1
|
Jiao L, Zhou Q, Sun D. CRISPR-Based Regulation for High-Throughput Screening. ACS Synth Biol 2025. [PMID: 40401794 DOI: 10.1021/acssynbio.5c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
CRISPR technology has revolutionized genome editing by enabling precise, permanent modifications to genetic material. To circumvent the irreversible alterations associated with traditional CRISPR methods and facilitate research on both essential and nonessential genes, CRISPR interference or inhibition (CRISPRi) and CRISPR activation (CRISPRa) were developed. The gene-silencing approach leverages an inactivated Cas effector protein paired with guide RNA to obstruct transcription initiation or elongation, while the gene-activation approach exploits the programmability of CRISPR to activate gene expression. Recent advances in CRISPRi technology, in combination with other technologies (e.g., biosensing, sequencing), have significantly expanded its applications, allowing for genome-wide high-throughput screening (HTS) to identify genetic determinants of phenotypes. These screening strategies have been applied in biomedicine, industry, and basic research. This review explores the CRISPR regulation mechanisms, offers an overview of the workflow for genome-wide CRISPR-based regulation for screens, and highlights its superior suitability for HTS across biomedical and industrial applications. Finally, we discuss the limitations of current CRISPRi/a HTS screening methods and envision future directions in CRISPR-mediated HTS research, considering its potential for broader application across diverse fields.
Collapse
Affiliation(s)
- Lingling Jiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qi Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Rabl L, Deuerling E. The nascent polypeptide-associated complex (NAC) as regulatory hub on ribosomes. Biol Chem 2025:hsz-2025-0114. [PMID: 40167342 DOI: 10.1515/hsz-2025-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The correct synthesis of new proteins is essential for maintaining a functional proteome and cell viability. This process is tightly regulated, with ribosomes and associated protein biogenesis factors ensuring proper protein production, modification, and targeting. In eukaryotes, the conserved nascent polypeptide-associated complex (NAC) plays a central role in coordinating early protein processing by regulating the ribosome access of multiple protein biogenesis factors. NAC recruits modifying enzymes to the ribosomal exit site to process the N-terminus of nascent proteins and directs secretory proteins into the SRP-mediated targeting pathway. In this review we will focus on these pathways, which are critical for proper protein production, and summarize recent advances in understanding the cotranslational functions and mechanisms of NAC in higher eukaryotes.
Collapse
Affiliation(s)
- Laurenz Rabl
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| | - Elke Deuerling
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| |
Collapse
|
3
|
Gaur D, Acquaviva B, Wohlever ML. An Msp1-Protease Chimera Captures Transient AAA+ Interactions and Unveils Ost4 Mislocalization Errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646376. [PMID: 40236206 PMCID: PMC11996533 DOI: 10.1101/2025.03.31.646376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Membrane protein homeostasis (proteostasis) is essential for maintaining the integrity of eukaryotic organelles. Msp1 is a membrane anchored AAA+ (ATPase Associated with cellular Activities) protein that maintains mitochondrial proteostasis by extracting aberrant proteins from the outer mitochondrial membrane. A comprehensive understanding of the physiological roles of Msp1 has been hindered because AAA+ proteins interact with substrates transiently and common strategies to stabilize this interaction lead to undesirable mitochondrial phenotypes. To circumvent these drawbacks, we fused catalytically active Msp1 to the inactivated protease domain of the AAA+ protease Yme1. The resulting chimera sequesters substrates in the catalytically inactive degradation chamber formed by the protease domain. We performed mass spectrometry analysis with the Msp1-protease chimera and identified the signal anchored protein Ost4 as a novel Msp1 substrate. Topology experiments show that Ost4 adopts mixed orientations when mislocalized to mitochondria and that Msp1 extracts mislocalized Ost4 regardless of orientation. Together, this work develops new tools for capturing transient interactions with AAA+ proteins, identifies new Msp1 substrates, and shows a surprising error in targeting of Ost4.
