1
|
Tenjo-Castaño F, Rout SS, Dey S, Montoya G. Unlocking the potential of CRISPR-associated transposons: from structural to functional insights. Trends Genet 2025:S0168-9525(25)00080-0. [PMID: 40393858 DOI: 10.1016/j.tig.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/22/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposons (CASTs) are emerging genome-editing tools that enable RNA-guided DNA integration without inducing double-strand breaks (DSBs). Unlike CRISPR-associated (Cas) nucleases, CASTs use transposon machinery to insert large DNA segments with high precision, potentially reducing off-target effects and bypassing DNA damage responses. CASTs are categorized into classes 1 and 2, each employing distinct mechanisms for DNA targeting and integration. Recent structural insights have elucidated how CASTs recognize target sites, recruit transposases, and mediate insertion. These advances position CASTs as promising tools for genome engineering in bacteria and possibly in mammalian cells. Key challenges remain in enhancing efficiency and specificity, particularly for therapeutic use. Ongoing research aims to evolve CAST systems for precise, large-scale genome editing in human cells.
Collapse
Affiliation(s)
- Francisco Tenjo-Castaño
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sweta Suman Rout
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sanjay Dey
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Faure G, Saito M, Wilkinson ME, Quinones-Olvera N, Xu P, Flam-Shepherd D, Kim S, Reddy N, Zhu S, Evgeniou L, Koonin EV, Macrae RK, Zhang F. TIGR-Tas: A family of modular RNA-guided DNA-targeting systems in prokaryotes and their viruses. Science 2025; 388:eadv9789. [PMID: 40014690 PMCID: PMC12045711 DOI: 10.1126/science.adv9789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
RNA-guided systems provide remarkable versatility, enabling diverse biological functions. Through iterative structural and sequence homology-based mining starting with a guide RNA-interaction domain of Cas9, we identified a family of RNA-guided DNA-targeting proteins in phage and parasitic bacteria. Each system consists of a tandem interspaced guide RNA (TIGR) array and a TIGR-associated (Tas) protein containing a nucleolar protein (Nop) domain, sometimes fused to HNH (TasH)- or RuvC (TasR)-nuclease domains. We show that TIGR arrays are processed into 36-nucleotide RNAs (tigRNAs) that direct sequence-specific DNA binding through a tandem-spacer targeting mechanism. TasR can be reprogrammed for precise DNA cleavage, including in human cells. The structure of TasR reveals striking similarities to box C/D small nucleolar ribonucleoproteins and IS110 RNA-guided transposases, providing insights into the evolution of diverse RNA-guided systems.
Collapse
Affiliation(s)
- Guilhem Faure
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Makoto Saito
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Max E. Wilkinson
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Natalia Quinones-Olvera
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Peiyu Xu
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Daniel Flam-Shepherd
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Stephanie Kim
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Nishith Reddy
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Shiyou Zhu
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Lilia Evgeniou
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
- Department of Systems Biology, Harvard University; Boston, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Rhiannon K. Macrae
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard; Cambridge, USA
- McGovern Institute for Brain Research at MIT; Cambridge, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, USA
- Howard Hughes Medical Institute; Cambridge, USA
| |
Collapse
|
3
|
Hsieh SC, Fülöp M, Schargel R, Petassi MT, Barabas O, Peters JE. Telomeric transposons are pervasive in linear bacterial genomes. Science 2025; 387:eadp1973. [PMID: 40048552 DOI: 10.1126/science.adp1973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/12/2024] [Accepted: 12/31/2024] [Indexed: 03/12/2025]
Abstract
Eukaryotes have linear DNA, and their telomeres are hotspots for transposons, which in some cases took over telomere maintenance. We identified several families of independently evolved telomeric transposons in linear chromosomes and plasmids of cyanobacteria and Streptomyces. Although these elements have one specific transposon end sequence, with the second boundary being the telomere, we can show that they move using two transposon ends, likely when transiently bridged by the telomere maintenance systems. Mobilization of the element and the associated telomere allows replacement of native telomeres, making the host cell dependent on the new transposon telomere system for genome maintenance. This work indicates how telomeric transposons can promote gene transfer both between and within genomes, substantially influencing the evolutionary dynamics of linear genomes.
Collapse
Affiliation(s)
- Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Máté Fülöp
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | | | | | - Orsolya Barabas
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Wang S, Chang L. Biochemical reconstitution of a type I-B CRISPR-associated transposon. Methods Enzymol 2025; 712:55-79. [PMID: 40121087 DOI: 10.1016/bs.mie.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
CRISPR-associated transposons (CASTs) are potential gene editing tools because of their RNA-guided DNA insertion activity. It is essential to understand the mechanisms underlying the transposition for the application of CASTs. Here, we provide protocols for the biochemical reconstitution of a type I-B CAST for RNA-guided transposition. The procedures may be applicable to other types of CASTs and facilitate the mechanism studies of various CASTs.
