia Zhang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shasha Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Runxin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tianqi Dong
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiao Zhang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Man Yu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Jiaming Lin
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Mingjun Shi
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ershuo Geng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Juebei Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Mingwei Wang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shuguo Sun
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
15
|
Liu W, Wang S, Lin L, Zou R, Sun H, Zeng K, Wu Y, Li Y, Shigeaki K, Wang X, Wang C, Zhao Y. BAP18 acting as a novel peroxisome proliferator-activated receptor α co-regulator contributes to hepatocellular carcinoma progression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166974. [PMID: 38042310 DOI: 10.1016/j.bbadis.2023.166974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide with a poor prognosis. The therapeutic outcomes of HCC patients are urgently needed to be improved, and predictive biomarkers for the optimal treatment selection remains to be further defined. In the present study, our results showed that BPTF-associated protein of 18 KDa (BAP18) was highly expressed in HCC tissues. In cultured HCC cells, BAP18 regulated a subset of down-stream genes involved in different functions, particularly including peroxisome proliferator-activated receptor (PPAR) pathway and lipid metabolism. Furthermore, BAP18 co-activated PPARα-mediated transactivation and facilitated the recruitment of nucleosome acetyltransferase of H4 (NuA4)/tat interacting protein 60 (TIP60) complex, thereby increasing histone H4 acetylation on stearoyl-CoA desaturase 1 (SCD1) loci. In addition, BAP18 promoted HCC cell proliferation, increased intracellular lipid levels and enhanced cell survival under the metabolic stress conditions, such as glucose limitation or tyrosine kinase inhibitors (TKIs) treatment. Importantly, higher BAP18 expression was positively correlated with the postoperative recurrence and the poor disease-free survival in clinical patients receiving sorafenib treatment. Altogether, we discovered that BAP18 plays an oncogenic role in the survival and proliferation of HCC cells, and BAP18 may serve as a predictive biomarker for adjunct TKIs treatment in patients with HCC, and further facilitate the precise treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province 110004, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Renlong Zou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Hongmiao Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Yi Wu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Department of Pathogenic Biology, Shenyang Medical College, Shenyang City, Liaoning Province 110034, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province 110001, China
| | - Kato Shigeaki
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima 9708551, Japan
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province 110004, China.
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| |
Collapse
|
16
|
Schaukowitch K, Janas JA, Wernig M. Insights and applications of direct neuronal reprogramming. Curr Opin Genet Dev 2023; 83:102128. [PMID: 37862835 PMCID: PMC11335363 DOI: 10.1016/j.gde.2023.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Direct neuronal reprogramming converts somatic cells of a defined lineage into induced neuronal cells without going through a pluripotent intermediate. This approach not only provides access to the otherwise largely inaccessible cells of the brain for neuronal disease modeling, but also holds great promise for ultimately enabling neuronal cell replacement without the use of transplantation. To improve efficiency and specificity of direct neuronal reprogramming, much of the current efforts aim to understand the mechanisms that safeguard cell identities and how the reprogramming cells overcome the barriers resisting fate changes. Here, we review recent discoveries into the mechanisms by which the donor cell program is silenced, and new cell identities are established. We also discuss advancements that have been made toward fine-tuning the output of these reprogramming systems to generate specific types of neuronal cells. Finally, we highlight the benefit of using direct neuronal reprogramming to study age-related disorders and the potential of in vivo direct reprogramming in regenerative medicine.
Collapse
Affiliation(s)
- Katie Schaukowitch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justyna A Janas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Alhosin M. Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Epigenet Insights 2023; 16:25168657231213717. [PMID: 38033464 PMCID: PMC10687967 DOI: 10.1177/25168657231213717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Early diets in honeybees have effects on epigenome with consequences on their phenotype. Depending on the early larval diet, either royal jelly (RJ) or royal worker, 2 different female castes are generated from identical genomes, a long-lived queen with fully developed ovaries and a short-lived functionally sterile worker. To generate these prominent physiological and morphological differences between queen and worker, honeybees utilize epigenetic mechanisms which are controlled by nutritional input. These mechanisms include DNA methylation and histone post-translational modifications, mainly histone acetylation. In honeybee larvae, DNA methylation and histone acetylation may be differentially altered by RJ. This diet has biologically active ingredients with inhibitory effects on the de novo methyltransferase DNMT3A or the histone deacetylase 3 HDAC3 to create and maintain the epigenetic state necessary for developing larvae to generate a queen. DNMT and HDAC enzymes work together to induce the formation of a compacted chromatin structure, repressing transcription. Such dialog could be coordinated by their association with other epigenetic factors including the ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1). Through its multiple functional domains, UHRF1 acts as an epigenetic reader of both DNA methylation patterns and histone marks. The present review discusses the epigenetic regulation of honeybee's chromatin and how the early diets in honeybees can affect the DNA/histone modifying types of machinery that are necessary to stimulate the larvae to turn into either queen or worker. The review also looks at future directions in epigenetics mechanisms of honeybees, mainly the potential role of UHRF1 in these mechanisms.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Martin BJE, Ablondi EF, Goglia C, Mimoso CA, Espinel-Cabrera PR, Adelman K. Global identification of SWI/SNF targets reveals compensation by EP400. Cell 2023; 186:5290-5307.e26. [PMID: 37922899 PMCID: PMC11307202 DOI: 10.1016/j.cell.2023.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.
