1
|
Lei Y, Lai M. Epigenetic Regulation and Therapeutic Targeting of Alternative Splicing Dysregulation in Cancer. Pharmaceuticals (Basel) 2025; 18:713. [PMID: 40430531 PMCID: PMC12115227 DOI: 10.3390/ph18050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Alternative splicing enables a single precursor mRNA to generate multiple mRNA isoforms, leading to protein variants with different structures and functions. Abnormal alternative splicing is frequently associated with cancer development and progression. Recent studies have revealed a complex and dynamic interplay between epigenetic modifications and alternative splicing. On the one hand, dysregulated epigenetic changes can alter splicing patterns; on the other hand, splicing events can influence epigenetic landscapes. The reversibility of epigenetic modifications makes epigenetic drugs, both approved and investigational, attractive therapeutic options. This review provides a comprehensive overview of the bidirectional relationship between epigenetic regulation and alternative splicing in cancer. It also highlights emerging therapeutic approaches aimed at correcting splicing abnormalities, with a special focus on drug-based strategies. These include epigenetic inhibitors, antisense oligonucleotides (ASOs), small-molecule compounds, CRISPR-Cas9 genome editing, and the SMaRT (splice-switching molecule) technology. By integrating recent advances in research and therapeutic strategies, this review provides novel insights into the molecular mechanisms of cancer and supports the development of more precise and effective therapies targeting aberrant splicing.
Collapse
Affiliation(s)
- Yan Lei
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China;
| | - Maode Lai
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China;
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
2
|
Jiang N, Yang H, Lei Y, Qin W, Xiong H, Chen K, Mei K, Li G, Mu X, Chen R. Characterization of dsRNA binding proteins through solubility analysis identifies ZNF385A as a dsRNA homeostasis regulator. Nat Commun 2025; 16:3433. [PMID: 40210660 PMCID: PMC11985509 DOI: 10.1038/s41467-025-58704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Double-stranded RNA (dsRNA) binding proteins (dsRBPs) play crucial roles in various cellular processes, especially in the innate immune response. Comprehensive characterization of dsRBPs is essential to understand the intricate mechanisms for dsRNA sensing and response. Traditional methods have predominantly relied on affinity purification, favoring the isolation of strong dsRNA binders. Here, we adopt the proteome integral solubility alteration (PISA) workflow for characterizing dsRBPs, resulting in the observation of 18 known dsRBPs and the identification of 200 potential dsRBPs. Next, we focus on zinc finger protein 385 A (ZNF385A) and discover that its knockout activates the transcription of interferon-β in the absence of immunogenic stimuli. The knockout of ZNF385A elevates the level of endogenous dsRNAs, especially transcripts associated with retroelements, such as short interspersed nuclear element (SINE), long interspersed nuclear element (LINE), and long terminal repeat (LTR). Moreover, loss of ZNF385A enhances the bioactivity of 5-Aza-2'-deoxycytidine (5-AZA-CdR) and tumor-killing effect of NK cells. Our findings greatly expand the dsRBP reservoir and contribute to the understanding of cellular dsRNA homeostasis.
Collapse
Affiliation(s)
- Na Jiang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Hekun Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Yi Lei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China
| | - Weida Qin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kuan Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China.
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China.
