1
|
Wang W, Thomas ER, Xiao R, Chen T, Guo Q, Liu K, Yang Y, Li X. Targeting mitochondria-regulated ferroptosis: A new frontier in Parkinson's disease therapy. Neuropharmacology 2025; 274:110439. [PMID: 40174689 DOI: 10.1016/j.neuropharm.2025.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantial nigra. Mitochondrial dysfunction and mitochondrial oxidative stress are central to the pathogenesis of PD, with recent evidence highlighting the role of ferroptosis - a type of regulated cell death dependent on iron metabolism and lipid peroxidation. Mitochondria, the central organelles for cellular energy metabolism, play a pivotal role in PD pathogenesis through the production of Reactive oxygen species (ROS) and the disruption of iron homeostasis. This review explores the intricate interplay between mitochondrial dysfunction and ferroptosis in PD, focusing on key processes such as impaired electron transport chain function, tricarboxylic acid (TCA) cycle dysregulation, disruption of iron metabolism, and altered lipid peroxidation. We discuss key pathways, including the role of glutathione (GSH), mitochondrial ferritin, and the regulation of the mitochondrial labile iron pool (mLIP), which collectively influence the susceptibility of neurons to ferroptosis. Furthermore, this review emphasizes the importance of mitochondrial quality control mechanisms, such as mitophagy and mitochondrial biogenesis, in mitigating ferroptosis-induced neuronal death. Understanding these mechanisms linking the interplay between mitochondrial dysfunction and ferroptosis may pave the way for novel therapeutic approaches aimed at preserving mitochondrial integrity and preventing neuronal loss in PD.
Collapse
Affiliation(s)
- Wenjun Wang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | | | - Ruyue Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Tianshun Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Qulian Guo
- Department of Pediatrics, Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kezhi Liu
- The Zigong Affiliated of Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, 643020, China
| | - You Yang
- Department of Pediatrics, Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Xiang Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; The Zigong Affiliated of Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, 643020, China; Health Science Center, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
2
|
Guo Q, Pan J, Guo X, Zhao M, Du H, Wang M, Deponte M, Zhong X, Xiao L, Feng Y, Xia N. Toxoplasma survives the loss of key enzymes of peroxide and glutathione metabolism. FASEB J 2025; 39:e70416. [PMID: 40059453 DOI: 10.1096/fj.202402341r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 05/13/2025]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that replicates rapidly in a variety of host cells. The parasite encodes diverse enzymes of glutathione and peroxide metabolism, but their physiological roles remain poorly understood. Herein, we shed a new perspective on the functions and relevance of the peroxiredoxin and glutathione metabolism in the zoonotic pathogen T. gondii. We show that two cytosolic peroxidases (TgPRX1, TgPRX2), a mitochondrial peroxiredoxin (TgPRX3), and the cytosolic glutathione reductase (TgGR2), glutamate-cysteine ligase (TgGCL), and glutathione synthetase (TgGS) are not required for the lytic cycle of T. gondii under standard growth conditions. However, mutants lacking the gene for either TgPRX1 or TgGR2 exhibited increased susceptibility to exogenous hydrogen peroxide compared to wild-type parasites. Furthermore, we found that the combined deletion of TgPRX1 and TgPRX2 led to a notable impairment of parasite growth, suggesting a functional redundancy between the two peroxidases. Finally, our results show that the apicoplast glutathione reductase (TgGR1) is required for normal parasite growth in vitro and in vivo but is not essential for parasite survival. Our findings highlight that the redox metabolism of Toxoplasma is surprisingly robust and flexible, allowing the parasite to survive under the loss of several key enzymes of peroxide and glutathione metabolism.
