1
|
Ferreira CS, Francisco Junior RDS, Gerber AL, Guimarães APDC, de Carvalho FAA, Dos Reis BCS, Pinto-Mariz F, de Souza MS, de Vasconcelos ZFM, Goudouris ES, Vasconcelos ATR. Genetic screening in a Brazilian cohort with inborn errors of immunity. BMC Genom Data 2023; 24:47. [PMID: 37592284 PMCID: PMC10433585 DOI: 10.1186/s12863-023-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Inherited genetic defects in immune system-related genes can result in Inborn Errors of Immunity (IEI), also known as Primary Immunodeficiencies (PID). Diagnosis of IEI disorders is challenging due to overlapping clinical manifestations. Accurate identification of disease-causing germline variants is crucial for appropriate treatment, prognosis, and genetic counseling. However, genetic sequencing is challenging in low-income countries like Brazil. This study aimed to perform genetic screening on patients treated within Brazil's public Unified Health System to identify candidate genetic variants associated with the patient's phenotype. METHODS Thirteen singleton unrelated patients from three hospitals in Rio de Janeiro were enrolled in this study. Genomic DNA was extracted from the peripheral blood lymphocytes of each patient, and whole exome sequencing (WES) analyses were conducted using Illumina NextSeq. Germline genetic variants in IEI-related genes were prioritized using a computational framework considering their molecular consequence in coding regions; minor allele frequency ≤ 0.01; pathogenicity classification based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines gathered from the VarSome clinical database; and IEI-related phenotype using the Franklin tool. The genes classification into IEI categories follows internationally recognized guidelines informed by the International Union of Immunological Societies Expert Committee. Additional methods for confirmation of the variant included Sanger sequencing, phasing analysis, and splice site prediction. RESULTS A total of 16 disease-causing variants in nine genes, encompassing six different IEI categories, were identified. X-Linked Agammaglobulinemia, caused by BTK variations, emerged as the most prevalent IEI disorder in the cohort. However, pathogenic and likely pathogenic variants were also reported in other known IEI-related genes, namely CD40LG, CARD11, WAS, CYBB, C6, and LRBA. Interestingly, two patients with suspected IEI exhibited pathogenic variants in non-IEI-related genes, ABCA12 and SLC25A13, potentially explaining their phenotypes. CONCLUSIONS Genetic screening through WES enabled the detection of potentially harmful variants associated with IEI disorders. These findings contribute to a better understanding of patients' clinical manifestations by elucidating the genetic basis underlying their phenotypes.
Collapse
Affiliation(s)
- Cristina Santos Ferreira
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Ronaldo da Silva Francisco Junior
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Alexandra Lehmkuhl Gerber
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Paula de Campos Guimarães
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil
| | - Flavia Amendola Anisio de Carvalho
- Allergy and Immunology Service of Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bárbara Carvalho Santos Dos Reis
- Allergy and Immunology Service of Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Fernanda Pinto-Mariz
- Allergy and Immunology Service of the Martagão Gesteira Institute for Childcare and Pediatrics (IPPMG) - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Monica Soares de Souza
- Allergy and Immunology Sector of the Pediatric Service of the Federal Hospital of Rio de Janeiro State (HFSE) - Ministry of Health, Rio de Janeiro, RJ, Brazil
| | - Zilton Farias Meira de Vasconcelos
- Laboratory of High Complexity of the Institute of Women, Children and Adolescents' Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Ekaterini Simões Goudouris
