1
|
Kiouri DP, Ntallis C, Kelaidonis K, Peana M, Tsiodras S, Mavromoustakos T, Giuliani A, Ridgway H, Moore GJ, Matsoukas JM, Chasapis CT. Network-Based Prediction of Side Effects of Repurposed Antihypertensive Sartans against COVID-19 via Proteome and Drug-Target Interactomes. Proteomes 2023; 11:21. [PMID: 37368467 PMCID: PMC10305495 DOI: 10.3390/proteomes11020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The potential of targeting the Renin-Angiotensin-Aldosterone System (RAAS) as a treatment for the coronavirus disease 2019 (COVID-19) is currently under investigation. One way to combat this disease involves the repurposing of angiotensin receptor blockers (ARBs), which are antihypertensive drugs, because they bind to angiotensin-converting enzyme 2 (ACE2), which in turn interacts with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. However, there has been no in silico analysis of the potential toxicity risks associated with the use of these drugs for the treatment of COVID-19. To address this, a network-based bioinformatics methodology was used to investigate the potential side effects of known Food and Drug Administration (FDA)-approved antihypertensive drugs, Sartans. This involved identifying the human proteins targeted by these drugs, their first neighbors, and any drugs that bind to them using publicly available experimentally supported data, and subsequently constructing proteomes and protein-drug interactomes. This methodology was also applied to Pfizer's Paxlovid, an antiviral drug approved by the FDA for emergency use in mild-to-moderate COVID-19 treatment. The study compares the results for both drug categories and examines the potential for off-target effects, undesirable involvement in various biological processes and diseases, possible drug interactions, and the potential reduction in drug efficiency resulting from proteoform identification.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (C.N.)
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Charalampos Ntallis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (C.N.)
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - John M. Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (C.N.)
| |
Collapse
|
2
|
Matsoukas J, Deraos G, Kelaidonis K, Hossain MK, Feehan J, Tzakos AG, Matsoukas E, Topoglidis E, Apostolopoulos V. Myelin Peptide-Mannan Conjugate Multiple Sclerosis Vaccines: Conjugation Efficacy and Stability of Vaccine Ingredient. Vaccines (Basel) 2021; 9:vaccines9121456. [PMID: 34960201 PMCID: PMC8708491 DOI: 10.3390/vaccines9121456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Myelin peptide–mannan conjugates have been shown to be potential vaccines in the immunotherapy of multiple sclerosis. The conjugates are comprised from the epitope peptide and the polysaccharide mannan which transfers as a carrier the antigenic peptide to dendritic cells that process and present antigenic peptides at their surface in complex with MHC class I or class II resulting in T-cell stimulation. The conjugation of antigenic peptide with mannan occurs through the linker (Lys–Gly)5, which connects the peptide with the oxidized mannose units of mannan. This study describes novel methods for the quantification of the vaccine ingredient peptide within the conjugate, a prerequisite for approval of clinical trials in the pursuit of multiple sclerosis therapeutics. Myelin peptides, such as MOG35–55, MBP83–99, and PLP131–145 in linear or cyclic form, as altered peptide ligands or conjugated to appropriate carriers, possess immunomodulatory properties in experimental models and are potential candidates for clinical trials.
Collapse
Affiliation(s)
- John Matsoukas
- Drug Discovery Laboratory, NewfvDrug, P.C., Patras Science Park, 26504 Patras, Greece; (G.D.); (K.K.); (E.M.)
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (M.K.H.); (J.F.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (J.M.); (V.A.)
| | - George Deraos
- Drug Discovery Laboratory, NewfvDrug, P.C., Patras Science Park, 26504 Patras, Greece; (G.D.); (K.K.); (E.M.)
| | - Kostas Kelaidonis
- Drug Discovery Laboratory, NewfvDrug, P.C., Patras Science Park, 26504 Patras, Greece; (G.D.); (K.K.); (E.M.)
| | - Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (M.K.H.); (J.F.)