Collapse
Affiliation(s)
- Qinghong Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiajia Pan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuefang Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Meng Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiyu Du
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengting Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Xinhua Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ningbo Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Pham TN, Schelling RE, Loh KH. Parkinson's disease and metabolic disorders, understanding their shared co-morbidity through the autonomic nervous system. ADVANCES IN GENETICS 2025; 113:199-247. [PMID: 40409798 DOI: 10.1016/bs.adgen.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and nonmotor dysfunctions. Its pathological hallmark is the aggregation of ɑ-synuclein in the central nervous system (CNS), leading to widespread loss of dopaminergic neurons in the substantia nigra (SN). Interestingly, metabolic disorders localized in the periphery, such as diabetes mellitus, frequently co-occur with PD. Emerging evidence highlights a bidirectional relationship: metabolic diseases may accelerate PD progression, while PD can exacerbate metabolic dysfunction. Beyond these associations, a growing body of research suggests that dysfunction in the peripheral nervous system, the primary communication bridge between the brain and peripheral organs, plays a critical role in these comorbidities. Autonomic nerve perturbation may accelerate dopaminergic neuronal loss in the SN and exacerbate metabolic dysregulation. This chapter synthesizes current evidence linking autonomic dysfunction with the progression of PD and related metabolic disorders, and it explores innovative therapeutic strategies leveraging this bidirectional relationship to address PD progression.
Collapse
Affiliation(s)
- Thanh N Pham
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Rebecca E Schelling
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Ken H Loh
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, United States; Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
4
|
Ben Zichri- David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:6. [PMID: 40052109 PMCID: PMC11879881 DOI: 10.1038/s44324-024-00045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/09/2024] [Indexed: 03/09/2025]
Abstract
Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.
Collapse
Affiliation(s)
| | - Liraz Shkuri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Tslil Ast
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
5
|
Khan A, Liu Y, Gad M, Kenny TC, Birsoy K. Solute carriers: The gatekeepers of metabolism. Cell 2025; 188:869-884. [PMID: 39983672 PMCID: PMC11875512 DOI: 10.1016/j.cell.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Solute carrier (SLC) proteins play critical roles in maintaining cellular and organismal homeostasis by transporting small molecules and ions. Despite a growing body of research over the past decade, physiological substrates and functions of many SLCs remain elusive. This perspective outlines key challenges in studying SLC biology and proposes an evidence-based framework for defining SLC substrates. To accelerate the deorphanization process, we explore systematic technologies, including human genetics, biochemistry, and computational and structural approaches. Finally, we suggest directions to better understand SLC functions beyond substrate identification in physiology and disease.
Collapse
Affiliation(s)
- Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mark Gad
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Pena IA, Shi JS, Chang SM, Yang J, Block S, Adelmann CH, Keys HR, Ge P, Bathla S, Witham IH, Sienski G, Nairn AC, Sabatini DM, Lewis CA, Kory N, Vander Heiden MG, Heiman M. SLC25A38 is required for mitochondrial pyridoxal 5'-phosphate (PLP) accumulation. Nat Commun 2025; 16:978. [PMID: 39856062 PMCID: PMC11760969 DOI: 10.1038/s41467-025-56130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown. In this study, we used a genome-wide CRISPR interference screen in erythroleukemia cells and organellar metabolomics to identify the mitochondrial inner membrane protein SLC25A38 as a regulator of mitochondrial pyridoxal 5'-phosphate. Loss of SLC25A38 causes depletion of mitochondrial, but not cellular, pyridoxal 5'-phosphate, and impairs cellular proliferation under both physiological and low vitamin B6 conditions. Metabolic changes associated with SLC25A38 loss suggest impaired mitochondrial pyridoxal 5'-phosphate-dependent enzymatic reactions, including serine to glycine conversion catalyzed by serine hydroxymethyltransferase-2 as well as ornithine aminotransferase. The proliferation defect of SLC25A38-null K562 cells in physiological and low vitamin B6 media can be explained by the loss of serine hydroxymethyltransferase-2-dependent production of one-carbon units and downstream de novo nucleotide synthesis. Our work points to a role for SLC25A38 in mitochondrial pyridoxal 5'-phosphate accumulation and provides insights into the pathology of congenital sideroblastic anemia.
