1
|
Li S, Li C, Wang L, Xu J, Da LT. N-terminal basic residues of HOXD9 homeodomain drives its target-site searching along DNA. Int J Biol Macromol 2025; 315:144377. [PMID: 40398789 DOI: 10.1016/j.ijbiomac.2025.144377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/03/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
HOXD9 is a representative HOX-family transcription factor that binds specific promoters to determine the somite differentiation. Aberrations in HOXD9 expression are associated with diseases like tumorigenesis and metastasis. Currently, an atomic-level understanding of the molecular mechanism underlying the target-searching dynamics of HOXD9 along DNA remains elusive, and the key regulatory motifs that dictate the HOXD9 diffusion along DNA and HOXD9-DNA interplays are also unknown. Here, through constructing kinetic models based on extensive all-atom molecular dynamics simulations, we reveal the complete target-searching dynamics of the HOXD9 homeodomain along a 10-bp DNA segment. We found the N-terminal arm is directly involved in driving the HOXD9 diffusion along DNA before targeting to the specific-site. Particularly, several positively-charged residues, including R2-R5, play critical roles in forming direct contacts with DNA, mainly via electrostatic interactions. As approaches to the target-site, HOXD9 tends to plug its N-terminus out of the minor-groove, meanwhile, establishes specific recognitions with the specific-site via R5 and the helix-3 domain. Further site-directed mutagenetic assays validated the predicted functional roles of these N-terminal residues. Phylogenetic tree analyses of 154 HOX proteins indicate highly conserved structural features in the N-terminus, suggesting the proposed target-searching mechanism for HOXD9 could be generalized to other homeodomain proteins.
Collapse
Affiliation(s)
- Siyuan Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Cong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lingyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Jagadeesan R, Dash S, Palma CSD, Baptista ISC, Chauhan V, Mäkelä J, Ribeiro AS. Dynamics of bacterial operons during genome-wide stresses is influenced by premature terminations and internal promoters. SCIENCE ADVANCES 2025; 11:eadl3570. [PMID: 40378216 DOI: 10.1126/sciadv.adl3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/11/2025] [Indexed: 05/18/2025]
Abstract
Bacterial gene networks have operons, each coordinating several genes under a primary promoter. Half of the operons in Escherichia coli have been reported to also contain internal promoters. We studied their role during genome-wide stresses targeting key transcription regulators, RNA polymerase (RNAP) and gyrase. Our results suggest that operons' responses are influenced by stress-related changes in premature elongation terminations and internal promoters' activity. Globally, this causes the responses of genes in the same operon to differ with the distance between them in a wave-like pattern. Meanwhile, premature terminations are affected by positive supercoiling buildup, collisions between elongating and promoter-bound RNAPs, and local regulatory elements. We report similar findings in E. coli under other stresses and in evolutionarily distant bacteria Bacillus subtilis, Corynebacterium glutamicum, and Helicobacter pylori. Our results suggest that the strength, number, and positioning of operons' internal promoters might have evolved to compensate for premature terminations, providing distal genes similar response strengths.