- Allergy and Immunology Service of the Martagão Gesteira Institute for Childcare and Pediatrics (IPPMG) - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Bioinformatics Laboratory-LABINFO, National Laboratory of Scientific Computation LNCC/MCTIC, Av. Getúlio Vargas, 333, Quitandinha CEP: 25651-075, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Mortensen Ó, Thomsen E, Lydersen LN, Apol KD, Weihe P, Steig BÁ, Andorsdóttir G, Als TD, Gregersen NO. FarGen: Elucidating the distribution of coding variants in the isolated population of the Faroe Islands. Eur J Hum Genet 2023; 31:329-337. [PMID: 36404349 PMCID: PMC9995356 DOI: 10.1038/s41431-022-01227-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Here we present results from FarGen Phase I exomes. This dataset is based on the FarGen cohort, which consists of 1,541 individuals from the isolated population of the Faroe Islands. The purpose of this cohort is to serve as a reference catalog of coding variants, and to conduct population genetic studies to better understand the genetic contribution to various diseases in the Faroese population. The first whole-exome data set comprise 465 individuals and a total of 148,267 genetic variants were discovered. Principle Component Analysis indicates that the population is isolated and weakly structured. The distribution of variants in various functional classes was compared with populations in the gnomAD dataset; the results indicated that the proportions were consistent across the cohorts, but probably due to a small sample size, the FarGen dataset contained relatively few rare variants. We identified 19 variants that are classified as pathogenic or likely pathogenic in ClinVar; several of these variants are associated with monogenetic diseases with increased prevalence in the Faroe Islands. The results support previous studies, which indicate that the Faroe Islands is an isolated and weakly structured population. Future studies may elucidate the significance of the 19 pathogenic variants that were identified. The FarGen Phase I dataset is an important step for genetic research in the Faroese population, and the next phase of FarGen will increase the sample size and broaden the scope.
Collapse
Affiliation(s)
- Ólavur Mortensen
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - Elisabet Thomsen
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | | | - Katrin D Apol
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, National Hospital of the Faroe Islands Tórshavn, Tórshavn, Faroe Islands
| | - Bjarni Á Steig
- Medical Department, National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | - Guðrið Andorsdóttir
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands
- Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Thomas D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Noomi O Gregersen
- The Genetic Biobank of the Faroe Islands, Tórshavn, Faroe Islands.
- Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands.
| |
Collapse
|
3
|
Kato M, Kudo Y, Hatase M, Tsuchida N, Takeyama S, Sugiyama T, Fujimura M, Yabe I, Tsujimoto H, Fukumori Y, Inoue N, Atsumi T. Moyamoya Disease Associated with a Deficiency of Complement Component 6. J Stroke Cerebrovasc Dis 2022; 31:106601. [PMID: 35717718 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Complement component 6 (C6) deficiency is a very rare genetic defect that leads to significantly diminished synthesis, secretion, or function of C6. In the current report, we demonstrate a previously undescribed, homozygous missense mutation in exon 17 of the C6 gene (c.2545A>G p.Arg849Gly) in a 35-year-old Japanese woman with moyamoya disease and extremely low levels of CH50 (<7.0 U/mL). MATERIALS AND METHODS The complement gene analysis using hybridization capture-based next generation sequencing was performed. CH50 was determined in patient's plasma mixed with plasma from a healthy donor or purified human C6 protein. Western blot was performed on patient's plasma using polyclonal antibodies against C6, with healthy donor's plasma and purified human C6 protein as positive controls while C6-depleted human serum as a negative control. The carriage of ring finger protein 213 variant (c.14576G>A p.Arg4859Lys), a susceptibility gene for moyamoya disease, was examined by direct sequencing. RESULTS CH50 mixing test clearly showed a deficiency pattern, being rescued by addition of only 1% healthy donor's plasma or 1 μg/mL purified human C6 protein (1/50-1/100 of physiological concentration). Western blot revealed the absence of C6 protein in the patient's plasma, confirming a quantitative deficiency of C6. The ring finger protein 213 variant was not detected. CONCLUSIONS Our data implies that unrecognized complement deficiencies would be harbored in cerebrovascular diseases with unknown etiologies.