| |
Collapse
|
3
|
Zhou Z, Yin X, Sun H, Lu J, Li Y, Fan Y, Lv P, Han M, Wu J, Li S, Liu Z, Zhao H, Sun H, Fan H, Wang S, Xin T. PTBP1 Lactylation Promotes Glioma Stem Cell Maintenance through PFKFB4-Driven Glycolysis. Cancer Res 2025; 85:739-757. [PMID: 39570804 DOI: 10.1158/0008-5472.can-24-1412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 02/18/2025]
Abstract
Long-standing evidence implicates glioma stem cells (GSC) as the major driver for glioma propagation and recurrence. GSCs have a distinctive metabolic landscape characterized by elevated glycolysis. Lactate accumulation resulting from enhanced glycolytic activity can drive lysine lactylation to regulate protein functions, suggesting that elucidating the lactylation landscape in GSCs could provide insights into glioma biology. Herein, we have demonstrated that global lactylation was significantly elevated in GSCs compared with differentiated glioma cells. Polypyrimidine tract-binding protein 1 (PTBP1), a central regulator of RNA processing, was hyperlactylated in GSCs, and SIRT1 induced PTBP1 delactylation. PTBP1-K436 lactylation supported glioma progression and GSC maintenance. Mechanistically, K436 lactylation inhibited PTBP1 proteasomal degradation by attenuating the interaction with TRIM21. Moreover, PTBP1 lactylation enhanced RNA-binding capacity and facilitated PFKFB4 mRNA stabilization, which further increased glycolysis. Together, these findings uncovered a lactylation-mediated mechanism in GSCs driven by metabolic reprogramming that induces aberrant epigenetic modifications to further stimulate glycolysis, resulting in a vicious cycle to exacerbate tumorigenesis. Significance: Glycolysis-induced lactylation enhances the function of PTBP1 to promote glioma stem cell maintenance, indicating that PTBP1 lactylation could be a potential target for the development of innovative glioma therapies.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-Oncology, Jinan, China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-Oncology, Jinan, China
| | - Hao Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jiaze Lu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Peiwen Lv
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shengjie Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zihao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Hongbo Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Hao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-Oncology, Jinan, China
- Shandong Institute of Brain Science and Brain-Inspired Research, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
4
|
Harper NW, Birdsall GA, Honeywell ME, Pai AA, Lee MJ. Pol II degradation activates cell death independently from the loss of transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.09.627542. [PMID: 39713309 PMCID: PMC11661175 DOI: 10.1101/2024.12.09.627542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Pol II-mediated transcription is essential for eukaryotic life. While loss of transcription is thought to be universally lethal, the associated mechanisms promoting cell death are not yet known. Here, we show that death following loss of Pol II is not caused by dysregulated gene expression. Instead, death occurs in response to the loss of Pol II protein itself, specifically loss of the enzymatic subunit, Rbp1. Loss of Pol II exclusively activates apoptosis, and expression of a transcriptionally inactive version of Rpb1 rescues cell viability. Using functional genomics, we identify a previously uncharacterized mechanism that regulates lethality following loss of Pol II, which we call the Pol II Degradation-dependent Apoptotic Response (PDAR). Using the genetic dependencies of PDAR, we identify clinically used drugs that owe their efficacy to a PDAR-dependent mechanism. Our findings unveil a novel apoptotic signaling response that contributes to the efficacy of a wide array of anti-cancer therapies.
Collapse
Affiliation(s)
- Nicholas W. Harper
- Department of Systems Biology, UMass Chan Medical School; Worcester, MA, USA
| | - Gavin A. Birdsall
- Department of Systems Biology, UMass Chan Medical School; Worcester, MA, USA
| | - Megan E. Honeywell
- Department of Systems Biology, UMass Chan Medical School; Worcester, MA, USA
| | - Athma A. Pai
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Michael J. Lee
- Department of Systems Biology, UMass Chan Medical School; Worcester, MA, USA
- Program in Molecular Medicine, and Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School; Worcester, MA, USA
| |
Collapse
|
5
|
Shen CL, Tsai YY, Chou SJ, Chang YM, Tarn WY. RBM4-mediated intron excision of Hsf1 induces BDNF for cerebellar foliation. Commun Biol 2024; 7:1712. [PMID: 39738787 DOI: 10.1038/s42003-024-07328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in brain development and neural function. Constitutive knockout of the splicing regulator RBM4 reduces BDNF expression in the developing brain and causes cerebellar hypoplasia, an autism-like feature. Here, we show that Rbm4 knockout induced intron 6 retention of Hsf1, leading to downregulation of HSF1 protein and its downstream target BDNF. RBM4-mediated Hsf1 intron excision regulated BDNF expression in cultured granule cells. Ectopic expression of HSF1 restored cerebellar foliation and motor learning of Rbm4-knockout mice, indicating a critical role for RBM4-HSF1-BDNF in cerebellar foliation. Moreover, N-methyl-D-aspartate receptor (NMDAR) signaling promoted the expression and nuclear translocation of RBM4, and hence increased the expression of both HSF and BDNF. A short CU-rich motif was responsible for NMDAR- and RBM4-mediated intron excision. Finally, RBM4 and polypyrimidine tract binding (PTB) proteins play antagonistic roles in intron excision, suggesting a role for splicing regulation in BDNF expression.
