1
|
Kim E, Tanzi RE, Choi SH. Therapeutic potential of exercise-hormone irisin in Alzheimer's disease. Neural Regen Res 2025; 20:1555-1564. [PMID: 38993140 PMCID: PMC11688551 DOI: 10.4103/nrr.nrr-d-24-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Minuti A, Raffaele I, Scuruchi M, Lui M, Muscarà C, Calabrò M. Role and Functions of Irisin: A Perspective on Recent Developments and Neurodegenerative Diseases. Antioxidants (Basel) 2025; 14:554. [PMID: 40427436 PMCID: PMC12108254 DOI: 10.3390/antiox14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Irisin is a peptide derived from fibronectin type III domain-containing protein 5 (FNDC5) and is primarily produced by muscle fibers under the regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) during exercise. Irisin has been the subject of extensive research due to its potential as a metabolic regulator and its antioxidant properties. Notably, it has been associated with protective actions within the brain. Despite growing interest, many questions remain regarding the molecular mechanisms underlying its effects. This review summarizes recent findings on irisin, highlighting its pleiotropic functions and the biological processes and molecular cascades involved in its action, with a particular focus on the central nervous system. Irisin plays a crucial role in neuron survival, differentiation, growth, and development, while also promoting mitochondrial homeostasis, regulating apoptosis, and facilitating autophagy-processes essential for normal neuronal function. Emerging evidence suggests that irisin may improve conditions associated with non-communicable neurological diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and multiple sclerosis. Given its diverse benefits, irisin holds promise as a novel therapeutic agent for preventing and treating neurological diseases.
Collapse
Affiliation(s)
- Aurelio Minuti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Ivana Raffaele
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Maria Lui
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Claudia Muscarà
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Marco Calabrò
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| |
Collapse
|
3
|
Capasso G, Franssen CFM, Perna AF, Massy ZA, Menzies RI, Zoccali C, Tessitore A, Nedergaard M, Okusa MD, Ortiz A, Wagner CA, Unwin RJ. Drivers and mechanisms of cognitive decline in chronic kidney disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00963-0. [PMID: 40281076 DOI: 10.1038/s41581-025-00963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Cognitive impairment is highly prevalent among individuals with chronic kidney disease (CKD). Despite its high prevalence, the contributing factors and mechanisms underlying brain-kidney dysfunction in CKD remain poorly understood. However, advances in neuroscience, including novel imaging techniques and cognitive assessment methods, have begun to clarify this complex relationship. Several factors contribute directly to cognitive decline in people with CKD, including accumulation of uraemic toxins, microvascular damage, malnutrition, chronic inflammation and disruptions in key neuroprotective pathways, such as those involving Klotho and the glymphatic system. These factors are also linked to the accelerated ageing observed in people with CKD, a key contributor to cognitive decline. However, most studies on cognition in people with CKD have been cross-sectional and associative, offering limited insight into causation. Research advances, such as studies on the effect of uraemic toxins on the blood-brain barrier and the role of the endothelial glycocalyx in vascular damage, offer promising new directions. Emerging data from longitudinal cohort studies are also enhancing our understanding of these processes, with potential implications for both the treatment of CKD-related cognitive decline and the broader issue of cognitive dysfunction in ageing populations. Here, we examine key mechanisms linking CKD to cognitive decline and consider potential therapeutic interventions.
Collapse
Affiliation(s)
- Giovambattista Capasso
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy.
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Casper F M Franssen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alessandra F Perna
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ziad A Massy
- AURA (Association pour l'Utilization du Rein Artificiel dans la Region Parisienne) Paris, Department of Nephrology, CHU Ambroise Paré, AP-HP, Paris, France
- Centre for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Clinical Epidemiology Team, Villejuif, France
| | - Robert I Menzies
- Edinburgh Kidney, British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Carmine Zoccali
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio, Italy
| | - Alessandro Tessitore
- Department of Advanced Surgical and Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity Inflammation and Regenerative Medicine University of Virginia, Charlottesville, VA, USA
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD UAM), Madrid, Spain
| | - Carsten A Wagner
- Institute of Physiology and Zurich Kidney Center University of Zurich, Zurich, Switzerland
| | - Robert J Unwin
- UCL Centre for Kidney and Bladder Health, University College London, London, UK
| |
Collapse
|
4
|
Ha J, Sung S, Kim H. Myokines and interorgan crosstalk: bridging exercise to health promotion and disease prevention. Ann Pediatr Endocrinol Metab 2025; 30:59-68. [PMID: 40335041 PMCID: PMC12061759 DOI: 10.6065/apem.2448218.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 05/09/2025] Open
Abstract
Exercise is known to promote physical health and reduce the risk of various diseases. During exercise, skeletal muscle actively contracts to perform movements and secretes hormone-like molecules termed myokines. The beneficial effects of exercise have been assessed with respect to myokine production, and those of irisin on bone, adipose tissue, and the brain have been well documented. Irisin, through its interactions with the integrin αV family, plays a crucial role in bone maintenance, metabolic regulation, and cognitive function. Building on the established understanding of irisin, this discussion will examine the functions and effects of other myokines as key secretory factors in exercise, emphasizing their broader roles in health promotion and the potential for new therapeutic strategies in disease prevention and treatment.