Collapse
Affiliation(s)
- Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N14W5, Kita-Ku, Sapporo 060-8648, Japan.
| | - Yuki Kudo
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N14W5, Kita-Ku, Sapporo 060-8648, Japan
| | - Masanao Hatase
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, N14W5, Kita-Ku, Sapporo 060-8648, Japan
| | - Naohisa Tsuchida
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N14W5, Kita-Ku, Sapporo 060-8648, Japan
| | - Shuhei Takeyama
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N14W5, Kita-Ku, Sapporo 060-8648, Japan
| | - Taku Sugiyama
- Department of Neurosurgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-Ku, Sapporo 060-8648, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-Ku, Sapporo 060-8648, Japan
| | - Ichiro Yabe
- The Division of Clinical Genetics, Hokkaido University Hospital, N14W5, Kita-Ku, Sapporo 060-8638, Japan
| | - Hiroshi Tsujimoto
- Department of Molecular Genetics, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan
| | - Yasuo Fukumori
- Department of Molecular Genetics, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Kimiidera 811-1, Wakayama 641-8509, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N14W5, Kita-Ku, Sapporo 060-8648, Japan
| |
Collapse
|
4
|
Massri M, Foco L, Würzner R. Comprehensive Update and Revision of Nomenclature on Complement C6 and C7 Variants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2597-2612. [PMID: 35867677 DOI: 10.4049/jimmunol.2200045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Complement genes encompass a wide array of variants, giving rise to numerous protein isoforms that have often been shown to exhibit clinical significance. Given that these variants have been discovered over a span of 50 y, one challenging consequence is the inconsistency in the terminology used to classify them. This issue is prominently evident in the nomenclature used for complement C6 and C7 variants, for which we observed a great discrepancy between previously published works and variants described in current genome browsers. This report discusses the causes for the discrepancies in C6 and C7 nomenclature and seeks to establish a classification system that would unify existing and future variants. The inconsistency in the methods used to annotate amino acids and the modifications pinpointed in the C6 and C7 primers are some of the factors that contribute greatly to the discrepancy in the nomenclature. Several variants that were classified incorrectly are highlighted in this report, and we showcase first-hand how a unified classification system is important to match previous with current genetic information. Ultimately, we hope that the proposed classification system of nomenclature becomes an incentive for studies on complement variants and their physiological and/or pathological effects.
Collapse
Affiliation(s)
- Mariam Massri
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria; and
| | - Luisa Foco
- Institute for Biomedicine (affiliated with the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria; and
| |
Collapse
|
5
|
Genetic workup as a complementary tool for the diagnosis of primary complement component deficiencies: a multicenter experience. Eur J Pediatr 2022; 181:1997-2004. [PMID: 35118517 DOI: 10.1007/s00431-022-04397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 11/27/2022]
Abstract
UNLABELLED Diagnosis of primary complement deficiencies requires a high index of suspicion. Thus, susceptible patients are often underdiagnosed and untreated. Here, we present a multicenter experience with two novel inborn errors of the classical complement system. This is a retrospective multicenter analysis of computerized medical records of children (<18 years) admitted in the period between 2012 and 2018 at Shaare Zedek Medical Center in Jerusalem and Edmond and Lily Safra Children's Hospital, Tel-Hashomer Medical Center, in Ramat Gan, Israel. Patients were genetically diagnosed by a complementary immune workup. We identified 5 patients (3 males) from four different families harboring two novel mutations in the complement components C6-C8. Genetic mutations were identified by whole-exome sequencing or by sequencing of the coding exons of a single gene based on the findings in the immune workup. Clinical manifestations consisted of meningitis with or without meningococcemia. The immune workup demonstrated nearly absent levels of CH50, compatible with a complement pathway defect. Diagnosis delay ranged between 0 and 30 years. CONCLUSION Awareness of risk factors for primary complement deficiencies, even at the first infectious episode, should facilitate prompt immune and genetic workup, commencing diagnosis and proper treatment for the patient and family. WHAT IS KNOWN • Deficiencies in the classical terminal complement components increase susceptibility to invasive meningococcal infections. • Recurrent meningococcal infections mandate a diagnostic workup of the complement system. WHAT IS NEW • Genetic workup can be utilized for prompt diagnosis of complement deficiencies. • High rates of consanguinity, even in the presence of a single meningococcal infection, should promote immune and genetic workups.