Collapse
Affiliation(s)
- Shukun Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
5
|
Chacon Machado L, Peters JE. A family of Tn7-like transposons evolved to target CRISPR repeats. Mob DNA 2025; 16:5. [PMID: 39966887 PMCID: PMC11837452 DOI: 10.1186/s13100-025-00344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Tn7 family transposons are mobile genetic elements known for precise target site selection, with some co-opting CRISPR-Cas systems for RNA-guided transposition. We identified a novel group of Tn7-like transposons in Cyanobacteria that preferentially target CRISPR arrays, suggesting a new functional interaction between these elements and CRISPR-Cas systems. Using bioinformatics tools, we characterized their phylogeny, target specificity, and sub-specialization. The array-targeting elements are phylogenetically close to tRNA-targeting elements. The distinct target preference coincides with loss of a C-terminal region in the TnsD protein which is responsible for recognizing target sites when compared to closely related elements. Notably, elements are found integrated into a fixed position within CRISPR spacer regions, a behavior that might minimize negative impacts on the host defense system. These transposons were identified in both plasmid and genomic CRISPR arrays, indicating that their preferred target provides a means for both safe insertion in the host chromosome and a mechanism for dissemination. Attempts to reconstitute these elements in E. coli were unsuccessful, indicating possible dependence on native host factors. Our findings expand the diversity of interactions between Tn7-like transposons and CRISPR systems.
Collapse
Affiliation(s)
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Chen C, Li YW, Zheng YY, Li XJ, Wu N, Guo Q, Shi TQ, Huang H. Expanding the frontiers of genome engineering: A comprehensive review of CRISPR-associated transposons. Biotechnol Adv 2025; 78:108481. [PMID: 39579910 DOI: 10.1016/j.biotechadv.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/30/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Genome engineering is extensively utilized in diverse scientific disciplines, advancing human welfare and addressing various challenges. Numerous genome engineering tools have been developed to modify genomic sequences. Among these, the CRISPR-Cas system has transformed the field and remains the most commonly employed genome-editing tool. However, the CRISPR-Cas system relies on induced double-strand breaks, with editing efficiency often limited by factors such as cell type and homologous recombination, impeding further progress. CRISPR-associated transposons (CASTs) represent programmable mobile genetic elements. CASTs identified as active were developed as CAST systems, which can perform RNA-guided DNA integration and are featured by high precision, programmability, and kilobase-level payload capacity. Moreover, CAST system allows for precise genome modifications independent of host DNA repair mechanisms, addressing the constraints of conventional CRISPR-Cas systems. It expands the genome engineering toolkit and is poised to become a representative of next-generation genome editing tools. This review thoroughly examines the research progress on CASTs, highlighting the current challenges faced in genome engineering based on CASTs, and offering insights into the ongoing development of this transformative technology.
Collapse
Affiliation(s)
- Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Yuan-Yuan Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Xiu-Juan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Na Wu
- College of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng 224057, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
7
|
Koonin EV, Makarova KS. CRISPR in mobile genetic elements: counter-defense, inter-element competition and RNA-guided transposition. BMC Biol 2024; 22:295. [PMID: 39696488 DOI: 10.1186/s12915-024-02090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
CRISPR are adaptive immunity systems that protect bacteria and archaea from viruses and other mobile genetic elements (MGE) via an RNA-guided interference mechanism. However, in the course of the host-parasite co-evolution, CRISPR systems have been recruited by MGE themselves for counter-defense or other functions. Some bacteriophages encode fully functional CRISPR systems that target host defense systems, and many others recruited individual components of CRISPR systems, such as single repeat units that inhibit host CRISPR systems and CRISPR mini-arrays that target related viruses contributing to inter-virus competition. Many plasmids carry type IV or subtype V-M CRISPR systems that appear to be involved in inter-plasmid competition. Numerous Tn7-like and Mu-like transposons encode CRISPR-associated transposases (CASTs) in which interference-defective CRISPR systems of type I or type V mediate RNA-guided, site-specific transposition. The recruitment of CRISPR systems and their components by MGE is a manifestation of extensive gene shuttling between host immune systems and MGE, a major trend in the coevolution of MGE with their hosts.