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (M.K.H.); (J.F.)
| | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Elizabeth Matsoukas
- Drug Discovery Laboratory, NewfvDrug, P.C., Patras Science Park, 26504 Patras, Greece; (G.D.); (K.K.); (E.M.)
| | | | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (M.K.H.); (J.F.)
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence: (J.M.); (V.A.)
| |
Collapse
|
3
|
Matsoukas JM, Ligielli I, Chasapis CT, Kelaidonis K, Apostolopoulos V, Mavromoustakos T. Novel Approaches in the Immunotherapy of Multiple Sclerosis: Cyclization of Myelin Epitope Peptides and Conjugation with Mannan. Brain Sci 2021; 11:1583. [PMID: 34942885 PMCID: PMC8699547 DOI: 10.3390/brainsci11121583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023] Open
Abstract
Multiple Sclerosis (MS) is a serious autoimmune disease. The patient in an advanced state of the disease has restrained mobility and remains handicapped. It is therefore understandable that there is a great need for novel drugs and vaccines for the treatment of MS. Herein we summarise two major approaches applied for the treatment of the disease using peptide molecules alone or conjugated with mannan. The first approach focuses on selective myelin epitope peptide or peptide mimetic therapy alone or conjugated with mannan, and the second on immune-therapy by preventing or controlling disease through the release of appropriate cytokines. In both approaches the use of cyclic peptides offers the advantage of increased stability from proteolytic enzymes. In these approaches, the synthesis of myelin epitope peptides conjugated to mannan is of particular interest as this was found to protect mice against experimental autoimmune encephalomyelitis, an animal model of MS, in prophylactic and therapeutic protocols. Protection was peptide-specific and associated with reduced antigen-specific T cell proliferation. The aim of the studies of these peptide epitope analogs is to understand their molecular basis of interactions with human autoimmune T-cell receptor and a MS-associated human leucocyte antigen (HLA)-DR2b. This knowledge will lead the rational design to new beneficial non-peptide mimetic analogs for the treatment of MS. Some issues of the use of nanotechnology will also be addressed as a future trend to tackle the disease. We highlight novel immunomodulation and vaccine-based research against MS based on myelin epitope peptides and strategies developed in our laboratories.
Collapse
Affiliation(s)
- John M. Matsoukas
- NewDrug PC, Patras Science Park, 265 04 Platani, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Irene Ligielli
- Department of Chemistry, University of Athens, 157 72 Athens, Greece;
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, Institute of Chemical, School of Natural Sciences, University of Patras, 265 04 Patras, Greece;
- Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 265 04 Patra, Greece
| | | | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, Melbourne, VIC 3021, Australia
| | | |
Collapse
|
4
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
5
|
Advances in Multiple Sclerosis Research-Series I. Brain Sci 2020; 10:brainsci10110795. [PMID: 33137992 PMCID: PMC7692630 DOI: 10.3390/brainsci10110795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 01/16/2023] Open
Abstract
Designing immunotherapeutics, drugs, and anti-inflammatory reagents has been at the forefront of autoimmune research, in particular, multiple sclerosis, for over 20 years. Delivery methods that are used to modulate effective and long-lasting immune responses have been the major focus. This Special Issue, “Advances in Multiple Sclerosis Research—Series I”, focused on delivery methods used for immunotherapeutic approaches, drug design, anti-inflammatories, identification of markers, methods for detection and monitoring MS and treatment modalities. The issue gained much attention with 20 publications, and, as a result, we launched Series II with the deadline for submission being 30 April 2021.