Collapse
|
6
|
Zhang AQ, Liu YX, Jin JY, Wang CY, Fan LL, Xu DB. Identification of a novel mutation in the C6 gene of a Han Chinese C6SD child with meningococcal disease. Exp Ther Med 2021; 21:510. [PMID: 33791019 DOI: 10.3892/etm.2021.9941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/05/2021] [Indexed: 11/06/2022] Open
Abstract
Deficiency of the sixth complement component (C6D) is a genetic disease associated with increased susceptibility to Neisseria meningitides infection. Individuals with C6D usually present with recurrent meningococcal disease (MD). According to the patients' C6 levels, C6D is divided into complete genetic deficiency of C6 and subtotal deficiency of C6 (C6SD). The present study reported on a Han Chinese pediatric patient with MD, in whom further investigation revealed a C6SD genetic lesion. A heterozygote nonsense mutation (c.1062C>G/p.Y354*) in the C6 gene was identified by Sanger sequencing. The mutation alters the tyrosine codon at position 354 to a termination codon and results in a truncated protein. In conclusion, the genetic lesion of a pediatric patient with C6SD who was diagnosed due to having MD was investigated and a novel pathogenic mutation in the C6 gene was identified. The study confirmed the clinical diagnosis for this patient with C6SD and also expanded the spectrum of C6 mutations.
Collapse
Affiliation(s)
- Ai-Qian Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu-Xing Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie-Yuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chen-Yu Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China.,Hunan Key Laboratory of Animals for Human Disease, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Da-Bao Xu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
7
|
Li PH, Wong WW, Leung EN, Lau CS, Au E. Novel pathogenic mutations identified in the first Chinese pedigree of complete C6 deficiency. Clin Transl Immunology 2020; 9:e1148. [PMID: 32670577 PMCID: PMC7343556 DOI: 10.1002/cti2.1148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023] Open
Abstract
Objectives Complete C6 deficiency (C6Q0) is a rare primary immunodeficiency leading to increased susceptibility to recurrent Neisseria infections. Patients with C6Q0 have mostly been reported in individuals of African ancestry previously, but never in Chinese. We identify the first Chinese patients with C6Q0 through family screening of an index case presenting with recurrent Neisseria meningitis with septicaemia and performed extensive clinical, serological and genetic investigations. Methods Two variants in C6 were identified by next‐generation sequencing and confirmed by Sanger sequencing in an index case of C6Q0. Immunological investigations, complement haemolytic assays (CH50/AH50), C6 gene sequencing and quantification of serum C6 levels were performed for all available members of his nonconsanguineous family. Results Three C6Q0 patients were identified with near‐absent C6 levels, absent CH50/AH50 activity and compound heterozygous for two nonsense mutations in the C6 gene: NM_000065.4:c.1786C>T (p.Arg596Ter) and NM_000065.4:c.1816C>T (p.Arg606Ter). Neither mutations have been reported to be pathogenic previously. Two other family members who were heterozygous for either p.Arg596Ter or and p.Arg606Ter had intermediate C6 levels but preserved CH50/AH50 activity. These two loss‐of‐function mutations showed a strong genotype–phenotype correlation in C6 levels. Conclusions We report on two compound heterozygous mutations in C6, p.Arg596Ter and p.Arg606Ter inherited in three patients of the first recorded Chinese pedigree of C6Q0. Neither mutations had been reported to be pathogenic previously. We demonstrate that heterozygous family members with subtotal C6 levels had preserved complement haemolytic function and demonstrate a threshold effect of C6 protein level.