Collapse
Affiliation(s)
- Junseo Ha
- Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Suchan Sung
- Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyeonwoo Kim
- Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
5
|
Bayfield J, Elford HR, Christie BR. Examining a role for irisin in treating cerebral ischemia. J Neurophysiol 2025; 133:1320-1328. [PMID: 40135689 DOI: 10.1152/jn.00027.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/09/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025] Open
Abstract
Stroke is a leading cause of death and disability, with ischemic stroke representing most cases. Age is the most significant nonmodifiable risk factor for stroke, and with an aging population, there is an urgent need for effective prevention and treatment strategies. Physical inactivity is a strong risk factor for stroke, and exercise has long been held as a promising approach to improve poststroke outcomes. During exercise, the myokine irisin is released as a product of a type 1 membrane protein cleavage that is encoded by the fibronectin type III domain containing 5 (FNDC5) gene. This review summarizes recent literature on irisin's role in ischemic stroke, examining central effects, stroke risk, poststroke functional outcomes, and exogenous administration. Irisin has value as a prognostic marker for risk stratification. Low levels of irisin correlate with worse outcomes and higher mortality in patients with ischemic stroke. Irisin may also be a key to the benefits of exercise, particularly for high-intensity resistance training, which significantly increases irisin levels. Beyond exercise, exogenous irisin is neuroprotective in murine models, reducing brain edema, inflammation, and apoptosis, and increasing blood-brain barrier integrity and brain-derived neurotrophic factor levels. This underscores irisin's potential to mitigate ischemic damage and promote recovery. Human trials are necessary to validate these findings and explore the feasibility of irisin-based interventions in acute stroke care. This review lays a foundation for future research to clarify irisin's therapeutic benefits, establish optimal exercise protocols, and explore exogenous irisin as a novel intervention for ischemic stroke.
Collapse
Affiliation(s)
- Jack Bayfield
- Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hanna R Elford
- International Collaboration on Repair Discoveries, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian R Christie
- Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
- Department of Psychology, San Diego State University, San Diego, California, United States
| |
Collapse
|
6
|
Fang T, Lu H, Jiang Y. Extracellular fungal Hsp90 represents a promising therapeutic target for combating fungal infections. Eur J Pharm Sci 2025; 207:107041. [PMID: 39947525 DOI: 10.1016/j.ejps.2025.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
Heat shock protein 90 (Hsp90) is a pivotal virulence factor in pathogenic fungi, playing a significant role in conferring drug resistance. However, due to the high amino acid sequence similarity between fungal and mammalian Hsp90, targeting fungal intracellular Hsp90 therapeutically is associated with marked toxic side effects, thereby limiting clinical application. Studies have demonstrated that intracellular fungal Hsp90 can be secreted as extracellular Hsp90 (eHsp90), which plays a crucial role in fungal infections. Strategies targeting fungal eHsp90 have exhibited promising therapeutic outcomes. Unlike intracellular targeting, such antifungal approaches can operate without cell penetration, thereby circumventing the toxic side effects due to Hsp90's high conservation. This review summarizes the potential extracellular secretion pathways of fungal eHsp90, its roles in fungal pathogenesis, as well as the development of vaccines and antibodies targeting fungal eHsp90. The review underlines the significance of eHsp90 in fungal infections and suggests that eHsp90 represents a promising therapeutic target for fungal infection treatment.