Collapse
|
6
|
The Use of Electrochemical Voltammetric Techniques and High-Pressure Liquid Chromatography to Evaluate Conjugation Efficiency of Multiple Sclerosis Peptide-Carrier Conjugates. Brain Sci 2020; 10:brainsci10090577. [PMID: 32825557 PMCID: PMC7565688 DOI: 10.3390/brainsci10090577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Abstract
Recent studies have shown the ability of electrochemical methods to sense and determine, even at very low concentrations, the presence and quantity of molecules or analytes including pharmaceutical samples. Furthermore, analytical methods, such as high-pressure liquid chromatography (HPLC), can also detect the presence and quantity of peptides at very low concentrations, in a simple, fast, and efficient way, which allows the monitoring of conjugation reactions and its completion. Graphite/SiO2 film electrodes and HPLC methods were previously shown by our group to be efficient to detect drug molecules, such as losartan. We now use these methods to detect the conjugation efficiency of a peptide from the immunogenic region of myelin oligodendrocyte to a carrier, mannan. The HPLC method furthermore confirms the stability of the peptide with time in a simple one pot procedure. Our study provides a general method to monitor, sense and detect the presence of peptides by effectively confirming the conjugation efficiency. Such methods can be used when designing conjugates as potential immunotherapeutics in the treatment of diseases, including multiple sclerosis.
Collapse
|
7
|
Apostolopoulos V, Rostami A, Matsoukas J. The Long Road of Immunotherapeutics against Multiple Sclerosis. Brain Sci 2020; 10:E288. [PMID: 32403377 PMCID: PMC7287601 DOI: 10.3390/brainsci10050288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
This commentary highlights novel immunomodulation and vaccine-based research against multiple sclerosis (MS) and reveals the amazing story that triggered this cutting-edge MS research in Greece and worldwide. It further reveals the interest and solid support of some of the world's leading scientists, including sixteen Nobel Laureates who requested from European leadership to take action in supporting Greece and its universities in the biggest ever financial crisis the country has encountered in the last decades. This support endorsed vaccine-based research on MS, initiated in Greece and Australia, leading to a worldwide network aiming to treat or manage disease outcomes. Initiatives by bright and determined researchers can result in frontiers science. We shed light on a unique story behind great research on MS which is a step forward in our efforts to develop effective treatments for MS.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
| | | | | |
Collapse
|
8
|
Dargahi N, Matsoukas J, Apostolopoulos V. Streptococcus thermophilus ST285 Alters Pro-Inflammatory to Anti-Inflammatory Cytokine Secretion against Multiple Sclerosis Peptide in Mice. Brain Sci 2020; 10:brainsci10020126. [PMID: 32102262 PMCID: PMC7071487 DOI: 10.3390/brainsci10020126] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Probiotic bacteria have beneficial effects to the development and maintenance of a healthy microflora that subsequently has health benefits to humans. Some of the health benefits attributed to probiotics have been noted to be via their immune modulatory properties suppressing inflammatory conditions. Hence, probiotics have become prominent in recent years of investigation with regard to their health benefits. As such, in the current study, we determined the effects of Streptococcus thermophilus to agonist MBP83-99 peptide immunized mouse spleen cells. It was noted that Streptococcus thermophilus induced a significant increase in the expression of anti-inflammatory IL-4, IL-5, IL-10 cytokines, and decreased the secretion of pro-inflammatory IL-1β and IFN-γ Regular consumption of Streptococcus thermophilus may therefore be beneficial in the management and treatment of autoimmune diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia;
| | | | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia;
- Correspondence: ; Tel.: +613-9919-2025
| |
Collapse
|
9
|
Deraos G, Kritsi E, Matsoukas MT, Christopoulou K, Kalbacher H, Zoumpoulakis P, Apostolopoulos V, Matsoukas J. Design of Linear and Cyclic Mutant Analogues of Dirucotide Peptide (MBP 82⁻98) against Multiple Sclerosis: Conformational and Binding Studies to MHC Class II. Brain Sci 2018; 8:brainsci8120213. [PMID: 30518150 PMCID: PMC6316436 DOI: 10.3390/brainsci8120213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system. MS is a T cell-mediated disease characterized by the proliferation, infiltration, and attack of the myelin sheath by immune cells. Previous studies have shown that cyclization provides molecules with strict conformation that could modulate the immune system. Methods: In this study, we synthesized peptide analogues derived from the myelin basic protein (MBP)82–98 encephalitogenic sequence (dirucotide), the linear altered peptide ligand MBP82–98 (Ala91), and their cyclic counterparts. Results: The synthesized peptides were evaluated for their binding to human leukocyte antigen (HLA)-DR2 and HLA-DR4 alleles, with cyclic MBP82–98 being a strong binder with the HLA-DR2 allele and having lower affinity binding to the HLA-DR4 allele. In a further step, conformational analyses were performed using NMR spectroscopy in solution to describe the conformational space occupied by the functional amino acids of both linear and cyclic peptide analogues. This structural data, in combination with crystallographic data, were used to study the molecular basis of their interaction with HLA-DR2 and HLA-DR4 alleles. Conclusion: The cyclic and APL analogues of dirucotide are promising leads that should be further evaluated for their ability to alter T cell responses for therapeutic benefit against MS.