Collapse
Affiliation(s)
- Philip H Li
- Division of Rheumatology & Clinical Immunology Department of Medicine Queen Mary Hospital The University of Hong Kong Hong Kong
| | - William Wy Wong
- Division of Clinical Immunology Department of Pathology Queen Mary Hospital Hong Kong
| | - Evelyn Ny Leung
- Division of Clinical Immunology Department of Pathology Queen Mary Hospital Hong Kong
| | - Chak-Sing Lau
- Division of Rheumatology & Clinical Immunology Department of Medicine Queen Mary Hospital The University of Hong Kong Hong Kong
| | - Elaine Au
- Division of Clinical Immunology Department of Pathology Queen Mary Hospital Hong Kong
| |
Collapse
|
8
|
Hodeib S, Herberg JA, Levin M, Sancho-Shimizu V. Human genetics of meningococcal infections. Hum Genet 2020; 139:961-980. [PMID: 32067109 PMCID: PMC7272491 DOI: 10.1007/s00439-020-02128-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023]
Abstract
Neisseria meningitidis is a leading cause of bacterial septicaemia and meningitis worldwide. Meningococcal disease is rare but can be life threatening with a tendency to affect children. Many studies have investigated the role of human genetics in predisposition to N. meningitidis infection. These have identified both rare single-gene mutations as well as more common polymorphisms associated with meningococcal disease susceptibility and severity. These findings provide clues to the pathogenesis of N. meningitidis, the basis of host susceptibility to infection and to the aetiology of severe disease. From the multiple discoveries of monogenic complement deficiencies to the associations of complement factor H and complement factor H-related three polymorphisms to meningococcal disease, the complement pathway is highlighted as being central to the genetic control of meningococcal disease. This review aims to summarise the current understanding of the host genetic basis of meningococcal disease with respect to the different stages of meningococcal infection.
Collapse
Affiliation(s)
- Stephanie Hodeib
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Jethro A Herberg
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Michael Levin
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK.
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
9
|
Franco-Jarava C, Comas D, Orren A, Hernández-González M, Colobran R. Complement factor 5 (C5) p.A252T mutation is prevalent in, but not restricted to, sub-Saharan Africa: implications for the susceptibility to meningococcal disease. Clin Exp Immunol 2017; 189:226-231. [PMID: 28369827 DOI: 10.1111/cei.12967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 12/30/2022] Open
Abstract
Complement C5 deficiency (C5D) is a rare primary immunodeficiency associated with recurrent infections, particularly meningitis, by Neisseria species. To date, studies to elucidate the molecular basis of hereditary C5D have included fewer than 40 families, and most C5 mutations (13 of 17) have been found in single families. However, the recently described C5 p.A252T mutation is reported to be associated with approximately 7% of meningococcal disease cases in South Africa. This finding raises the question of whether the mutation may be prevalent in other parts of Africa or other continental regions. The aim of this study was to investigate the prevalence of C5 p.A252T in Africa and other regions and discuss the implications for prophylaxis against meningococcal disease. In total, 2710 samples from healthy donors within various populations worldwide were analysed by quantitative polymerase chain reaction (qPCR) assay to detect the C5 p.A252T mutation. Eleven samples were found to be heterozygous for p.A252T, and nine of these samples were from sub-Saharan African populations (allele frequency 0·94%). Interestingly, two other heterozygous samples were from individuals in populations outside Africa (Israel and Pakistan). These findings, together with data from genomic variation databases, indicate a 0·5-2% prevalence of the C5 p.A252T mutation in heterozygosity in sub-Saharan Africa. Therefore, this mutation may have a relevant role in meningococcal disease susceptibility in this geographical area.