Collapse
Affiliation(s)
- Rahul Jagadeesan
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suchintak Dash
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Cristina S D Palma
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ines S C Baptista
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vatsala Chauhan
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jarno Mäkelä
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Andre S Ribeiro
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
3
|
Deng Y, Maurais HE, Etheridge K, Sarpeshkar R. Gene syntaxes modulate gene expression and circuit behavior on plasmids. J Biol Eng 2025; 19:25. [PMID: 40148941 PMCID: PMC11951768 DOI: 10.1186/s13036-025-00493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Achieving consistent and predictable gene expression from plasmids remains challenging. While much attention has focused on intra-genetic elements like promoters and ribosomal binding sites, the spatial arrangement of genes within plasmids-referred to as gene syntax-also plays a crucial role in shaping gene expression dynamics. This study addresses the largely overlooked impact of gene syntaxes on gene expression variability and accuracy. Utilizing a dual-fluorescent protein system, we systematically investigated how different gene orientations and orders affect expression profiles including mean levels, relative expression ratios, and cell-to-cell variations. We found that arbitrary gene placement on a plasmid can cause significantly different expression means and ratios. Genes aligned in the same direction as a plasmid's origin of replication (Ori) typically exhibit higher expression levels; adjacent genes in the divergent orientation tend to suppress each other's expression; altering gene order without changing orientation can yield varied expression. Despite unchanged total cell-to-cell variation across different syntaxes, gene syntaxes can also influence intrinsic and extrinsic noise. Interestingly, cell-to-cell variation appears to depend on the reporter proteins, with RFP consistently showing higher variation than GFP. Moreover, the effects of gene syntax can propagate to downstream circuits, strongly affecting the performance of incoherent feedforward loops and contributing to unpredictable outcomes in genetic networks. Our findings reveal that gene syntaxes on plasmids modulate gene expression and circuit behavior, providing valuable insights for the rational design of plasmids and genetic circuits.
Collapse
Affiliation(s)
- Yijie Deng
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Hannah E Maurais
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Kai Etheridge
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Rahul Sarpeshkar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
- Departments of Engineering, Microbiology & Immunology, Physics, and Molecular and Systems Biology, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
4
|
Corso Diaz X, Liang X, Preston K, Tegshee B, English MA, Nellissery J, Yadav SP, Marchal C, Swaroop A. Maf-family bZIP transcription factor NRL interacts with RNA-binding proteins and R-loops in retinal photoreceptors. eLife 2025; 13:RP103259. [PMID: 40047526 PMCID: PMC11884789 DOI: 10.7554/elife.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
RNA-binding proteins (RBPs) perform diverse functions including the regulation of chromatin dynamics and the coupling of transcription with RNA processing. However, our understanding of their actions in mammalian neurons remains limited. Using affinity purification, yeast-two-hybrid and proximity ligation assays, we identified interactions of multiple RBPs with neural retina leucine (NRL) zipper, a Maf-family transcription factor critical for retinal rod photoreceptor development and function. In addition to splicing, many NRL-interacting RBPs are associated with R-loops, which form during transcription and increase during photoreceptor maturation. Focusing on DHX9 RNA helicase, we demonstrate that its expression is modulated by NRL and that the NRL-DHX9 interaction is positively influenced by R-loops. ssDRIP-Seq analysis reveals both stranded and unstranded R-loops at distinct genomic elements, characterized by active and inactive epigenetic signatures and enriched at neuronal genes. NRL binds to both types of R-loops, suggesting an epigenetically independent function. Our findings suggest additional functions of NRL during transcription and highlight complex interactions among transcription factors, RBPs, and R-loops in regulating photoreceptor gene expression in the mammalian retina.
Collapse
Affiliation(s)
- Ximena Corso Diaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
- Department of Ophthalmology, Byers Eye Institute, Stanford UniversityStanfordUnited States
| | - Xulong Liang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Kiam Preston
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Bilguun Tegshee
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Milton A English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Sharda Prasad Yadav
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Claire Marchal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
- In silichrom LtdNewburyUnited Kingdom
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Fuqua T, Sun Y, Wagner A. The emergence and evolution of gene expression in genome regions replete with regulatory motifs. eLife 2024; 13:RP98654. [PMID: 39704646 DOI: 10.7554/elife.98654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called -10 and -35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 'promoter islands', DNA sequences enriched with -10 and -35 boxes. We mutagenize these starting 'parent' sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new -10 and -35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all -10 and -35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new -10 and -35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that -10 and -35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.