Collapse
Affiliation(s)
- Ting Fang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Arani G, Arora A, Yang S, Wu J, Kraszewski JN, Martins A, Miller A, Zeba Z, Jafri A, Hu C, Farland LV, Bea JW, Coletta DK, Aslan DH, Sayre MK, Bharadwaj PK, Ally M, Maltagliati S, Lai MHC, Wilcox R, de Geus E, Alexander GE, Raichlen DA, Klimentidis YC. Plasma Proteomic Signatures of Physical Activity Provide Insights into Biological Impacts of Physical Activity and its Protective Role Against Dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.16.25320290. [PMID: 39867359 PMCID: PMC11759254 DOI: 10.1101/2025.01.16.25320290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Physical activity (PA), including sedentary behavior, is associated with many diseases, including Alzheimer's disease and all-cause dementia. However, the specific biological mechanisms through which PA protects against disease are not entirely understood. To address this knowledge gap, we first assessed the conventional observational associations of three self-reported and three device-based PA measures with circulating levels of 2,911 plasma proteins measured in the UK Biobank (nmax=39,160) and assessed functional enrichment of identified proteins. We then used bi-directional Mendelian randomization (MR) to further evaluate the evidence for causal relationships of PA with protein levels. Finally, we performed mediation analyses to identify proteins that may mediate the relationship of PA with incident all-cause dementia. Our findings revealed 41 proteins consistently associated with all PA measures and 1,027 proteins associated with at least one PA measure. Both conventional observational and MR study designs converged on proteins that appear to increase as a result of PA, including integrin proteins such as ITGAV and ITGAM, as well as MXRA8, CLEC4A, CLEC4M, GFRA1, and ADGRG2; and on proteins that appear to decrease as a result of PA such as LEP, LPL, INHBC, CLMP, PTGDS, ADM, OGN, and PI3. Functional enrichment analyses revealed several relevant processes, including cell-matrix adhesion, integrin-mediated signaling, and collagen binding. Finally, several proteins, including GDF15, ITGAV, HPGDS, BCAN, and MENT, were found to mediate the relationship of PA with all-cause dementia, implicating processes such as synaptic plasticity, neurogenesis and inflammation, through which PA protects against dementia. Our results provide insights into how PA may affect biological processes and protect from all-cause dementia, and provide avenues for future research into the health-promoting effects of PA.
Collapse
Affiliation(s)
- Gayatri Arani
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Amit Arora
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Biomedical Informatics, College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Shuai Yang
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jingyue Wu
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jennifer N. Kraszewski
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Amy Martins
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Alexandra Miller
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
- College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Zebunnesa Zeba
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Ayan Jafri
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Chengcheng Hu
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Leslie V. Farland
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jennifer W. Bea
- Department of Health Promotion Sciences, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Dawn K. Coletta
- Department of Physiology, University of Arizona, Tucson, AZ, USA
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, USA
- Department of Clinical and Translational Genomics, University of Arizona, Tucson, AZ, USA
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona, Tucson, AZ, USA
| | - Daniel H. Aslan
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
| | - M Katherine Sayre
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Madeline Ally
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Silvio Maltagliati
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
- University of Grenoble Alpes, SENS, Grenoble 38000, France
| | - Mark H C Lai
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Rand Wilcox
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gene E. Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
| | - David A. Raichlen
- Department of Anthropology, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yann C. Klimentidis
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Laurindo LF, Rodrigues VD, Laurindo LF, Cherain LMA, de Lima EP, Boaro BL, da Silva Camarinha Oliveira J, Chagas EFB, Catharin VCS, Dos Santos Haber JF, Dos Santos Bueno PC, Direito R, Barbalho SM. Targeting AMPK with Irisin: Implications for metabolic disorders, cardiovascular health, and inflammatory conditions - A systematic review. Life Sci 2025; 360:123230. [PMID: 39532260 DOI: 10.1016/j.lfs.2024.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Irisin-based interventions have gained attention for their potential to modulate the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in various diseases. Physiologically, irisin is a myokine released during physical exercise that exerts anti-inflammatory effects and is a metabolic and cardiometabolic enhancer. On the other hand, AMPK is crucial for maintaining energy balance and metabolic homeostasis. Therefore, individuals presenting low blood levels of irisin and AMPK dysregulation are more predisposed to metabolic disorders and cardiovascular health inflammatory conditions since regulating energy balance and metabolic homeostasis are crucial for preventing or treating these disorders. In light of those mentioned above and considering that no review has addressed the intricate relationships between irisin and AMPK regulation in the realm of metabolic disorders, cardiovascular health, and inflammatory conditions, we comprehensively reviewed studies involving irisin's effects on AMPK signaling in different models and interventions. Our systematic analysis involved in vitro studies, animal models, and their relevant clinical implications of irisin targeting AMPK due to the absence of relevant clinical trials. The outcomes and limitations of the included studies were extensively highlighted. Objectively, irisin improved metabolic disorders by enhancing β-cell function and insulin secretion in diabetes, mitigating myocardial injury in cardiovascular conditions, and reducing inflammation and oxidative stress in various injury models by targeting AMPK. However, the lack of clinical trials limits the generalizability of these findings to human subjects. Future research should focus on translating these findings into clinical applications and exploring the broader implications of irisin-based interventions in human health.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil.
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, 15090-000 São Paulo, Brazil
| | - Luana Maria Amaral Cherain
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | | | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, 17500-000 São Paulo, Brazil; UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| |
Collapse
|
10
|
Silbermann LM, Vermeer B, Schmid S, Tych K. The known unknowns of the Hsp90 chaperone. eLife 2024; 13:e102666. [PMID: 39737863 PMCID: PMC11687934 DOI: 10.7554/elife.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
Molecular chaperones are vital proteins that maintain protein homeostasis by assisting in protein folding, activation, degradation, and stress protection. Among them, heat-shock protein 90 (Hsp90) stands out as an essential proteostasis hub in eukaryotes, chaperoning hundreds of 'clients' (substrates). After decades of research, several 'known unknowns' about the molecular function of Hsp90 remain unanswered, hampering rational drug design for the treatment of cancers, neurodegenerative, and other diseases. We highlight three fundamental open questions, reviewing the current state of the field for each, and discuss new opportunities, including single-molecule technologies, to answer the known unknowns of the Hsp90 chaperone.