Collapse
Affiliation(s)
- C Franco-Jarava
- Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - D Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - A Orren
- Department of Clinical Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infection and Immunity, Cardiff University, Cardiff, UK.,Allergy Diagnostic and Clinical Research Unit, Department of Medicine, Lung Institute, University of Cape Town, Cape Town, South Africa
| | - M Hernández-González
- Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - R Colobran
- Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
10
|
Complement component C6 deficiency in a Spanish family: implications for clinical and molecular diagnosis. Gene 2013; 521:204-6. [PMID: 23537992 DOI: 10.1016/j.gene.2013.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/07/2013] [Indexed: 11/24/2022]
Abstract
Complement component C6 deficiency is a genetic disease presenting as increased susceptibility to invasive Neisseria meningitidis infections. This disorder has rarely been diagnosed in the Spanish population. In this work we report the immunochemical and molecular characterization of complement C6 deficiency in a Spanish patient showing no detectable functional activity of either the classical or alternative complement pathways and reporting a history of several episodes of meningococcal meningitis. The levels of individual complement components C3, C4, C5, C7, C8 and C9 were within the normal range. However, C6 level was low in the patient's serum as measured by radial immunodiffusion. Exon-specific polymerase chain reaction and sequencing of the C6 gene revealed a previously described homozygous single base deletion in exon 6 (c.821delA), leading to a shift in the reading frame that caused the generation of a downstream stop codon, which, in turn, provoked the truncation of the C6 protein (p.Gln274fs). To our knowledge, this is the first report on the c.821delA mutation in the Spanish population, which has previously only been identified in individuals of African ancestry. Characterization of this mutation was thought interesting in order to elucidate its source and help understand the molecular basis of this uncommon deficiency in our population. Moreover, this report highlights the importance of complement screening in cases of repeated meningococcal infections in order to establish its involvement and to consider adequate clinical recommendations such as prophylactic antibiotics or meningococcal vaccines and, subsequently, for genetic counselling.
Collapse
|
11
|
Orren A, Owen EP, Henderson HE, van der Merwe L, Leisegang F, Stassen C, Potter PC. Complete deficiency of the sixth complement component (C6Q0), susceptibility to Neisseria meningitidis infections and analysis of the frequencies of C6Q0 gene defects in South Africans. Clin Exp Immunol 2012; 167:459-71. [PMID: 22288589 DOI: 10.1111/j.1365-2249.2011.04525.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Complete complement component 6 deficiency (C6Q0) is a co-dominant genetic disease presenting as increased susceptibility to invasive Neisseria meningitidis infections. Affected individuals have two affected alleles which can be homozygous or compound heterozygous for the particular gene defects they carry. This disorder has been diagnosed relatively frequently in Western Cape South Africans. Affected patients are prescribed penicillin prophylaxis. In 2004 we commenced a clinical follow-up study of 46 patients. Of these, 43 had family age-matched C6 sufficient controls. Participants were classified as either (i) well, or (ii) having a serious illness (SI) or died (D). An SI was a long-term illness that did not allow the performance of normal daily activities. Among 43 patients, 21 were well and 22 were SI/D, while among 43 matched controls, 35 were well and eight were SI/D. This difference is highly significant. Among all 46 C6Q0 patients, those who had had recurrent infection had significantly more SI/D than those who had suffered none or one infection. Thus, this work demonstrates the long-term serious outcome of repeated meningococcal disease (MD) episodes. We investigated the frequencies of four C6Q0 pathogenic mutations known to affect Cape patients (828delG, 1138delC, 821delA and 1879delG) in 2250 newborns. A total of 103 defective alleles (2·28%) and three affected C6Q0 individuals were detected. For all defects combined, 5·24 affected subjects (C6Q0) are expected among 10,000 individuals. What is still unknown is the number of C6Q0 individuals who suffer MD or other infectious diseases.
Collapse
Affiliation(s)
- A Orren
- Department of Infection, Immunity and Biochemistry, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | |
Collapse
|
12
|
Selective inhibition of the membrane attack complex of complement by low molecular weight components of the aurin tricarboxylic acid synthetic complex. Neurobiol Aging 2012; 33:2237-46. [PMID: 22217416 DOI: 10.1016/j.neurobiolaging.2011.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 12/19/2022]
Abstract
Complement plays a vital role in both the innate and adaptive immune systems. It recognizes a target, opsonizes it, generates anaphylatoxins, and directly kills cells through the membrane attack complex (MAC). This final function, which assembles C5b-9(n) on viable cell surfaces, can kill host cells through bystander lysis. Here we identify for the first time compounds that can inhibit bystander lysis while not interfering with the other essential functions of complement. We show that aurin tricarboxylic acid (ATA), aurin quadracarboxylic acid (AQA), and aurin hexacarboxylic acid (AHA), block the addition of C9 to C5b-8 so that the MAC cannot form. These molecules inhibit hemolysis of human, rat, and mouse red cells with a half maximal inhibitory concentration (IC(50)) in the nanomolar range. When given orally to Alzheimer disease type B6SJL-Tg mice, they inhibit MAC formation in serum and improve memory retention. On autopsy, they show no evidence of harm to any organ. Aurin tricarboxylic acid, aurin quadracarboxylic acid, and aurin hexacarboxylic acid may be effective therapeutic agents in Alzheimer disease and other degenerative disorders where self damage from the MAC occurs.