Collapse
Affiliation(s)
- Timothy Fuqua
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Yiqiao Sun
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, United States
| |
Collapse
|
6
|
Qian J, Wang B, Artsimovitch I, Dunlap D, Finzi L. Force and the α-C-terminal domains bias RNA polymerase recycling. Nat Commun 2024; 15:7520. [PMID: 39214958 PMCID: PMC11364550 DOI: 10.1038/s41467-024-51603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
After an RNA polymerase reaches a terminator, instead of dissociating from the template, it may diffuse along the DNA and recommence RNA synthesis from the previous or a different promoter. Magnetic tweezers were used to monitor such secondary transcription and determine the effects of low forces assisting or opposing translocation, protein roadblocks, and transcription factors. Remarkably, up to 50% of Escherichia coli (E. coli) RNA polymerases diffused along the DNA after termination. Force biased the direction of diffusion (sliding) and the velocity increased rapidly with force up to 0.7 pN and much more slowly thereafter. Sigma factor 70 (σ70) likely remained associated with the DNA promoting sliding and enabling re-initiation from promoters in either orientation. However, deletions of the α-C-terminal domains severely limited the ability of RNAP to turn around between successive rounds of transcription. The addition of elongation factor NusG, which competes with σ70 for binding to RNAP, limited additional rounds of transcription. Surprisingly, sliding RNA polymerases blocked by a DNA-bound lac repressor could slowly re-initiate transcription and were not affected by NusG, suggesting a σ-independent pathway. Low forces effectively biased promoter selection suggesting a prominent role for topological entanglements that affect RNA polymerase translocation.
Collapse
Affiliation(s)
- Jin Qian
- Physics Department, Emory University, Atlanta, GA, USA
| | - Bing Wang
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Irina Artsimovitch
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - David Dunlap
- Department of Physics & Astronomy, Clemson University, Clemson, SC, USA
| | - Laura Finzi
- Department of Physics & Astronomy, Clemson University, Clemson, SC, USA.
| |
Collapse
|
7
|
Song E, Han S, Uhm H, Kang C, Hohng S. Single-mode termination of phage transcriptions, disclosing bacterial adaptation for facilitated reinitiations. Nucleic Acids Res 2024; 52:9092-9102. [PMID: 39011892 PMCID: PMC11347151 DOI: 10.1093/nar/gkae620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Bacterial and bacteriophage RNA polymerases (RNAPs) have divergently evolved and share the RNA hairpin-dependent intrinsic termination of transcription. Here, we examined phage T7, T3 and SP6 RNAP terminations utilizing the single-molecule fluorescence assays we had developed for bacterial terminations. We discovered the phage termination mode or outcome is virtually single with decomposing termination. Therein, RNAP is displaced forward along DNA and departs both RNA and DNA for one-step decomposition, three-dimensional diffusion and reinitiation at any promoter. This phage displacement-mediated decomposing termination is much slower than readthrough and appears homologous with the bacterial one. However, the phage sole mode of termination contrasts with the bacterial dual mode, where both decomposing and recycling terminations occur compatibly at any single hairpin- or Rho-dependent terminator. In the bacterial recycling termination, RNA is sheared from RNA·DNA hybrid, and RNAP remains bound to DNA for one-dimensional diffusion, which enables facilitated recycling for reinitiation at the nearest promoter located downstream or upstream in the sense or antisense orientation. Aligning with proximity of most terminators to adjacent promoters in bacterial genomes, the shearing-mediated recycling termination could be bacterial adaptation for the facilitated reinitiations repeated at a promoter for accelerated expression and coupled at adjoining promoters for coordinated regulation.