Collapse
Affiliation(s)
- Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
8
|
Wang S, Siddique R, Hall MC, Rice PA, Chang L. Structure of TnsABCD transpososome reveals mechanisms of targeted DNA transposition. Cell 2024; 187:6865-6881.e16. [PMID: 39383864 PMCID: PMC11606762 DOI: 10.1016/j.cell.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Tn7-like transposons are characterized by their ability to insert specifically into host chromosomes. Recognition of the attachment (att) site by TnsD recruits the TnsABC proteins to form the transpososome and facilitate transposition. Although this pathway is well established, atomic-level structural insights of this process remain largely elusive. Here, we present the cryo-electron microscopy (cryo-EM) structures of the TnsC-TnsD-att DNA complex and the TnsABCD transpososome from the Tn7-like transposon in Peltigera membranacea cyanobiont 210A, a type I-B CRISPR-associated transposon. Our structures reveal a striking bending of the att DNA, featured by the intercalation of an arginine side chain of TnsD into a CC/GG dinucleotide step. The TnsABCD transpososome structure reveals TnsA-TnsB interactions and demonstrates that TnsC not only recruits TnsAB but also directly participates in the transpososome assembly. These findings provide mechanistic insights into targeted DNA insertion by Tn7-like transposons, with implications for improving the precision and efficiency of their genome-editing applications.
Collapse
Affiliation(s)
- Shukun Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Romana Siddique
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
9
|
Ou S, Tian X, Zhang Z, Zhu L, Wang R, Cao G, Fu J, Zhang P. Characterization of a Novel Tn7-like Transposon Carrying blaDHA-1 in Providencia stuartii MF1 Isolated from Swine Wastewater. Curr Microbiol 2024; 82:6. [PMID: 39580610 DOI: 10.1007/s00284-024-03952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024]
Abstract
Providencia stuartii is an emerging pathogen that causes nosocomial infections. In this study, a multidrug-resistant strain P. stuartii MF1 was isolated from swine wastewater. Comprehensive analysis of whole genome sequencing revealed that dozens of antibiotic resistance genes were found in MF1. A novel transposon Tn6450M which has high sequence identity to Tn6450 and the plasmid-borne Tn6765 from Proteus mirabilis was identified in the genome of MF1. Tn6450M was determined to be stably inserted into a new attTn7 site in the P. stuartii MF1 genome and contains the third-generation cephalosporins resistance-associated genes blaDHA-1. Intergeneric transmission of Tn6450 variants poses risks for the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Shijie Ou
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyi Tian
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhen Zhang
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | | | - Rong Wang
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Guangxiang Cao
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jiafang Fu
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Peipei Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
- College of Biomedical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
10
|
Hsieh SC, Fülöp M, Schargel R, Petassi MT, Barabas O, Peters JE. Telomeric transposons are pervasive in linear bacterial genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623437. [PMID: 39605554 PMCID: PMC11601437 DOI: 10.1101/2024.11.13.623437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Eukaryotes have linear DNA and their telomeres are hotspots for transposons, which in some cases took over telomere maintenance. While many bacteria also have linear chromosomes and plasmids, no transposons were known to target bacterial telomeres. Here we show several families of independently evolved telomeric transposons in cyanobacteria and Streptomyces . While these elements have one specific transposon end sequence with the second boundary being the telomere, we can show they move using two transposon ends. Telomeres are transiently bridged by the telomere maintenance systems, providing a duplex substrate for mobilization of the element and the associated telomere. We identify multiple instances where telomeric transposons have replaced native telomeres, making the host cell dependent on the new telomere system for genome maintenance. This work indicates how telomeric transposons can promote gene transfer both between and within genomes, significantly influencing the evolutionary dynamics of linear genomes.
Collapse
|
11
|
Hsieh SC, Peters JE. Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons. Annu Rev Biochem 2024; 93:139-161. [PMID: 38598855 PMCID: PMC11406308 DOI: 10.1146/annurev-biochem-030122-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated nuclease) defense systems have been naturally coopted for guide RNA-directed transposition on multiple occasions. In all cases, cooption occurred with diverse elements related to the bacterial transposon Tn7. Tn7 tightly controls transposition; the transposase is activated only when special targets are recognized by dedicated target-site selection proteins. Tn7 and the Tn7-like elements that coopted CRISPR-Cas systems evolved complementary targeting pathways: one that recognizes a highly conserved site in the chromosome and a second pathway that targets mobile plasmids capable of cell-to-cell transfer. Tn7 and Tn7-like elements deliver a single integration into the site they recognize and also control the orientation of the integration event, providing future potential for use as programmable gene-integration tools. Early work has shown that guide RNA-directed transposition systems can be adapted to diverse hosts, even within microbial communities, suggesting great potential for engineering these systems as powerful gene-editing tools.