Collapse
Affiliation(s)
- Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Benjamin Vermeer
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Sonja Schmid
- Laboratory of Biophysics, Wageningen University & ResearchWageningenNetherlands
| | - Katarzyna Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
11
|
Paoletti I, Coccurello R. Irisin: A Multifaceted Hormone Bridging Exercise and Disease Pathophysiology. Int J Mol Sci 2024; 25:13480. [PMID: 39769243 PMCID: PMC11676223 DOI: 10.3390/ijms252413480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress. It promotes osteogenesis and mitigates bone loss in osteoporosis and sarcopenia. Irisin exhibits anti-inflammatory effects by inhibiting NF-κB signaling and countering insulin resistance. In the brain, it reduces amyloid-β toxicity, inflammation, and oxidative stress, enhancing brain-derived neurotrophic factor (BDNF) signaling, which improves cognition and synaptic health in AD models. It also regulates dopamine pathways, potentially alleviating neuropsychiatric symptoms like depression and apathy. By linking physical activity to systemic health, irisin emphasizes its role in the muscle-bone-brain axis. Its multifaceted benefits highlight its potential as a therapeutic target for AD and related disorders, with applications in prevention, in treatment, and as a complement to exercise strategies.
Collapse
Affiliation(s)
- Ilaria Paoletti
- IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy;
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy;
- Institute for Complex Systems (ISC), National Research Council (C.N.R.), 00185 Rome, Italy
| |
Collapse
|
12
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Vaishnavi Nalla S, Jayapradha P, Lalruatmawii, Nandheeswari K, Naxine P, Vigneshwaran G, Rohilla G, Dubey I, Kushwaha S. Irisin as an emerging target in the regulation of reproductive functions in health and disease. Gen Comp Endocrinol 2024; 353:114529. [PMID: 38643847 DOI: 10.1016/j.ygcen.2024.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/22/2023] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Germ cells are highly conserved in the gonads, nurtured to either develop into a gamete or self-renew into a stem cell reserve. Preserving the germ cell pool and protecting the reproductive organs is essential for maintaining an individual's fertility. Several factors, including a sedentary lifestyle, pollutants, hormonal disruption, drugs, and a disease condition, have been shown to impair normal reproductive function. Irisin has recently been identified as an adipomyokine involved in modulating physiological functions based on the body's metabolic status. It is being studied for its role in various functions, including fertility. Findings show the localization of irisin in various parts of the reproductive axis, with the highest levels observed during puberty and pregnancy. This raises questions about its role and function in reproduction. Studies support irisin's role in protecting against disease-induced reproductive abnormalities and infertility. Therefore, the current review focuses on how irisin influences spermatogenesis and ovarian follicular development and plays a significant role in indirectly preserving the germ cell pool by protecting the gonads against oxidative stress and inflammation.
Collapse
Affiliation(s)
- Sree Vaishnavi Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - P Jayapradha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Lalruatmawii
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - K Nandheeswari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Pratik Naxine
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - G Vigneshwaran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Gaurav Rohilla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP) 226002, India.
| |
Collapse
|
14
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
15
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
16
|
Shimonty A, Pin F, Prideaux M, Peng G, Huot J, Kim H, Rosen CJ, Spiegelman BM, Bonewald LF. Deletion of FNDC5/irisin modifies murine osteocyte function in a sex-specific manner. eLife 2024; 12:RP92263. [PMID: 38661340 PMCID: PMC11045224 DOI: 10.7554/elife.92263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (knockout [KO]), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low-calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.
Collapse
Affiliation(s)
| | | | | | - Gang Peng
- Indiana UniversityIndianapolisUnited States
| | | | - Hyeonwoo Kim
- Korea Advanced Institute of Science and TechnologyDaejonRepublic of Korea
| | | | | | - Lynda F Bonewald
- Indiana UniversityIndianapolisUnited States
- Indiana Center for Musculoskeletal HealthIndianapolisUnited States
| |
Collapse
|
17
|
Pinkas M, Brzozowski T. The Role of the Myokine Irisin in the Protection and Carcinogenesis of the Gastrointestinal Tract. Antioxidants (Basel) 2024; 13:413. [PMID: 38671861 PMCID: PMC11047509 DOI: 10.3390/antiox13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Recently discovered irisin, a member of the myokines family, is a potential mediator of exercise-induced energy metabolism and a factor promoting browning of the white adipose tissue. Recent evidence indicates that this myokine, released from contracting muscles, can mediate the beneficial effects of exercise on health. Irisin may be a potential therapeutic agent against obesity and has been shown to play an important role in the protection of various cells, tissues, and organs due to its anti-inflammatory, antioxidative, and anti-cancer properties. Our aim was to review the recent experimental and clinical studies on irisin and its expression, release into the bloodstream, tissue targets, and potential contribution to the protective effects of exercise in the gastrointestinal tract. Particular emphasis was placed on inflammatory bowel disease, intestinal ischemia/reperfusion injury, periodontitis, and other digestive tract disorders, including carcinogenesis. Overall, irisin holds significant potential as a novel target molecule, offering a safe and therapeutic approach to treating various gastrointestinal diseases.