Collapse
Affiliation(s)
- Eunho Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Han
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Heesoo Uhm
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
9
|
Song E, Han S, Hohng S, Kang C. Compatibility of termination mechanisms in bacterial transcription with inference on eukaryotic models. Biochem Soc Trans 2024; 52:887-897. [PMID: 38533838 DOI: 10.1042/bst20231229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Transcription termination has evolved to proceed through diverse mechanisms. For several classes of terminators, multiple models have been debatably proposed. Recent single-molecule studies on bacterial terminators have resolved several long-standing controversies. First, termination mode or outcome is twofold rather than single. RNA is released alone before DNA or together with DNA from RNA polymerase (RNAP), i.e. with RNA release for termination, RNAP retains on or dissociates off DNA, respectively. The concomitant release, described in textbooks, results in one-step decomposition of transcription complexes, and this 'decomposing termination' prevails at ρ factor-dependent terminators. Contrastingly, the sequential release was recently discovered abundantly from RNA hairpin-dependent intrinsic terminations. RNA-only release allows RNAP to diffuse on DNA in both directions and recycle for reinitiation. This 'recycling termination' enables one-dimensional reinitiation, which would be more expeditious than three-dimensional reinitiation by RNAP dissociated at decomposing termination. Second, while both recycling and decomposing terminations occur at a hairpin-dependent terminator, four termination mechanisms compatibly operate at a ρ-dependent terminator with ρ in alternative modes and even intrinsically without ρ. RNA-bound catch-up ρ mediates recycling termination first and decomposing termination later, while RNAP-prebound stand-by ρ invokes only decomposing termination slowly. Without ρ, decomposing termination occurs slightly and sluggishly. These four mechanisms operate on distinct timescales, providing orderly fail-safes. The stand-by mechanism is benefited by terminational pause prolongation and modulated by accompanying riboswitches more greatly than the catch-up mechanisms. Conclusively, any mechanism alone is insufficient to perfect termination, and multiple mechanisms operate compatibly to achieve maximum possible efficiency under separate controls.
Collapse
Affiliation(s)
- Eunho Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Han
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Qian J, Cartee A, Xu W, Yan Y, Wang B, Artsimovitch I, Dunlap D, Finzi L. Reciprocating RNA Polymerase batters through roadblocks. Nat Commun 2024; 15:3193. [PMID: 38609371 PMCID: PMC11014978 DOI: 10.1038/s41467-024-47531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
RNA polymerases must transit through protein roadblocks to produce full-length transcripts. Here we report real-time measurements of Escherichia coli RNA polymerase passing through different barriers. As intuitively expected, assisting forces facilitated, and opposing forces hindered, RNA polymerase passage through lac repressor protein bound to natural binding sites. Force-dependent differences were significant at magnitudes as low as 0.2 pN and were abolished in the presence of the transcript cleavage factor GreA, which rescues backtracked RNA polymerase. In stark contrast, opposing forces promoted passage when the rate of RNA polymerase backtracking was comparable to, or faster than the rate of dissociation of the roadblock, particularly in the presence of GreA. Our experiments and simulations indicate that RNA polymerase may transit after roadblocks dissociate, or undergo cycles of backtracking, recovery, and ramming into roadblocks to pass through. We propose that such reciprocating motion also enables RNA polymerase to break protein-DNA contacts that hold RNA polymerase back during promoter escape and RNA chain elongation. This may facilitate productive transcription in vivo.
Collapse
Affiliation(s)
- Jin Qian
- Physics Department, Emory University, Atlanta, GA, USA
| | | | - Wenxuan Xu
- Physics Department, Emory University, Atlanta, GA, USA
| | - Yan Yan
- Physics Department, Emory University, Atlanta, GA, USA
| | - Bing Wang
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Irina Artsimovitch
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA.