Collapse
Affiliation(s)
- Chiu-Lun Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Young Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Columbia University in the City of New York, New York, USA
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Burattin FV, Vadalà R, Panepuccia M, Ranzani V, Crosti M, Colombo FA, Ruberti C, Erba E, Prati D, Nittoli T, Montini G, Ronchi A, Pugni L, Mosca F, Ricciardi S, Abrignani S, Pietrasanta C, Marasca F, Bodega B. LINE1 modulate human T cell function by regulating protein synthesis during the life span. SCIENCE ADVANCES 2024; 10:eado2134. [PMID: 39383231 PMCID: PMC11463280 DOI: 10.1126/sciadv.ado2134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The molecular mechanisms responsible for the heightened reactivity of quiescent T cells in human early life remain largely elusive. Our previous research identified that quiescent adult naïve CD4+ T cells express LINE1 (long interspersed nuclear elements 1) spliced in previously unknown isoforms, and their down-regulation marks the transition to activation. Here, we unveil that neonatal naïve T cell quiescence is characterized by enhanced energy production and protein synthesis. This phenotype is associated with the absence of LINE1 expression attributed to tonic T cell receptor/mTOR complex 1 (mTORC1) signaling and (polypyrimidine tract-binding protein 1 (PTBP1)-mediated LINE1 splicing suppression. The absence of LINE1 expression primes these cells for rapid execution of the activation program by directly regulating protein synthesis. LINE1 expression progressively increases in childhood and adults, peaking in elderly individuals, and, by decreasing protein synthesis, contributes to immune senescence in aging. Our study proposes LINE1 as a critical player of human T cell function across the human life span.
Collapse
Affiliation(s)
- Filippo V. Burattin
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Rebecca Vadalà
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Michele Panepuccia
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- SEMM, European School of Molecular Medicine, Milan 20139, Italy
| | - Valeria Ranzani
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Mariacristina Crosti
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Federico A. Colombo
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Elisa Erba
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Teresa Nittoli
- Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Giovanni Montini
- Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Andrea Ronchi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Sara Ricciardi
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| |
Collapse
|
7
|
Luo XJ, Lu YX, Wang Y, Huang R, Liu J, Jin Y, Liu ZK, Liu ZX, Huang QT, Pu HY, Zeng ZL, Xu R, Zhao Q, Wu QN. M6A-modified lncRNA FAM83H-AS1 promotes colorectal cancer progression through PTBP1. Cancer Lett 2024; 598:217085. [PMID: 38964733 DOI: 10.1016/j.canlet.2024.217085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
LncRNA plays a crucial role in cancer progression and targeting, but it has been difficult to identify the critical lncRNAs involved in colorectal cancer (CRC) progression. We identified FAM83H-AS1 as a tumor-promoting associated lncRNA using 21 pairs of stage IV CRC tissues and adjacent normal tissues. In vitro and in vivo experiments revealed that knockdown of FAM83H-AS1 in CRC cells inhibited tumor proliferation and metastasis, and vice versa. M6A modification is critical for FAM83H-AS1 RNA stability through the writer METTL3 and the readers IGF2BP2/IGFBP3. PTBP1-an RNA binding protein-is responsible for the FAM83H-AS1 function in CRC. T4 (1770-2440 nt) and T5 (2440-2743 nt) on exon 4 of FAM83H-AS1 provide a platform for PTBP1 RRM2 interactions. Our results demonstrated that m6A modification dysregulated the FAM83H-AS1 oncogenic role by phosphorylated PTBP1 on its RNA splicing effect. In patient-derived xenograft models, ASO-FAM83H-AS1 significantly suppressed the growth of gastrointestinal (GI) tumors, not only CRC but also GC and ESCC. The combination of ASO-FAM83H-AS1 and oxaliplatin/cisplatin significantly suppressed tumor growth compared with treatment with either agent alone. Notably, there was pathological complete response in all these three GI cancers. Our findings suggest that FAM83H-AS1 targeted therapy would benefit patients primarily receiving platinum-based therapy in GI cancers.
Collapse
Affiliation(s)
- Xiao-Jing Luo
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Yun-Xin Lu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Yun Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Runjie Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Jia Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Ze-Kun Liu
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Qi-Tao Huang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Heng-Ying Pu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Ruihua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, PR China.
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Qi-Nian Wu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China.
| |
Collapse
|
8
|
Kainov Y, Zhuravskaya A, Makeyev EV. Protocol for auxin-inducible depletion of the RNA-binding protein PTBP1 in mouse embryonic stem cells. STAR Protoc 2023; 4:102644. [PMID: 37862173 PMCID: PMC10594634 DOI: 10.1016/j.xpro.2023.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Inducible degradation of proteins of interest provides a powerful approach for functional studies. Here, we present a protocol for tightly controlled depletion of the RNA-binding protein PTBP1 in mouse embryonic stem cells (ESCs). We describe steps for establishing an ESC line expressing doxycycline-inducible auxin receptor protein OsTIR1 and tagging endogenous Ptbp1 alleles using CRISPR-Cas9 and homology-directed repair reagents. We then detail procedures for assaying the efficiency of inducible PTBP1 knockdown by immunoblotting. This protocol is adaptable for other protein targets. For complete details on the use and execution of this protocol, please refer to Iannone et al.1.