Collapse
Affiliation(s)
- Monika Pinkas
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland;
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland;
| |
Collapse
|
18
|
Shimonty A, Pin F, Prideaux M, Peng G, Huot JR, Kim H, Rosen CJ, Spiegelman BM, Bonewald LF. Deletion of FNDC5/Irisin modifies murine osteocyte function in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565774. [PMID: 37986762 PMCID: PMC10659274 DOI: 10.1101/2023.11.06.565774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (KO), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.
Collapse
Affiliation(s)
- Anika Shimonty
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Fabrizio Pin
- Indiana Center for Musculoskeletal Health, Department of Anatomy, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Matt Prideaux
- Indiana Center for Musculoskeletal Health, Department of Anatomy, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Gang Peng
- Indiana Center for Musculoskeletal Health, Department of Medicine and Molecular Genetics, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Joshua R Huot
- Indiana Center for Musculoskeletal Health, Department of Anatomy, School of Medicine, Indiana University, IN, 46202, Indianapolis
| | - Hyeonwoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Clifford J Rosen
- Maine Medical Center Research Institute, ME, 04074, Scarborough, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana Farber Cancer Institute and Department of Cell Biology, Harvard University Medical School, MA, 02115, Boston, USA
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology and Physiology, Orthopaedic Surgery, School of Medicine, Indiana Center for Musculoskeletal Health, Indiana Center for Musculoskeletal Health, Indiana University, IN, 46202, Indianapolis
| |
Collapse
|
19
|
Wang S, Hu S, Pan Y. The emerging roles of irisin in vascular calcification. Front Endocrinol (Lausanne) 2024; 15:1337995. [PMID: 38405155 PMCID: PMC10884194 DOI: 10.3389/fendo.2024.1337995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Vascular calcification is a common accompanying pathological change in many chronic diseases, which is caused by calcium deposition in the blood vessel wall and leads to abnormal blood vessel function. With the progress of medical technology, the diagnosis rate of vascular calcification has explosively increased. However, due to its mechanism's complexity, no effective drug can relieve or even reverse vascular calcification. Irisin is a myogenic cytokine regulating adipose tissue browning, energy metabolism, glucose metabolism, and other physiological processes. Previous studies have shown that irisin could serve as a predictor for vascular calcification, and protect against hypertension, diabetes, chronic kidney disease, and other risk factors for vascular calcification. In terms of mechanism, it improves vascular endothelial dysfunction and phenotypic transformation of vascular smooth muscle cells. All the above evidence suggests that irisin plays a predictive and protective role in vascular calcification. In this review, we summarize the association of irisin to the related risk factors for vascular calcification and mainly explore the role of irisin in vascular calcification.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Department of Cardiology, The First People’s Hospital of Wenling (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, Zhejiang, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, Zhejiang, China
| | - Yuping Pan
- Department of Internal Medicine, Yuhuan Second People’s Hospital, Yuhuan, Zhejiang, China
| |
Collapse
|
20
|
Chaney R, Leger C, Wirtz J, Fontanier E, Méloux A, Quirié A, Martin A, Prigent-Tessier A, Garnier P. Cerebral Benefits Induced by Electrical Muscle Stimulation: Evidence from a Human and Rat Study. Int J Mol Sci 2024; 25:1883. [PMID: 38339161 PMCID: PMC10855504 DOI: 10.3390/ijms25031883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Physical exercise (EX) is well established for its positive impact on brain health. However, conventional EX may not be feasible for certain individuals. In this regard, this study explores electromyostimulation (EMS) as a potential alternative for enhancing cognitive function. Conducted on both human participants and rats, the study involved two sessions of EMS applied to the quadriceps with a duration of 30 min at one-week intervals. The human subjects experienced assessments of cognition and mood, while the rats underwent histological and biochemical analyses on the prefrontal cortex, hippocampus, and quadriceps. Our findings indicated that EMS enhanced executive functions and reduced anxiety in humans. In parallel, our results from the animal studies revealed an elevation in brain-derived neurotrophic factor (BDNF), specifically in the hippocampus. Intriguingly, this increase was not associated with heightened neuronal activity or cerebral hemodynamics; instead, our data point towards a humoral interaction from muscle to brain. While no evidence of increased muscle and circulating BDNF or FNDC5/irisin pathways could be found, our data highlight lactate as a bridging signaling molecule of the muscle-brain crosstalk following EMS. In conclusion, our results suggest that EMS could be an effective alternative to conventional EX for enhancing both brain health and cognitive function.