| |
Collapse
|
11
|
Jin Y, Liu Y, Liu S, Wang E, Chen W. Convergent gene pair dSH3 and irr regulate Pi and Fe homeostasis in Bradyrhizobium diazoefficiens USDA110 and symbiotic nitrogen fixation efficiency. Microbiol Res 2024; 280:127571. [PMID: 38134513 DOI: 10.1016/j.micres.2023.127571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
The nitrogen-fixing bacteroids inhabit inside legume root nodules must manage finely the utilization of P and Fe, the two most critical elements, due to their antagonistic interactions. While the balance mechanism for them remains unclear. A double SH3 domain-containing protein (dSH3) in the Bradyrhizobium diazoefficiens USDA110 was found to inhibit the alkaline phosphatase activity, thereby reducing P supply from organophosphates. The dSH3 gene is adjacent to the irr gene, which encodes the iron response repressor and regulates Fe homeostasis under Fe-limited conditions. Their transcription directions converge to a common intergenic sequence (IGS) region, forming a convergent transcription. Extending the IGS region through Tn5 transposon or pVO155 plasmid insertion significantly down-regulated expression of this gene pair, leading to a remarkable accumulation of P and an inability to grow under Fe-limited conditions. Inoculation of soybean with either of the insertion mutants resulted in N2-fixing failure. However, the IGS-deleted mutant showed no visible changes in N2-fixing efficiency on soybean compared to that inoculated with wild type. These findings reveal a novel regulative strategy in the IGS region and its flanking convergent gene pair for antagonistic utilization of P and Fe in rhizobia and coordination of N2-fixing efficiency.
Collapse
Affiliation(s)
- Yuhao Jin
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, PR China
| | - Yuanhui Liu
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, PR China
| | - Sheng Liu
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, PR China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Wenfeng Chen
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
12
|
Wang L. RNA polymerase collisions and their role in transcription. Transcription 2024; 15:38-47. [PMID: 38357902 PMCID: PMC11093029 DOI: 10.1080/21541264.2024.2316972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
RNA polymerases are the central enzymes of gene expression and function frequently in either a head-on or co-directional manner on the busy DNA track. Whether and how these collisions between RNA polymerases contribute to transcriptional regulation is mysterious. Increasing evidence from biochemical and single-molecule studies suggests that RNA polymerase collisions function as an important regulator to fine-tune transcription, rather than creating deleterious "traffic jams". This review summarizes the recent progress on elucidating the consequences of RNA polymerase collisions during transcription and highlights the significance of cooperation and coordination between RNA polymerases.
Collapse
Affiliation(s)
- Ling Wang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Caldas P, Luz M, Baseggio S, Andrade R, Sobral D, Grosso AR. Transcription readthrough is prevalent in healthy human tissues and associated with inherent genomic features. Commun Biol 2024; 7:100. [PMID: 38225287 PMCID: PMC10789751 DOI: 10.1038/s42003-024-05779-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Transcription termination is a crucial step in the production of conforming mRNAs and functional proteins. Under cellular stress conditions, the transcription machinery fails to identify the termination site and continues transcribing beyond gene boundaries, a phenomenon designated as transcription readthrough. However, the prevalence and impact of this phenomenon in healthy human tissues remain unexplored. Here, we assessed transcription readthrough in almost 3000 transcriptome profiles representing 23 human tissues and found that 34% of the expressed protein-coding genes produced readthrough transcripts. The production of readthrough transcripts was restricted in genomic regions with high transcriptional activity and was associated with inefficient splicing and increased chromatin accessibility in terminal regions. In addition, we showed that these transcripts contained several binding sites for the same miRNA, unravelling a potential role as miRNA sponges. Overall, this work provides evidence that transcription readthrough is pervasive and non-stochastic, not only in abnormal conditions but also in healthy tissues. This suggests a potential role for such transcripts in modulating normal cellular functions.