Collapse
Affiliation(s)
- Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
12
|
Chang CW, Truong VA, Pham NN, Hu YC. RNA-guided genome engineering: paradigm shift towards transposons. Trends Biotechnol 2024; 42:970-985. [PMID: 38443218 DOI: 10.1016/j.tibtech.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
CRISPR-Cas systems revolutionized the genome engineering field but need to induce double-strand breaks (DSBs) and may be difficult to deliver due to their large protein size. Tn7-like transposons such as CRISPR-associated transposons (CASTs) can be repurposed for RNA-guided DSB-free integration, and obligate mobile element guided activity (OMEGA) proteins of the IS200/IS605 transposon family have been developed as hypercompact RNA-guided genome editing tools. CASTs and OMEGA are exciting, innovative genome engineering tools that can improve the precision and efficiency of editing. This review explores the recent developments and uses of CASTs and OMEGA in genome editing across prokaryotic and eukaryotic cells. The pros and cons of these transposon-based systems are deliberated in comparison to other CRISPR systems.
Collapse
Affiliation(s)
- Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Vy Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
13
|
Shen Y, Krishnan SS, Petassi MT, Hancock MA, Peters JE, Guarné A. Assembly of the Tn7 targeting complex by a regulated stepwise process. Mol Cell 2024; 84:2368-2381.e6. [PMID: 38834067 PMCID: PMC11364213 DOI: 10.1016/j.molcel.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/08/2024] [Accepted: 05/12/2024] [Indexed: 06/06/2024]
Abstract
The Tn7 family of transposons is notable for its highly regulated integration mechanisms, including programmable RNA-guided transposition. The targeting pathways rely on dedicated target selection proteins from the TniQ family and the AAA+ adaptor TnsC to recruit and activate the transposase at specific target sites. Here, we report the cryoelectron microscopy (cryo-EM) structures of TnsC bound to the TniQ domain of TnsD from prototypical Tn7 and unveil key regulatory steps stemming from unique behaviors of ATP- versus ADP-bound TnsC. We show that TnsD recruits ADP-bound dimers of TnsC and acts as an exchange factor to release one protomer with exchange to ATP. This loading process explains how TnsC assembles a heptameric ring unidirectionally from the target site. This unique loading process results in functionally distinct TnsC protomers within the ring, providing a checkpoint for target immunity and explaining how insertions at programmed sites precisely occur in a specific orientation across Tn7 elements.
Collapse
Affiliation(s)
- Yao Shen
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada; Centre de recherche en biologie structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada
| | - Shreya S Krishnan
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada; Centre de recherche en biologie structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada
| | - Michael T Petassi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Mark A Hancock
- Centre de recherche en biologie structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada; Centre de recherche en biologie structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
14
|
Correa A, Shehreen S, Machado LC, Thesier J, Cunic L, Petassi M, Chu J, Kapili B, Jia Y, England K, Peters J. Novel mechanisms of diversity generation in Acinetobacter baumannii resistance islands driven by Tn7-like elements. Nucleic Acids Res 2024; 52:3180-3198. [PMID: 38407477 PMCID: PMC11014353 DOI: 10.1093/nar/gkae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Mobile genetic elements play an important role in the acquisition of antibiotic and biocide resistance, especially through the formation of resistance islands in bacterial chromosomes. We analyzed the contribution of Tn7-like transposons to island formation and diversification in the nosocomial pathogen Acinetobacter baumannii and identified four separate families that recognize different integration sites. One integration site is within the comM gene and coincides with the previously described Tn6022 elements suggested to account for the AbaR resistance island. We established Tn6022 in a heterologous E. coli host and confirmed basic features of transposition into the comM attachment site and the use of a novel transposition protein. By analyzing population features within Tn6022 elements we identified two potential novel transposon-encoded diversification mechanisms with this dynamic genetic island. The activities of these diversification features were confirmed in E. coli. One was a novel natural gain-of-activity allele that could function to broaden transposition targeting. The second was a transposon-encoded hybrid dif-like site that parasitizes the host dimer chromosome resolution system to function with its own tyrosine recombinase. This work establishes a highly active Tn7-like transposon that harnesses novel features allowing the spread and diversification of genetic islands in pathogenic bacteria.