Collapse
Affiliation(s)
- Izabella A Pena
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada.
| | - Jeffrey S Shi
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
| | - Sarah M Chang
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Jason Yang
- Department of Biology, MIT, Cambridge, MA, USA
| | - Samuel Block
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Charles H Adelmann
- Department of Biology, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Preston Ge
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Shveta Bathla
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Isabella H Witham
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - David M Sabatini
- Institute of Organic Chemistry and Biochemistry, IOCB, Prague, Czechia
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- UMass Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
| | - Nora Kory
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew G Vander Heiden
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
Teh MR, Armitage AE, Drakesmith H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol Metab 2024; 35:1026-1049. [PMID: 38760200 PMCID: PMC11616622 DOI: 10.1016/j.tem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.
Collapse
Affiliation(s)
- Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Delgado JM, Pernas L. Mitochondria as sensors of intracellular pathogens. Trends Endocrinol Metab 2024:S1043-2760(24)00291-1. [PMID: 39580272 DOI: 10.1016/j.tem.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024]
Abstract
Mitochondria must sense their environment to enable cells and organisms to adapt to diverse environments and survive during stress. However, during microbial infection, an evolutionary pressure since the inception of the eukaryotic cell, these organelles are traditionally viewed as targets for microbes. In this opinion we consider the perspective that mitochondria are domesticated microbes that sense and guard their 'host' cell against pathogens. We explore potential mechanisms by which mitochondria detect intracellular pathogens and induce mitochondria-autonomous responses that activate cellular defenses.
Collapse
Affiliation(s)
- Jose M Delgado
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Lena Pernas
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
9
|
Tian L, Liu Q, Guo H, Zang H, Li Y. Fighting ischemia-reperfusion injury: Focusing on mitochondria-derived ferroptosis. Mitochondrion 2024; 79:101974. [PMID: 39461581 DOI: 10.1016/j.mito.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of mortality and morbidity. Current treatments for IRI have limited efficacy and novel therapeutic strategies are needed. Mitochondrial dysfunction not only initiates IRI but also plays a significant role in ferroptosis pathogenesis. Recent studies have highlighted that targeting mitochondrial pathways is a promising therapeutic approach for ferroptosis-induced IRI. The association between ferroptosis and IRI has been reviewed many times, but our review provides the first comprehensive overview with a focus on recent mitochondrial research. First, we present the role of mitochondria in ferroptosis. Then, we summarize the evidence on mitochondrial manipulation of ferroptosis in IRI and review recent therapeutic strategies aimed at targeting mitochondria-related ferroptosis to mitigate IRI. We hope our review will provide new ideas for the treatment of IRI and accelerate the transition from bench to bedside.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, China
| | - Hong Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honggang Zang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Biezeman H, Nubiè M, Oburoglu L. Hematopoietic cells emerging from hemogenic endothelium exhibit lineage-specific oxidative stress responses. J Biol Chem 2024; 300:107815. [PMID: 39326495 PMCID: PMC11532904 DOI: 10.1016/j.jbc.2024.107815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
During human embryogenesis, distinct waves of hematopoiesis give rise to various blood cell types, originating from hemogenic endothelial (HE) cells. As HE cells reside in hypoxic conditions in the embryo, we investigated the role of hypoxia in human endothelial to hematopoietic transition and subsequent hematopoiesis. Using single-cell RNA sequencing, we describe hypoxia-related transcriptional changes in different HE-derived blood lineages, which reveal that erythroid cells are particularly susceptible to oxidative stress, due to decreased NRF2 activity in hypoxia. In contrast, nonerythroid CD45+ cells exhibit increased proliferative rates in hypoxic conditions and enhanced resilience to oxidative stress. We find that even in normoxia, erythroid cells present a clear predisposition to oxidative stress, with low glutathione levels and high lipid peroxidation, in contrast to CD45+ cells. Intriguingly, reactive oxygen species are produced at different sites in GPA+ and CD45+ cells, revealing differences in oxidative phosphorylation and the use of canonical versus noncanonical tricarboxylic acid cycle in these lineages. Our findings elucidate how hypoxia and oxidative stress distinctly affect HE-derived hematopoietic lineages, uncovering critical transcriptional and metabolic pathways that influence blood cell development.