Collapse
Affiliation(s)
- Yaroslav Kainov
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
9
|
Lee S, Aubee JI, Lai EC. Regulation of alternative splicing and polyadenylation in neurons. Life Sci Alliance 2023; 6:e202302000. [PMID: 37793776 PMCID: PMC10551640 DOI: 10.26508/lsa.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cell-type-specific gene expression is a fundamental feature of multicellular organisms and is achieved by combinations of regulatory strategies. Although cell-restricted transcription is perhaps the most widely studied mechanism, co-transcriptional and post-transcriptional processes are also central to the spatiotemporal control of gene functions. One general category of expression control involves the generation of multiple transcript isoforms from an individual gene, whose balance and cell specificity are frequently tightly regulated via diverse strategies. The nervous system makes particularly extensive use of cell-specific isoforms, specializing the neural function of genes that are expressed more broadly. Here, we review regulatory strategies and RNA-binding proteins that direct neural-specific isoform processing. These include various classes of alternative splicing and alternative polyadenylation events, both of which broadly diversify the neural transcriptome. Importantly, global alterations of splicing and alternative polyadenylation are characteristic of many neural pathologies, and recent genetic studies demonstrate how misregulation of individual neural isoforms can directly cause mutant phenotypes.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Joseph I Aubee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
10
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Göder A, Quinlan A, Rainey MD, Bennett D, Shamavu D, Corso J, Santocanale C. PTBP1 enforces ATR-CHK1 signaling determining the potency of CDC7 inhibitors. iScience 2023; 26:106951. [PMID: 37378325 PMCID: PMC10291475 DOI: 10.1016/j.isci.2023.106951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
CDC7 kinase is crucial for DNA replication initiation and fork processing. CDC7 inhibition mildly activates the ATR pathway, which further limits origin firing; however, to date the relationship between CDC7 and ATR remains controversial. We show that CDC7 and ATR inhibitors are either synergistic or antagonistic depending on the degree of inhibition of each individual kinase. We find that Polypyrimidine Tract Binding Protein 1 (PTBP1) is important for ATR activity in response to CDC7 inhibition and genotoxic agents. Compromised PTBP1 expression makes cells defective in RPA recruitment, genomically unstable, and resistant to CDC7 inhibitors. PTBP1 deficiency affects the expression and splicing of many genes indicating a multifactorial impact on drug response. We find that an exon skipping event in RAD51AP1 contributes to checkpoint deficiency in PTBP1-deficient cells. These results identify PTBP1 as a key factor in replication stress response and define how ATR activity modulates the activity of CDC7 inhibitors.
Collapse
Affiliation(s)
- Anja Göder
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Aisling Quinlan
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Michael D. Rainey
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Declan Bennett
- School of Mathematical & Statistical Sciences, University of Galway, Galway H91TK33, Ireland
| | - Daniel Shamavu
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Jacqueline Corso
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland
| |
Collapse
|
12
|
A Simplified and Effective Approach for the Isolation of Small Pluripotent Stem Cells Derived from Human Peripheral Blood. Biomedicines 2023; 11:biomedicines11030787. [PMID: 36979766 PMCID: PMC10045871 DOI: 10.3390/biomedicines11030787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation. Here, we report a simplified and effective approach for the isolation of small pluripotent stem cells derived from human peripheral blood. Our approach results in a high yield of small blood stem cell (SBSC) population, which expresses pluripotent embryonic markers (e.g., Nanog, SSEA-3) and the Yamanaka factors. Further, a fraction of SBSCs also co-express hematopoietic markers (e.g., CD45 and CD90) and/or mesenchymal markers (e.g., CD29, CD105 and PTH1R), suggesting a mixed stem cell population. Finally, quantitative proteomic profiling reveals that SBSCs contain various stem cell markers (CD9, ITGA6, MAPK1, MTHFD1, STAT3, HSPB1, HSPA4), and Transcription reg complex factors (e.g., STAT5B, PDLIM1, ANXA2, ATF6, CAMK1). In conclusion, we present a novel, simplified and effective isolating process that yields an abundant population of small-sized cells with characteristics of pluripotency from human peripheral blood.
Collapse
|