Collapse
|
13
|
Degn S, Jensenius J, Thiel S. Disease-causing mutations in genes of the complement system. Am J Hum Genet 2011; 88:689-705. [PMID: 21664996 DOI: 10.1016/j.ajhg.2011.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/19/2011] [Accepted: 05/08/2011] [Indexed: 02/08/2023] Open
Abstract
Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of "conventional" complement deficiencies with these newly described developmental roles.
Collapse
|
14
|
Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 2010; 23:740-80. [PMID: 20930072 DOI: 10.1128/cmr.00048-09] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complement system comprises several fluid-phase and membrane-associated proteins. Under physiological conditions, activation of the fluid-phase components of complement is maintained under tight control and complement activation occurs primarily on surfaces recognized as "nonself" in an attempt to minimize damage to bystander host cells. Membrane complement components act to limit complement activation on host cells or to facilitate uptake of antigens or microbes "tagged" with complement fragments. While this review focuses on the role of complement in infectious diseases, work over the past couple of decades has defined several important functions of complement distinct from that of combating infections. Activation of complement in the fluid phase can occur through the classical, lectin, or alternative pathway. Deficiencies of components of the classical pathway lead to the development of autoimmune disorders and predispose individuals to recurrent respiratory infections and infections caused by encapsulated organisms, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. While no individual with complete mannan-binding lectin (MBL) deficiency has been identified, low MBL levels have been linked to predisposition to, or severity of, several diseases. It appears that MBL may play an important role in children, who have a relatively immature adaptive immune response. C3 is the point at which all complement pathways converge, and complete deficiency of C3 invariably leads to severe infections, including those caused by meningococci and pneumococci. Deficiencies of the alternative and terminal complement pathways result in an almost exclusive predisposition to invasive meningococcal disease. The spleen plays an important role in antigen processing and the production of antibodies. Splenic macrophages are critical in clearing opsonized encapsulated bacteria (such as pneumococci, meningococci, and Escherichia coli) and intraerythrocytic parasites such as those causing malaria and babesiosis, which explains the fulminant nature of these infections in persons with anatomic or functional asplenia. Paramount to the management of patients with complement deficiencies and asplenia is educating patients about their predisposition to infection and the importance of preventive immunizations and seeking prompt medical attention.
Collapse
|
15
|
Brouwer MC, de Gans J, Heckenberg SGB, Zwinderman AH, van der Poll T, van de Beek D. Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2009; 9:31-44. [DOI: 10.1016/s1473-3099(08)70261-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Kugelberg E, Gollan B, Tang CM. Mechanisms in Neisseria meningitidis for resistance against complement-mediated killing. Vaccine 2008; 26 Suppl 8:I34-9. [PMID: 19388162 PMCID: PMC2686086 DOI: 10.1016/j.vaccine.2008.11.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial meningitis and septicaemia is a global health problem often caused by Neisseria meningitidis. The complement system is the most important aspect of host defence against this pathogen, and the critical interaction between the two is influenced by genetic polymorphisms on both the bacterial and the host side; variations of the meningococcus may lead to increased survival in human sera, whereas humans with complement deficiencies are more susceptible to meningococcal infections. Here we discuss the mechanisms of meningococcal resistance against complement-mediated killing and the influence of both bacterial and host genetic factors.
Collapse
Affiliation(s)
| | | | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|