Collapse
Affiliation(s)
- Rémi Chaney
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Estelle Fontanier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France;
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; (R.C.); (C.L.); (J.W.); (E.F.); (A.M.); (A.Q.); (P.G.)
- Département Génie Biologique, IUT, F-21000 Dijon, France
| |
Collapse
|
21
|
Leger C, Quirié A, Méloux A, Fontanier E, Chaney R, Basset C, Lemaire S, Garnier P, Prigent-Tessier A. Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin. Int J Mol Sci 2024; 25:1213. [PMID: 38279218 PMCID: PMC10816613 DOI: 10.3390/ijms25021213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The positive effects of physical exercise (EX) are well known to be mediated by cerebral BDNF (brain-derived neurotrophic factor), a neurotrophin involved in learning and memory, the expression of which could be induced by circulating irisin, a peptide derived from Fibronectin type III domain-containing protein 5 (FNDC5) produced by skeletal muscle contraction. While the influence of EX modalities on cerebral BDNF expression was characterized, their effect on muscle FNDC5/Irisin expression and circulating irisin levels remains to be explored. The present study involved Wistar rats divided into four experimental groups: sedentary (SED), low- (40% of maximal aerobic speed, MAS), intermediate- (50% of MAS) and high- (70% of MAS) intensities of treadmill EX (30 min/day, 7 days). Soleus (SOL) versus gastrocnemius (GAS) FNDC5 and hippocampal BDNF expressions were evaluated by Western blotting. Additionally, muscular FNDC5/Irisin localization and serum/hippocampal irisin levels were studied by immunofluorescence and ELISA, respectively. Our findings revealed that (1) serum irisin and hippocampal BDNF levels vary with EX intensity, showing a threshold intensity at 50% of MAS; (2) hippocampal BDNF levels positively correlate with serum irisin but not with hippocampal FNDC5/Irisin; and (3) GAS, in response to EX intensity, overexpresses FNDC5/Irisin in type II muscle fibers. Altogether, peripheral FNDC5/Irisin levels likely explain EX-dependent hippocampal BDNF expression.
Collapse
Affiliation(s)
- Clémence Leger
- Inserm Unité Mixte de Recherche 1093-Cognition, Action & Plasticité Sensorimotrice, Unité de Formation et de Recherche Sciences de Santé, Université de Bourgogne, F-21000 Dijon, France; (C.L.); (A.Q.); (A.M.); (E.F.); (R.C.); (C.B.); (P.G.)
| | - Aurore Quirié
- Inserm Unité Mixte de Recherche 1093-Cognition, Action & Plasticité Sensorimotrice, Unité de Formation et de Recherche Sciences de Santé, Université de Bourgogne, F-21000 Dijon, France; (C.L.); (A.Q.); (A.M.); (E.F.); (R.C.); (C.B.); (P.G.)
| | - Alexandre Méloux
- Inserm Unité Mixte de Recherche 1093-Cognition, Action & Plasticité Sensorimotrice, Unité de Formation et de Recherche Sciences de Santé, Université de Bourgogne, F-21000 Dijon, France; (C.L.); (A.Q.); (A.M.); (E.F.); (R.C.); (C.B.); (P.G.)
| | - Estelle Fontanier
- Inserm Unité Mixte de Recherche 1093-Cognition, Action & Plasticité Sensorimotrice, Unité de Formation et de Recherche Sciences de Santé, Université de Bourgogne, F-21000 Dijon, France; (C.L.); (A.Q.); (A.M.); (E.F.); (R.C.); (C.B.); (P.G.)
| | - Rémi Chaney
- Inserm Unité Mixte de Recherche 1093-Cognition, Action & Plasticité Sensorimotrice, Unité de Formation et de Recherche Sciences de Santé, Université de Bourgogne, F-21000 Dijon, France; (C.L.); (A.Q.); (A.M.); (E.F.); (R.C.); (C.B.); (P.G.)
| | - Christelle Basset
- Inserm Unité Mixte de Recherche 1093-Cognition, Action & Plasticité Sensorimotrice, Unité de Formation et de Recherche Sciences de Santé, Université de Bourgogne, F-21000 Dijon, France; (C.L.); (A.Q.); (A.M.); (E.F.); (R.C.); (C.B.); (P.G.)
| | - Stéphanie Lemaire
- Centre Hospitalier Universitaire Dijon, Service de Biochimie Spécialisée, F-21000 Dijon, France;
| | - Philippe Garnier
- Inserm Unité Mixte de Recherche 1093-Cognition, Action & Plasticité Sensorimotrice, Unité de Formation et de Recherche Sciences de Santé, Université de Bourgogne, F-21000 Dijon, France; (C.L.); (A.Q.); (A.M.); (E.F.); (R.C.); (C.B.); (P.G.)