Collapse
|
4
|
Oh J, Catherine C, Kim ES, Min KW, Jeong HC, Kim H, Kim M, Ahn SH, Lukianenko N, Jo MG, Bak HS, Lim S, Kim YK, Kim HM, Lee SB, Cho H. Engineering a membrane protein chaperone to ameliorate the proteotoxicity of mutant huntingtin. Nat Commun 2025; 16:737. [PMID: 39824813 PMCID: PMC11742450 DOI: 10.1038/s41467-025-56030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Toxic protein aggregates are associated with various neurodegenerative diseases, including Huntington's disease (HD). Since no current treatment delays the progression of HD, we develop a mechanistic approach to prevent mutant huntingtin (mHttex1) aggregation. Here, we engineer the ATP-independent cytosolic chaperone PEX19, which targets peroxisomal membrane proteins to peroxisomes, to remove mHttex1 aggregates. Using yeast toxicity-based screening with a random mutant library, we identify two yeast PEX19 variants and engineer equivalent mutations into human PEX19 (hsPEX19). These variants effectively delay mHttex1 aggregation in vitro and in cellular HD models. The mutated hydrophobic residue in the α4 helix of hsPEX19 variants binds to the N17 domain of mHttex1, thereby inhibiting the initial aggregation process. Overexpression of the hsPEX19-FV variant rescues HD-associated phenotypes in primary striatal neurons and in Drosophila. Overall, our data reveal that engineering ATP-independent membrane protein chaperones is a promising therapeutic approach for rational targeting of mHttex1 aggregation in HD.
Collapse
Affiliation(s)
- Jeonghyun Oh
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Christy Catherine
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Eun Seon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kwang Wook Min
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hae Chan Jeong
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyojin Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Mijin Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seung Hae Ahn
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Nataliia Lukianenko
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min Gu Jo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hyeon Seok Bak
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| | - Hyunju Cho
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Latorre-Muro P, Vitale T, Ravichandran M, Zhang K, Palozzi JM, Bennett CF, Lamas-Paz A, Sohn JH, Jackson TD, Jedrychowski M, Gygi SP, Kajimura S, Schmoker A, Jeon H, Eck MJ, Puigserver P. Chaperone-mediated insertion of mitochondrial import receptor TOM70 protects against diet-induced obesity. Nat Cell Biol 2025; 27:130-140. [PMID: 39753947 PMCID: PMC12117470 DOI: 10.1038/s41556-024-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/04/2024] [Indexed: 01/18/2025]
Abstract
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood. Here the stress-induced cytosolic chaperone PPID (peptidyl-prolyl isomerase D/cyclophilin 40/Cyp40) drives OMM insertion of the mitochondrial import receptor TOM70 that regulates body temperature and weight in obese mice, and respiratory/thermogenic function in brown adipocytes. PPID PPIase activity and C-terminal tetratricopeptide repeats, which show specificity towards TOM70 core and C-tail domains, facilitate OMM insertion. Our results provide an unprecedented role for endoplasmic-reticulum-stress-activated chaperones in controlling energy metabolism through a selective OMM protein insertion mechanism with implications in adaptation to cold temperatures and high-calorie diets.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tevis Vitale
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Katherine Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan M Palozzi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Arantza Lamas-Paz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas D Jackson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anna Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Schilke BA, Ziegelhoffer T, Domanski P, Marszalek J, Tomiczek B, Craig EA. Functional similarities and differences among subunits of the nascent polypeptide-associated complex (NAC) of Saccharomyces cerevisiae. Cell Stress Chaperones 2024; 29:721-734. [PMID: 39426497 PMCID: PMC11565464 DOI: 10.1016/j.cstres.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Protein factors bind ribosomes near the tunnel exit, facilitating protein trafficking and folding. In eukaryotes, the heterodimeric nascent polypeptide-associated complex (NAC) is the most abundant-equimolar to ribosomes. Saccharomyces cerevisiae has a minor β-type subunit (Nacβ2) in addition to abundant Nacβ1, and therefore two NAC heterodimers, α/β1 and α/β12. The additional beta NAC gene arose at the time of the whole genome duplication that occurred in the S. cerevisiae lineage. Nacβ2 has been implicated in regulating the fate of messenger RNA encoding ribosomal protein Rpl4 during translation via its interaction with the Caf130 subunit of the regulatory CCR4-Not complex. We found that Nacβ2 residues just C-terminal to the globular domain are required for its interaction with Caf130 and its negative effect on the growth of cells lacking Acl4, the specialized chaperone for Rpl4. Substitution of these Nacβ2 residues at homologous positions in Nacβ1 results in a chimeric protein that interacts with Caf130 and slows the growth of ∆acl4 cells lacking Nacβ2. Furthermore, alteration of residues in the N-terminus of Nacβ2 or chimeric Nacβ1 previously shown to affect ribosome binding overcomes the growth defect of ∆acl4. Our results are consistent with a model in which Nacβ2's ribosome association per se or its precise positioning is necessary for productive recruitment of CCR4-Not via its interaction with the Caf130 subunit to drive Rpl4 messenger RNA degradation.
Collapse
Affiliation(s)
- Brenda A Schilke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Thomas Ziegelhoffer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, United States
| | - Przemyslaw Domanski
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland; Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, United States.
| |
Collapse
|