Collapse
Affiliation(s)
- Paulo Caldas
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Mariana Luz
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Simone Baseggio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Rita Andrade
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Ana Rita Grosso
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
14
|
Herbert A. Flipons and small RNAs accentuate the asymmetries of pervasive transcription by the reset and sequence-specific microcoding of promoter conformation. J Biol Chem 2023; 299:105140. [PMID: 37544644 PMCID: PMC10474125 DOI: 10.1016/j.jbc.2023.105140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
The role of alternate DNA conformations such as Z-DNA in the regulation of transcription is currently underappreciated. These structures are encoded by sequences called flipons, many of which are enriched in promoter and enhancer regions. Through a change in their conformation, flipons provide a tunable mechanism to mechanically reset promoters for the next round of transcription. They act as actuators that capture and release energy to ensure that the turnover of the proteins at promoters is optimized to cell state. Likewise, the single-stranded DNA formed as flipons cycle facilitates the docking of RNAs that are able to microcode promoter conformations and canalize the pervasive transcription commonly observed in metazoan genomes. The strand-specific nature of the interaction between RNA and DNA likely accounts for the known asymmetry of epigenetic marks present on the histone tetramers that pair to form nucleosomes. The role of these supercoil-dependent processes in promoter choice and transcriptional interference is reviewed. The evolutionary implications are examined: the resilience and canalization of flipon-dependent gene regulation is contrasted with the rapid adaptation enabled by the spread of flipon repeats throughout the genome. Overall, the current findings underscore the important role of flipons in modulating the readout of genetic information and how little we know about their biology.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery Division, InsideOutBio, Charlestown, Massachusetts, USA.
| |
Collapse
|
15
|
Hao N, Donnelly AJ, Dodd IB, Shearwin KE. When push comes to shove - RNA polymerase and DNA-bound protein roadblocks. Biophys Rev 2023; 15:355-366. [PMID: 37396453 PMCID: PMC10310618 DOI: 10.1007/s12551-023-01064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
In recent years, transcriptional roadblocking has emerged as a crucial regulatory mechanism in gene expression, whereby other DNA-bound obstacles can block the progression of transcribing RNA polymerase (RNAP), leading to RNAP pausing and ultimately dissociation from the DNA template. In this review, we discuss the mechanisms by which transcriptional roadblocks can impede RNAP progression, as well as how RNAP can overcome these obstacles to continue transcription. We examine different DNA-binding proteins involved in transcriptional roadblocking and their biophysical properties that determine their effectiveness in blocking RNAP progression. The catalytically dead CRISPR-Cas (dCas) protein is used as an example of an engineered programmable roadblock, and the current literature in understanding the polarity of dCas roadblocking is also discussed. Finally, we delve into a stochastic model of transcriptional roadblocking and highlight the importance of transcription factor binding kinetics and its resistance to dislodgement by an elongating RNAP in determining the strength of a roadblock.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Alana J. Donnelly
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Ian B. Dodd
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
16
|
Lammens EM, Putzeys L, Boon M, Lavigne R. Sourcing Phage-Encoded Terminators Using ONT-cappable-seq for SynBio Applications in Pseudomonas. ACS Synth Biol 2023; 12:1415-1423. [PMID: 37092882 PMCID: PMC10204088 DOI: 10.1021/acssynbio.3c00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 04/25/2023]
Abstract
Efficient transcriptional terminators are essential for the performance of genetic circuitry in microbial SynBio hosts. In recent years, several libraries of characterized strong terminators have become available for model organisms such as Escherichia coli. Conversely, terminator libraries for nonmodel species remain scarce, and individual terminators are often ported over from model systems, leading to unpredictable performance in their new hosts. In this work, we mined the genomes of Pseudomonas infecting phages LUZ7 and LUZ100 for transcriptional terminators utilizing the full-length RNA sequencing technique "ONT-cappable-seq" and validated these terminators in three Gram-negative hosts using a terminator trap assay. Based on these results, we present nine terminators for E. coli, Pseudomonas putida, and Pseudomonas aeruginosa, which outperform current reference terminators. Among these, terminator LUZ7 T50 displays potent bidirectional activity. These data further support that bacteriophages, as evolutionary-adapted natural predators of the targeted bacteria, provide a valuable source of microbial SynBio parts.
Collapse
Affiliation(s)
| | | | - Maarten Boon
- Laboratory of Gene
Technology,
Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene
Technology,
Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|