- Département Génie Biologique, Institut Universitaire et Technologique, F-21000 Dijon, France
| | - Anne Prigent-Tessier
- Inserm Unité Mixte de Recherche 1093-Cognition, Action & Plasticité Sensorimotrice, Unité de Formation et de Recherche Sciences de Santé, Université de Bourgogne, F-21000 Dijon, France; (C.L.); (A.Q.); (A.M.); (E.F.); (R.C.); (C.B.); (P.G.)
| |
Collapse
|
22
|
Radikova Z, Mosna L, Eckerstorfer C, Bajer B, Havranova A, Imrich R, Vlcek M, Penesova A. Plasma irisin and the brain-derived neurotrophic factor levels in sedentary subjects: effect of 8-weeks lifestyle intervention. Endocr Regul 2024; 58:115-128. [PMID: 38861537 DOI: 10.2478/enr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Objectives. Sedentary lifestyle increasingly observed in the population contributes to the incremental incidence of obesity, cardiovascular diseases, mental disorders, type 2 diabetes, hyper-tension, dyslipidemia, and others. Physical inactivity together with an imbalance in caloric intake and expenditure leads to a loss of muscle mass, reduced insulin sensitivity, and accumulation of the visceral fat. Organokines (adipokines, myokines, hepatokines, etc.) serve in the organism for inter-organ communication. However, human studies focused on the exercise-related changes in plasma levels of certain myokines have produced contradictory results. In the present study, we verified a hypothesis that myokine irisin, which is expected to increase in response to physical activity, induces brain-derived neurotrophic factor (BDNF) production and by this way mediates the beneficial effect of exercise on several brain functions. Subjects and Methods. Women (n=27) and men (n=10) aged 44.5±12.0 years, who were sedentary and overweight/obese (men ≥25%, women ≥28% body fat), participated in the study. The effect of an 8-week intensive lifestyle intervention (150 minutes of moderate physical activity per week, diet modification, and reduction of caloric intake) on the selected organokines (irisin, BDNF) in the context of an expected improvement in cardiometabolic status was examined. Results. The 8-week lifestyle intervention resulted in a significant (p<0.05) reduction in body mass index, body fat, blood pressure, insulin resistance, lipid and liver parameters, and irisin levels (p<0.001). However, BDNF increase in the whole group did not reach statistical significance. After the improvement of cardiometabolic parameters, a significant decrease in irisin and increase in BDNF levels were also observed in the subgroup with unsatisfactory (≤5%) body weight reduction. Neither relationship between irisin and BDNF levels, nor effect of age or sex on their levels was observed. Conclusions. We cannot confirm the hypothesis that exercise-induced irisin may increase the BDNF levels, whereas, the organokine levels in the periphery may not completely reflect the processes in the brain compartments. The observed decrease in irisin levels after 8-week intensive lifestyle intervention program, which was in contrary to its supposed mechanisms of action and dynamics, suggests the presence of several yet undiscovered impacts on the secretion of irisin.
Collapse
Affiliation(s)
- Zofia Radikova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Lucia Mosna
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Carmen Eckerstorfer
- Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Boris Bajer
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Havranova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Richard Imrich
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Miroslav Vlcek
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Adela Penesova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
23
|
Zhu Y, Song G. Molecular origin and biological effects of exercise mimetics. J Exerc Sci Fit 2024; 22:73-85. [PMID: 38187084 PMCID: PMC10770624 DOI: 10.1016/j.jesf.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
With the rapid development of sports science and molecular biology technology, academia refers to molecules or microorganisms that mimic or enhance the beneficial effects of exercise on the body, called "exercise mimetics." This review aims to clarify the concept and development history of exercise mimetics, and to define the concept of exercise mimetics by summarizing its characteristics and functions. Candidate molecules and drug targets for exercise mimetics are summarized, and the relationship between exercise mimetics and exercise is explained, as well as the targeting system and function of exercise mimetics. The main targeting systems for exercise mimetics are the exercise system, circulatory system, endocrine system, endocrine system, and nervous system, while the immune system is potential targeting systems. Finally, future research directions for exercise mimetics are discussed.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
24
|
Inyushkin AN, Poletaev VS, Inyushkina EM, Kalberdin IS, Inyushkin AA. Irisin/BDNF signaling in the muscle-brain axis and circadian system: A review. J Biomed Res 2023; 38:1-16. [PMID: 38164079 PMCID: PMC10818175 DOI: 10.7555/jbr.37.20230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
In mammals, the timing of physiological, biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms. To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus to a precise 24-h rhythm, environmental zeitgebers are used by the circadian system. This is done primarily by signals from the retina via the retinohypothalamic tract, but other cues like exercise, feeding, temperature, anxiety, and social events have also been shown to act as non-photic zeitgebers. The recently identified myokine irisin is proposed to serve as an entraining non-photic signal of exercise. Irisin is a product of cleavage and modification from its precursor membrane fibronectin type Ⅲ domain-containing protein 5 (FNDC5) in response to exercise. Apart from well-known peripheral effects, such as inducing the "browning" of white adipocytes, irisin can penetrate the blood-brain barrier and display the effects on the brain. Experimental data suggest that FNDC5/irisin mediates the positive effects of physical activity on brain functions. In several brain areas, irisin induces the production of brain-derived neurotrophic factor (BDNF). In the master clock, a significant role in gating photic stimuli in the retinohypothalamic synapse for BDNF is suggested. However, the brain receptor for irisin remains unknown. In the current review, the interactions of physical activity and the irisin/BDNF axis with the circadian system are reconceptualized.