Collapse
Affiliation(s)
- Alberto Correa
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | | | - Jordan Thesier
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Lille M Cunic
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - Joshua Chu
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - Yu Jia
- College of Life Sciences and Engineering Research Center of Bioreactor and Pharmaceutical Development (Ministry of Education), Jilin Agricultural University, Changchun City, Jilin Province, China
| | - Kevin A England
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Garza Elizondo AM, Chappell J. Targeted Transcriptional Activation Using a CRISPR-Associated Transposon System. ACS Synth Biol 2024; 13:328-336. [PMID: 38085703 DOI: 10.1021/acssynbio.3c00563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Synthetic perturbation of gene expression is central to our ability to reliably uncover genotype-phenotype relationships in microbes. Here, we present a novel transcription activation strategy that uses the Vibrio cholerae CRISPR-Associated Transposon (CAST) system to selectively insert promoter elements upstream of genes of interest. Through this strategy, we show robust activation of both recombinant and endogenous genes across the Escherichia coli chromosome. We then demonstrate the precise tuning of expression levels by exchanging the promoter elements being inserted. Finally, we demonstrate that CAST activation can be used to synthetically induce ampicillin-resistant phenotypes in E. coli.
Collapse
Affiliation(s)
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Koonin EV, Krupovic M. New faces of prokaryotic mobile genetic elements: guide RNAs link transposition with host defense mechanisms. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 36:100473. [PMID: 37779558 PMCID: PMC10538440 DOI: 10.1016/j.coisb.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Most life forms harbor multiple, diverse mobile genetic elements (MGE) that widely differ in their rates and mechanisms of mobility. Recent findings on two classes of MGE in prokaryotes revealed a novel mechanism, RNA-guided transposition, where a transposon-encoded guide RNA directs the transposase to a unique site in the host genome. Tn7-like transposons, on multiple occasions, recruited CRISPR systems that lost the capacity to cleave target DNA and instead mediate RNA-guided transposition via CRISPR RNA. Conversely, the abundant transposon-associated, RNA-guided nucleases IscB and TnpB that appear to promote proliferation of IS200/IS605 and IS607 transposons were the likely evolutionary ancestors of type II and type V CRISPR systems, respectively. Thus, RNA-guided target recognition is a major biological phenomenon that connects MGE with host defense mechanisms. More RNA-guided defensive and MGE-associated functionalities are likely to be discovered.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, 75015 Paris
| |
Collapse
|
17
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. Science 2023; 382:eadj8543. [PMID: 37972161 PMCID: PMC10771339 DOI: 10.1126/science.adj8543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 11/19/2023]
Abstract
CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to catalyze RNA-guided transposition of large genetic payloads. Type V-K CASTs offer potential technology advantages but lack accuracy, and the molecular basis for this drawback has remained elusive. Here, we reveal that type V-K CASTs maintain an RNA-independent, "untargeted" transposition pathway alongside RNA-dependent integration, driven by the local availability of TnsC filaments. Using cryo-electron microscopy, single-molecule experiments, and high-throughput sequencing, we found that a minimal, CRISPR-less transpososome preferentially directs untargeted integration at AT-rich sites, with additional local specificity imparted by TnsB. By exploiting this knowledge, we suppressed untargeted transposition and increased type V-K CAST specificity up to 98.1% in cells without compromising on-target integration efficiency. These findings will inform further engineering of CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
18
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548620. [PMID: 37503092 PMCID: PMC10370016 DOI: 10.1101/2023.07.14.548620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Unlike canonical CRISPR-Cas systems that rely on RNA-guided nucleases for target cleavage, CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to facilitate RNA-guided transposition of large genetic payloads. Type V-K CASTs offer several potential upsides for genome engineering, due to their compact size, easy programmability, and unidirectional integration. However, these systems are substantially less accurate than type I-F CASTs, and the molecular basis for this difference has remained elusive. Here we reveal that type V-K CASTs undergo two distinct mobilization pathways with remarkably different specificities: RNA-dependent and RNA-independent transposition. Whereas RNA-dependent transposition relies on Cas12k for accurate target selection, RNA-independent integration events are untargeted and primarily driven by the local availability of TnsC filaments. The cryo-EM structure of the untargeted complex reveals a TnsB-TnsC-TniQ transpososome that encompasses two turns of a TnsC filament and otherwise resembles major architectural aspects of the Cas12k-containing transpososome. Using single-molecule experiments and genome-wide meta-analyses, we found that AT-rich sites are preferred substrates for untargeted transposition and that the TnsB transposase also imparts local specificity, which collectively determine the precise insertion site. Knowledge of these motifs allowed us to direct untargeted transposition events to specific hotspot regions of a plasmid. Finally, by exploiting TnsB's preference for on-target integration and modulating the availability of TnsC, we suppressed RNA-independent transposition events and increased type V-K CAST specificity up to 98.1%, without compromising the efficiency of on-target integration. Collectively, our results reveal the importance of dissecting target site selection mechanisms and highlight new opportunities to leverage CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|