Collapse
Affiliation(s)
- Harmke Biezeman
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martina Nubiè
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden; Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Zhang W, Ou Z, Tang T, Yang T, Li Y, Wu H, Li L, Liu M, Niu L, Zhu J. Up-regulated SLC25A39 promotes cell growth and metastasis via regulating ROS production in colorectal cancer. J Cancer 2024; 15:5841-5854. [PMID: 39308681 PMCID: PMC11414614 DOI: 10.7150/jca.98844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Background: The mitochondrial transporter SLC25A39 has been implicated in the import of mitochondrial glutathione (mGSH) from the cytoplasm, crucial for mitigating oxidative stress and preserving mitochondrial function. Despite the well-established involvement of mitochondria in cancer, the functional impact of SLC25A39 on CRC progression remains elusive. Methods: The mRNA and protein expressions were detected by PCR, immunohistochemistry, and Western blot, respectively. Cell activity, cell proliferation, colony formation, and apoptosis were measured by CCK8 assay, EdU incorporation assay, plated colony formation assay, and flow cytometry, respectively. Cell migration was detected by wound healing and transwell chamber assay. The tumor microenvironment (TME), immune checkpoint molecules, and drug sensitivity of CRC patients were investigated using R language, GraphPad Prism 8 and online databases. Results: Here, we report a significant upregulation of SLC25A39 expression in CRC. Functional assays revealed that overexpression of SLC25A39 promoted CRC cell proliferation and migration while inhibiting apoptosis. Conversely, SLC25A39 knockdown suppressed cell growth and migration while enhancing apoptosis in vitro. Additionally, reduced SLC25A39 expression attenuated tumor growth in xenograft models. Mechanistically, elevated SLC25A39 levels correlated with reduced reactive oxygen species (ROS) accumulation in CRC. Furthermore, bioinformatic analyses unveiled the high SLC25A39 levels was associated with decreased expression of immune checkpoints and reduced responsiveness to immunotherapy. Single-cell transcriptomic profiling identified diverse cellular expression patterns of SLC25A39 and related immune regulators. Lastly, drug sensitivity analysis indicated potential therapeutic avenues targeting SLC25A39 in CRC. Conclusion Our findings underscore the pivotal role of SLC25A39 in CRC progression and suggest its candidacy as a therapeutic target in CRC management.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhigao Ou
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Tang
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tian Yang
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yubo Li
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Wu
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Li
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming Liu
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Niu
- Department of Pathophysiology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianjun Zhu
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
12
|
Miyahara S, Ohuchi M, Nomura M, Hashimoto E, Soga T, Saito R, Hayashi K, Sato T, Saito M, Yamashita Y, Shimada M, Yaegashi N, Yamada H, Tanuma N. FDX2, an iron-sulfur cluster assembly factor, is essential to prevent cellular senescence, apoptosis or ferroptosis of ovarian cancer cells. J Biol Chem 2024; 300:107678. [PMID: 39151727 PMCID: PMC11414659 DOI: 10.1016/j.jbc.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis, or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global downregulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53 deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids. Our results suggest that p53 status and phospholipid homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.
