1
|
Ott JA, Harrison J, Flajnik MF, Criscitiello MF. Nurse shark T-cell receptors employ somatic hypermutation preferentially to alter alpha/delta variable segments associated with alpha constant region. Eur J Immunol 2020; 50:1307-1320. [PMID: 32346855 DOI: 10.1002/eji.201948495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
In addition to canonical TCR and BCR, cartilaginous fish assemble noncanonical TCR that employ various B-cell components. For example, shark T cells associate alpha (TCR-α) or delta (TCR-δ) constant (C) regions with Ig heavy chain (H) variable (V) segments or TCR-associated Ig-like V (TAILV) segments to form chimeric IgV-TCR, and combine TCRδC with both Ig-like and TCR-like V segments to form the doubly rearranging NAR-TCR. Activation-induced (cytidine) deaminase-catalyzed somatic hypermutation (SHM), typically used for B-cell affinity maturation, also is used by TCR-α during selection in the shark thymus presumably to salvage failing receptors. Here, we found that the use of SHM by nurse shark TCR varies depending on the particular V segment or C region used. First, SHM significantly alters alpha/delta V (TCRαδV) segments using TCR αC but not δC. Second, mutation to IgHV segments associated with TCR δC was reduced compared to mutation to TCR αδV associated with TCR αC. Mutation was present but limited in V segments of all other TCR chains including NAR-TCR. Unexpectedly, we found preferential rearrangement of the noncanonical IgHV-TCRδC over canonical TCR αδV-TCRδC receptors. The differential use of SHM may reveal how activation-induced (cytidine) deaminase targets V regions.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jenna Harrison
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| |
Collapse
|
2
|
Jaszczur M, Bertram JG, Pham P, Scharff MD, Goodman MF. AID and Apobec3G haphazard deamination and mutational diversity. Cell Mol Life Sci 2012. [PMID: 23178850 DOI: 10.1007/s00018-012-1212-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation-induced deoxycytidine deaminase (AID) and Apobec 3G (Apo3G) cause mutational diversity by initiating mutations on regions of single-stranded (ss) DNA. Expressed in B cells, AID deaminates C → U in actively transcribed immunoglobulin (Ig) variable and switch regions to initiate the somatic hypermutation (SHM) and class switch recombination (CSR) that are essential for antibody diversity. Apo3G expressed in T cells catalyzes C deaminations on reverse transcribed cDNA causing HIV-1 retroviral inactivation. When operating properly, AID- and Apo3G-initiated mutations boost human fitness. Yet, both enzymes are potentially powerful somatic cell "mutators". Loss of regulated expression and proper genome targeting can cause human cancer. Here, we review well-established biological roles of AID and Apo3G. We provide a synopsis of AID partnering proteins during SHM and CSR, and describe how an Apo2 crystal structure provides "surrogate" insight for AID and Apo3G biochemical behavior. However, large gaps remain in our understanding of how dC deaminases search ssDNA to identify trinucleotide motifs to deaminate. We discuss two recent methods to analyze ssDNA scanning and deamination. Apo3G scanning and deamination is visualized in real-time using single-molecule FRET, and AID deamination efficiencies are determined with a random walk analysis. AID and Apo3G encounter many candidate deamination sites while scanning ssDNA. Generating mutational diversity is a principal aim of AID and an important ancillary property of Apo3G. Success seems likely to involve hit and miss deamination motif targeting, biased strongly toward miss.