Collapse
Affiliation(s)
- Alexey N. Inyushkin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Vitalii S. Poletaev
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Elena M. Inyushkina
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Igor S. Kalberdin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Andrey A. Inyushkin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| |
Collapse
|
25
|
Kim E, Kim H, Jedrychowski MP, Bakiasi G, Park J, Kruskop J, Choi Y, Kwak SS, Quinti L, Kim DY, Wrann CD, Spiegelman BM, Tanzi RE, Choi SH. Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling. Neuron 2023; 111:3619-3633.e8. [PMID: 37689059 PMCID: PMC10840702 DOI: 10.1016/j.neuron.2023.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) protein in the brain. Physical exercise has been shown to reduce Aβ burden in various AD mouse models, but the underlying mechanisms have not been elucidated. Irisin, an exercise-induced hormone, is the secreted form of fibronectin type-III-domain-containing 5 (FNDC5). Here, using a three-dimensional (3D) cell culture model of AD, we show that irisin significantly reduces Aβ pathology by increasing astrocytic release of the Aβ-degrading enzyme neprilysin (NEP). This is mediated by downregulation of ERK-STAT3 signaling. Finally, we show that integrin αV/β5 acts as the irisin receptor on astrocytes required for irisin-induced release of astrocytic NEP, leading to clearance of Aβ. Our findings reveal for the first time a cellular and molecular mechanism by which exercise-induced irisin attenuates Aβ pathology, suggesting a new target pathway for therapies aimed at the prevention and treatment of AD.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyeonwoo Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA; Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Grisilda Bakiasi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph Park
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jane Kruskop
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Younjung Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sang Su Kwak
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luisa Quinti
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christiane D Wrann
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
26
|
Hollis JA, Chan MC, Malik HS, Campbell MG. Evolutionary origin and structural ligand mimicry by the inserted domain of alpha-integrin proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565221. [PMID: 37986796 PMCID: PMC10659397 DOI: 10.1101/2023.11.05.565221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Heterodimeric integrin proteins transmit signals through conformational changes upon ligand binding between their alpha (α) and beta (β) subunits. Early in chordate evolution, some α subunits acquired an "inserted" (I) domain, which expanded their ligand binding capacity but simultaneously obstructed the ancestral ligand-binding pocket. While this would seemingly impede conventional ligand-mediated integrin activation, it was proposed that the I domain itself could serve both as a ligand replacement and an activation trigger. Here, we provide compelling evidence in support of this longstanding hypothesis using high-resolution cryo-electron microscopy structures of two distinct integrin complexes: the ligand-free and E-cadherin-bound states of the αEβ7 integrin with the I domain, as well as the α4β7 integrin lacking the I domain in both a ligand-free state and bound to MadCAM-1. We trace the evolutionary origin of the I domain to an ancestral collagen-collagen interaction domain. Our analyses illuminate how the I domain intrinsically mimics an extrinsic ligand, enabling integrins to undergo the canonical allosteric cascade of conformational activation and dramatically expanding the range of cellular communication mechanisms in vertebrates.
Collapse
Affiliation(s)
- Jeremy A. Hollis
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, WA 98109, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington; Seattle, WA 98195, USA
| | - Matthew C. Chan
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, WA 98109, USA
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Seattle, WA 98109, USA
| | - Melody G. Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, WA 98109, USA
| |
Collapse
|
27
|
Bourboulia D, Woodford MR, Mollapour M. Extracellular HSP90 warms up integrins for an irisin workout. Cell Metab 2023; 35:1099-1100. [PMID: 37327790 PMCID: PMC10593114 DOI: 10.1016/j.cmet.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The hormone-like protein irisin is involved in browning of adipose tissue and regulation of metabolism. Recently, Mu et al. identified the extracellular chaperone heat shock protein-90 (Hsp90) as the activating factor for "opening" αVβ5 integrin receptor, allowing for high-affinity irisin binding and effective signal transduction.
Collapse
Affiliation(s)
- Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|