Collapse
Affiliation(s)
- Shuko Miyahara
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Ohuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Eifumi Hashimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kayoko Hayashi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Taku Sato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
13
|
Xu Y, Yang Z, Wang T, Hu L, Jiao S, Zhou J, Dai T, Feng Z, Li S, Meng Q. From molecular subgroups to molecular targeted therapy in rheumatoid arthritis: A bioinformatics approach. Heliyon 2024; 10:e35774. [PMID: 39220908 PMCID: PMC11365346 DOI: 10.1016/j.heliyon.2024.e35774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
1Background Rheumatoid Arthritis (RA) is a heterogeneous autoimmune disease with multiple unidentified pathogenic factors. The inconsistency between molecular subgroups poses challenges for early diagnosis and personalized treatment strategies. In this study, we aimed to accurately distinguish RA patients at the transcriptome level using bioinformatics methods. 2Methods We collected a total of 362 transcriptome datasets from RA patients in three independent samples from the GEO database. Consensus clustering was performed to identify molecular subgroups, and clinical features were assessed. Differential analysis was employed to annotate the biological functions of specifically upregulated genes between subgroups. 3Results Based on consensus clustering of RA samples, we identified three robust molecular subgroups, with Subgroup III representing the high-risk subgroup and Subgroup II exhibiting a milder phenotype, possibly associated with relatively higher levels of autophagic ability. Subgroup I showed biological functions mainly related to viral infections, cellular metabolism, protein synthesis, and inflammatory responses. Subgroup II involved autophagy of mitochondria and organelles, protein localization, and organelle disassembly pathways, suggesting heterogeneity in the autophagy process of mitochondria that may play a protective role in inflammatory diseases. Subgroup III represented a high-risk subgroup with pathological processes including abnormal amyloid precursor protein activation, promotion of inflammatory response, and cell proliferation. 4Conclusion The classification of the RA dataset revealed pathological heterogeneity among different subgroups, providing new insights and a basis for understanding the molecular mechanisms of RA, identifying potential therapeutic targets, and developing personalized treatment approaches.
Collapse
Affiliation(s)
- Yangyang Xu
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhenyu Yang
- Jinan University, Guangzhou, Guangdong Province, China
- Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, Xuzhou City, Jiangsu Province, China
| | - Tengyan Wang
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang City, Guizhou Province, China
| | - Liqiong Hu
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Songsong Jiao
- Jinan University, Guangzhou, Guangdong Province, China
| | - Jiangfei Zhou
- Jinan University, Guangzhou, Guangdong Province, China
| | - Tianming Dai
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhencheng Feng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Qinqqi Meng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Lupica-Tondo GL, Arner EN, Mogilenko DA, Voss K. Immunometabolism of ferroptosis in the tumor microenvironment. Front Oncol 2024; 14:1441338. [PMID: 39188677 PMCID: PMC11345167 DOI: 10.3389/fonc.2024.1441338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Ferroptosis is an iron-dependent form of cell death that results from excess lipid peroxidation in cellular membranes. Within the last decade, physiological and pathological roles for ferroptosis have been uncovered in autoimmune diseases, inflammatory conditions, infection, and cancer biology. Excitingly, cancer cell metabolism may be targeted to induce death by ferroptosis in cancers that are resistant to other forms of cell death. Ferroptosis sensitivity is regulated by oxidative stress, lipid metabolism, and iron metabolism, which are all influenced by the tumor microenvironment (TME). Whereas some cancer cell types have been shown to adapt to these stressors, it is not clear how immune cells regulate their sensitivities to ferroptosis. In this review, we discuss the mechanisms of ferroptosis sensitivity in different immune cell subsets, how ferroptosis influences which immune cells infiltrate the TME, and how these interactions can determine epithelial-to-mesenchymal transition (EMT) and metastasis. While much focus has been placed on inducing ferroptosis in cancer cells, these are important considerations for how ferroptosis-modulating strategies impact anti-tumor immunity. From this perspective, we also discuss some promising immunotherapies in the field of ferroptosis and the challenges associated with targeting ferroptosis in specific immune cell populations.
Collapse
Affiliation(s)
- Gian Luca Lupica-Tondo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily N. Arner
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Denis A. Mogilenko
- Department of Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kelsey Voss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Tan S, Dengler AS, Darawsheh RZ, Kory N. The iAAA-mitochondrial protease YME1L1 regulates the degradation of the short-lived mitochondrial transporter SLC25A38. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593764. [PMID: 38979268 PMCID: PMC11230184 DOI: 10.1101/2024.05.12.593764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondrial transporters facilitate the exchange of diverse metabolic intermediates across the inner mitochondrial membrane, ensuring an adequate supply of substrates and cofactors to support redox and biosynthetic reactions within the mitochondrial matrix. However, the regulatory mechanisms governing the abundance of these transporters, crucial for maintaining metabolic compartmentalization and mitochondrial functions, remain poorly defined. Through analysis of protein half-life data and mRNA-protein correlations, we identified SLC25A38, a mitochondrial glycine transporter, as a short- lived protein with a half-life of 4 hours under steady-state conditions. Pharmacological inhibition and genetic depletion of various cellular proteolytic systems revealed that SLC25A38 is rapidly degraded by the iAAA-mitochondrial protease YME1L1. Depolarization of the mitochondrial membrane potential induced by the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrozone prevented the degradation of SLC25A38. This dual regulation of SLC25A38 abundance by YME1L1 and mitochondrial membrane potential suggests a link between SLC25A38 turnover, the integrity of the inner mitochondrial membrane, and electron transport chain function. These findings open avenues for investigating whether mitochondrial glycine import coordinates with mitochondrial bioenergetics.