Collapse
Affiliation(s)
- Malgorzata Jaszczur
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | | | | | |
Collapse
|
3
|
Rapid cell division contributes to efficient induction of A/T mutations during Ig gene hypermutation. Mol Immunol 2011; 48:1993-9. [DOI: 10.1016/j.molimm.2011.06.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/04/2011] [Accepted: 06/05/2011] [Indexed: 01/28/2023]
|
4
|
Laskov R, Yahud V, Hamo R, Steinitz M. Preferential targeting of somatic hypermutation to hotspot motifs and hypermutable sites and generation of mutational clusters in the IgVH alleles of a rheumatoid factor producing lymphoblastoid cell line. Mol Immunol 2010; 48:733-45. [PMID: 21194753 DOI: 10.1016/j.molimm.2010.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/16/2010] [Accepted: 10/18/2010] [Indexed: 01/10/2023]
Abstract
Epstein-Barr virus transforms human peripheral B cells into lymphoblastoid cell lines (LCL) that secrete specific antibodies. Our previous studies showed that a monoclonal LCL that secretes a rheumatoid factor expressed activation-induced cytidine deaminase (AID) and displayed an ongoing process of somatic hypermutation (SHM) at a frequency of 1.7×10⁻³ mut/bp in its productively rearranged IgVH gene. The present work shows that SHM similarly affects the nonproductive IgVH allele of the same culture. Sequencing of multiple cDNA clones derived from cellular subclones of the parental culture, showed that both alleles exhibited an ongoing mutational process with mutation rates of 2-3×10⁻⁵ mut/bp×generation with a high preference for C/G transition mutations and lack of a significant strand bias. About 50% of the mutations were targeted to the underlined C/G bases in the WRCH/DGYW and RCY/RGY hotspot motifs, indicating that they were due to the initial phase of AID activity. Mutations were targeted to the VH alleles and not to the Cμ or to the GAPDH genes. Genealogical trees showed a stepwise accumulation of only 1-3 mutations per branch of the tree. Unexpectedly, 27% of all the mutations in the two alleles occurred repeatedly and independently within certain sites (not necessarily the canonical hotspot motifs) in cellular clones belonging to different branches of the lineage tree. Furthermore, some of the mutations seem to arise as recurrent mutational clusters, independently generated in different cellular clones. Statistical analysis showed that it is very unlikely that these clusters were due to random targeting of equally accessible hotspots, indicating the presence of 'hypermutable sites' that generate recurring mutational clusters in the IgVH alleles. Intrinsic hypermutable sites may enhance affinity maturation and generation of effective mutated antibody repertoires against invading pathogens.
Collapse
Affiliation(s)
- Reuven Laskov
- Dept. of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel.
| | | | | | | |
Collapse
|
5
|
Giambra V, Cianci R, Lolli S, Mattioli C, Tampella G, Cattalini M, Kilic SS, Pandolfi F, Plebani A, Frezza D. Allele *1 of HS1.2 enhancer associates with selective IgA deficiency and IgM concentration. THE JOURNAL OF IMMUNOLOGY 2010; 183:8280-5. [PMID: 20007591 DOI: 10.4049/jimmunol.0902426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Selective IgA deficiency (IGAD) is the most common primary immunodeficiency, yet its pathogenesis is elusive. The IG (heavy) H chain human 3' Regulatory Region harbors three enhancers and has an important role in Ig synthesis. HS1.2 is the only polymorphic enhancer of the 3' RRs. We therefore evaluated HS1.2 allelic frequencies in 88 IGAD patients and 101 controls. Our data show that IGAD patients have a highly significant increase of homozygousity of the allele *1 (39% in the IGAD patients and 15% in controls), with an increase of 2.6-fold. Allele *4 has a similar trend of allele *2, both showing a significant decrease of frequency in IGAD. No relationship was observed between allele *1 frequencies and serum levels of IgG. However, allele *1 was associated in IGAD patients with relatively low IgM levels (within the 30th lowest percentile of patients). The HS1.2 polymorphism influences Ig seric production, but not IgG switch, in fact 30th lowest or highest percentile of IgG in patients did not associate to different frequencies of HS1.2 alleles. The control on normal healthy subjects did not correlate high or low levels of IgM or IgG with HS1.2 allelic frequence variation. Overall our candidate gene approach confirms that the study of polymorphisms in human diseases is a valid tool to investigate the function of these Regulatory Regions that confers multiple immune features.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chezar I, Lobel-Lavi L, Steinitz M, Laskov R. Ongoing somatic hypermutation of the rearranged VH but not of the V-lambda gene in EBV-transformed rheumatoid factor-producing lymphoblastoid cell line. Mol Immunol 2008; 46:80-90. [PMID: 18718665 DOI: 10.1016/j.molimm.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 07/06/2008] [Indexed: 12/18/2022]
Abstract