Collapse
Affiliation(s)
- Benjamin J E Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Eileen F Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christine Goglia
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piero R Espinel-Cabrera
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Chau DDL, Ng LLH, Zhai Y, Lau KF. Amyloid precursor protein and its interacting proteins in neurodevelopment. Biochem Soc Trans 2023; 51:1647-1659. [PMID: 37387352 PMCID: PMC10629809 DOI: 10.1042/bst20221527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Amyloid precursor protein (APP) is a key molecule in the pathogenesis of Alzheimer's disease (AD) as the pathogenic amyloid-β peptide is derived from it. Two closely related APP family proteins (APPs) have also been identified in mammals. Current knowledge, including genetic analyses of gain- and loss-of-function mutants, highlights the importance of APPs in various physiological functions. Notably, APPs consist of multiple extracellular and intracellular protein-binding regions/domains. Protein-protein interactions are crucial for many cellular processes. In past decades, many APPs interactors have been identified which assist the revelation of the putative roles of APPs. Importantly, some of these interactors have been shown to influence several APPs-mediated neuronal processes which are found defective in AD and other neurodegenerative disorders. Studying APPs-interactor complexes would not only advance our understanding of the physiological roles of APPs but also provide further insights into the association of these processes to neurodegeneration, which may lead to the development of novel therapies. In this mini-review, we summarize the roles of APPs-interactor complexes in neurodevelopmental processes including neurogenesis, neurite outgrowth, axonal guidance and synaptogenesis.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuqi Zhai
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Kirkiz E, Meers O, Grebien F, Buschbeck M. Histone Variants and Their Chaperones in Hematological Malignancies. Hemasphere 2023; 7:e927. [PMID: 37449197 PMCID: PMC10337764 DOI: 10.1097/hs9.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.
Collapse
Affiliation(s)
- Ecem Kirkiz
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- PhD Programme in Biomedicine, University of Barcelona, Spain
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
21
|
Tominaga K, Sakashita E, Kasashima K, Kuroiwa K, Nagao Y, Iwamori N, Endo H. Tip60/KAT5 Histone Acetyltransferase Is Required for Maintenance and Neurogenesis of Embryonic Neural Stem Cells. Int J Mol Sci 2023; 24:ijms24032113. [PMID: 36768434 PMCID: PMC9916716 DOI: 10.3390/ijms24032113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Epigenetic regulation via epigenetic factors in collaboration with tissue-specific transcription factors is curtail for establishing functional organ systems during development. Brain development is tightly regulated by epigenetic factors, which are coordinately activated or inactivated during processes, and their dysregulation is linked to brain abnormalities and intellectual disability. However, the precise mechanism of epigenetic regulation in brain development and neurogenesis remains largely unknown. Here, we show that Tip60/KAT5 deletion in neural stem/progenitor cells (NSCs) in mice results in multiple abnormalities of brain development. Tip60-deficient embryonic brain led to microcephaly, and proliferating cells in the developing brain were reduced by Tip60 deficiency. In addition, neural differentiation and neuronal migration were severely affected in Tip60-deficient brains. Following neurogenesis in developing brains, gliogenesis started from the earlier stage of development in Tip60-deficient brains, indicating that Tip60 is involved in switching from neurogenesis to gliogenesis during brain development. It was also confirmed in vitro that poor neurosphere formation, proliferation defects, neural differentiation defects, and accelerated astrocytic differentiation in mutant NSCs are derived from Tip60-deficient embryonic brains. This study uncovers the critical role of Tip60 in brain development and NSC maintenance and function in vivo and in vitro.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Correspondence: (K.T.); (N.I.)
| | - Eiji Sakashita
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Katsumi Kasashima
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Kenji Kuroiwa
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Yasumitsu Nagao
- Center for Experimental Medicine, Jichi Medical University, Tochigi 321-0498, Japan
| | - Naoki Iwamori
- Department of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (K.T.); (N.I.)
| | - Hitoshi Endo
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| |
Collapse
|