Collapse
|
16
|
Braymer JJ, Stehling O, Stümpfig M, Rösser R, Spantgar F, Blinn CM, Mühlenhoff U, Pierik AJ, Lill R. Requirements for the biogenesis of [2Fe-2S] proteins in the human and yeast cytosol. Proc Natl Acad Sci U S A 2024; 121:e2400740121. [PMID: 38743629 PMCID: PMC11126956 DOI: 10.1073/pnas.2400740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.
Collapse
Affiliation(s)
- Joseph J. Braymer
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Oliver Stehling
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Ralf Rösser
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Farah Spantgar
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Catharina M. Blinn
- Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Antonio J. Pierik
- Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| |
Collapse
|
17
|
Liu J, Zuo S. Control of mitochondrial glutathione homeostasis by SLC25A39. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1093-1095. [PMID: 38766696 PMCID: PMC11322872 DOI: 10.3724/abbs.2024072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
- Jiao Liu
- Department of BiopharmaceuticsThe Province and Ministry Co-sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Shengkai Zuo
- Department of BiopharmaceuticsThe Province and Ministry Co-sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| |
Collapse
|
18
|
Wu J, Feng S, Luo Y, Ning Y, Qiu P, Lin Y, Ma F, Zhuo Y. Transcriptomic profile of premature ovarian insufficiency with RNA-sequencing. Front Cell Dev Biol 2024; 12:1370772. [PMID: 38655066 PMCID: PMC11035783 DOI: 10.3389/fcell.2024.1370772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction This study aimed to explore the transcriptomic profile of premature ovarian insufficiency (POI) by investigating alterations in gene expression. Methods A total of sixty-one women, comprising 31 individuals with POI in the POI group and 30 healthy women in the control group (HC group), aged between 24 and 40 years, were recruited for this study. The transcriptomic profiles of peripheral blood samples from all study subjects were analyzed using RNA-sequencing. Results The results revealed 39 differentially expressed genes in individuals with POI compared to healthy controls, with 10 upregulated and 29 downregulated genes. Correlation analysis highlighted the relationship between the expression of SLC25A39, CNIH3, and PDZK1IP1 and hormone levels. Additionally, an effective classification model was developed using SLC25A39, CNIH3, PDZK1IP1, SHISA4, and LOC389834. Functional enrichment analysis demonstrated the involvement of these differentially expressed genes in the "haptoglobin-hemoglobin complex," while KEGG pathway analysis indicated their participation in the "Proteoglycans in cancer" pathway. Conclusion The identified genes could play a crucial role in characterizing the genetic foundation of POI, potentially serving as valuable biomarkers for enhancing disease classification accuracy.
Collapse
Affiliation(s)
- Jiaman Wu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyu Feng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ning
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pingping Qiu
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yanting Lin
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Fei Ma
- Department of Chinese Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Zhuo
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
19
|
Chen X, Gan B. SLC25A39 links mitochondrial GSH sensing with iron metabolism. Mol Cell 2024; 84:616-618. [PMID: 38364779 DOI: 10.1016/j.molcel.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Two recent studies by Liu et al.1 in Science and Shi et al.2 in this issue of Molecular Cell identify a mitochondrial GSH-sensing mechanism that couples SLC25A39-mediated GSH import to iron metabolism, advancing our understanding of nutrient sensing within organelles.
Collapse
Affiliation(s)
- Xiong Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|