Epstein-Barr virus (EBV) transforms human peripheral B cells into lymphoblastoid cell lines (LCLs) that secrete specific antibodies. In contrast to peripheral blood B cells, LCLs express the activation-induced cytidine deaminase (AID) gene, a key enzyme in the generation of somatic hypermutation (SHM) in immunoglobulin variable genes. We have previously studied an LCL that secretes a rheumatoid factor (RF: an IgM(lambda) anti-IgG antibody) and identified the accumulation of SHM at a frequency of 1.5 x 10(-3)mut/bp in the rearranged variable region heavy chain gene (VH) of its RF sub-culture (i.e., RF-2004). The aim of the present work was to find out whether SHM was initiated as an early event following EBV transformation. Our results show that already the earliest RF-culture (RF-1983) mutates its VH at a somewhat higher frequency of 1.9 x 10(-3). Overall, we detected 17 point mutations in the RF-2004 culture and in 26 cellular clones derived from the RF-1983 and RF-2004 cultures. Most of the mutations were due to C to T or G to A transitions, with preferential targeting to WRCH/DGYW hotspot motifs, indicating that they were due to the initial phase of AID-directed mutations. A genealogical tree demonstrates that mutations were accumulated in a stepwise manner with 1-2 mutations per cell division. However, no mutations were found in the rearranged V-lambda (Vlambda) gene in the same RF-cultures and their subclones (i.e., <1.2 x 10(-4)mut/bp). To our knowledge this is the first reported clonal cell line that generates SHM in the VH, but not in the Vlambda. It may be due to abrogation of a cis-regulatory element(s) in the Vlambda or to a lack of a specific trans-acting factor which differentially direct the SHM machinery to this gene. Out of the 17 point mutations detected in both cell lines there were, 1 stop codon, 3 mutations which obliterated the binding of the RF antibody to its IgG antigen and 1 or 2 mutations which enhanced antigen-binding affinity. These results show that the evolutionary developed germline encoded antibody combining site is highly sensitive to amino acid replacements. Our combined findings that the RF cells accumulate in a stepwise manner up to 1-2 point mutations/sequence per cell division and the generation of high percentage of functionally deleterious mutations, are in accord with the 'multiphase-recycling model' of SHM, which states that B cells in the germinal center are subjected to multiple rounds of somatic mutations interchanged with periods of antigenic selection.
Collapse
Affiliation(s)
- Ilan Chezar
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
7
|
Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, Scharff MD. The biochemistry of somatic hypermutation. Annu Rev Immunol 2008; 26:481-511. [PMID: 18304001 DOI: 10.1146/annurev.immunol.26.021607.090236] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Affinity maturation of the humoral response is mediated by somatic hypermutation of the immunoglobulin (Ig) genes and selection of higher-affinity B cell clones. Activation-induced cytidine deaminase (AID) is the first of a complex series of proteins that introduce these point mutations into variable regions of the Ig genes. AID deaminates deoxycytidine residues in single-stranded DNA to deoxyuridines, which are then processed by DNA replication, base excision repair (BER), or mismatch repair (MMR). In germinal center B cells, MMR, BER, and other factors are diverted from their normal roles in preserving genomic integrity to increase diversity within the Ig locus. Both AID and these components of an emerging error-prone mutasome are regulated on many levels by complex mechanisms that are only beginning to be elucidated.
Collapse
Affiliation(s)
- Jonathan U Peled
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Xu Z, Zan H, Pal Z, Casali P. DNA replication to aid somatic hypermutation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 596:111-27. [PMID: 17338180 PMCID: PMC3140876 DOI: 10.1007/0-387-46530-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Parsa JY, Basit W, Wang CL, Gommerman JL, Carlyle JR, Martin A. AID mutates a non-immunoglobulin transgene independent of chromosomal position. Mol Immunol 2007; 44:567-75. [PMID: 16542725 DOI: 10.1016/j.molimm.2006.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 02/07/2006] [Accepted: 02/09/2006] [Indexed: 01/31/2023]
Abstract
It is unknown how activation-induced cytidine deaminase (AID) targets immunoglobulin (Ig) genes during somatic hypermutation. Results to date are difficult to interpret: while some results argue that Ig genes have special sequences that mobilize AID, other work shows that non-Ig transgenes mutate. In this report, we have examined the effects of the intronic mu enhancer on the somatic hypermutation rates of a retroviral vector. For this analysis, we used centroblast-like Ramos cells to capture as much of the natural process as possible, used AIDhi and AIDlow Ramos variants to ensure that mutations are AID induced, and measured mutation of a GFP-provirus to achieve greater sensitivity. We found that mutation rates of the non-Ig provirus were AID-dependent, were similar at different genomic loci, but were approximately 10-fold lower than the V-region suggesting that AID can mutate non-Ig genes at low rates. However, the intronic mu enhancer did not increase the mutation rates of the provirus. Interestingly, exogenous over-expression of AID revealed that the V-region mutation rate can be saturated by lower levels of AID than the provirus, suggesting that selective mutation of Ig sequences is compromised in cells that over-express AID.
Collapse
Affiliation(s)
- Jahan-Yar Parsa
- Department of Immunology, University of Toronto, Medical Sciences Bldg., Toronto, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
10
|
Li Z, Luo Z, Ronai D, Kuang FL, Peled JU, Iglesias-Ussel MD, Scharff MD. Targeting AID to the Ig genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 596:93-109. [PMID: 17338179 DOI: 10.1007/0-387-46530-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ziqiang Li
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|