Collapse
Affiliation(s)
- George Deraos
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
- ELDrug S.A., Patras Science Park, Platani, 26504 Patras, Greece.
| | - Eftichia Kritsi
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | | | - Konstantina Christopoulou
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
- ELDrug S.A., Patras Science Park, Platani, 26504 Patras, Greece.
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tubingen, 72076 Tubingen, Germany.
| | - Panagiotis Zoumpoulakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne VIC 3030, Australia.
| | - John Matsoukas
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
- ELDrug S.A., Patras Science Park, Platani, 26504 Patras, Greece.
| |
Collapse
|
10
|
Lourbopoulos A, Matsoukas MT, Katsara M, Deraos G, Giannakopoulou A, Lagoudaki R, Grigoriadis N, Matsoukas J, Apostolopoulos V. Cyclization of PLP 139-151 peptide reduces its encephalitogenic potential in experimental autoimmune encephalomyelitis. Bioorg Med Chem 2017; 26:2221-2228. [PMID: 29681483 DOI: 10.1016/j.bmc.2017.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
Abstract
We report the novel synthesis of cyclic PLP139-151 (cPLP) and its application in SJL/J mice to study its encephalitogenic effects. Our results indicate that the cPLP analog is minimally encephalitogenic when administered to induce experimental autoimmune encephalomyelitis (low disease burden, minimal inflammatory, demyelinating and axonopathic pathology compared to its linear counterpart). Proliferation assays confirmed the low stimulatory potential of the cPLP compared to linPLP (2.5-fold lower proliferation) as well as inducing lower antibody responses. Molecular modeling showed a completely different TCR recognition profile of cPLP in regard to linPLP, where H147 replaces W144 and F151-K150 replace H147 as TCR contacts, which may explain the difference on each peptide's response.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Greece; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University (LMU), Munich 81377, Germany
| | | | - Maria Katsara
- Novartis (Hellas) SACI, Medical Department, National Road No1 (12th Km), GR-144 51, Metamorphosis, Athens, Greece
| | - George Deraos
- Department of Chemistry, University of Patras, Patras 26500, Greece; Eldrug, Patras Science Park, Patras, Greece
| | - Aggeliki Giannakopoulou
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Greece
| | - Roza Lagoudaki
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636, Greece
| | | | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, VIC 3030, Australia.
| |
Collapse
|
11
|
Son HY, Apostolopoulos V, Kim CW. Mannosylated T/Tn with Freund's adjuvant induces cellular immunity. Int J Immunopathol Pharmacol 2017; 31:394632017742504. [PMID: 29251002 PMCID: PMC5849214 DOI: 10.1177/0394632017742504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inducing cancer-specific cellular immune responses has become an attractive
strategy in cancer treatment. In this study, we investigated the role of several
adjuvants in eliciting T/Tn-specific cellular immunity and protection against
T/Tn expressing tumor challenge. T/Tn (9:1) antigen was purified from blood type
“O” erythrocytes donated from healthy Korean volunteers. Immunization was
performed using: T/Tn only, T/Tn mixed with Freund’s adjuvant (T/Tn + FA),
keyhole limpet hemocyanin (KLH)-conjugated T/Tn mixed with FA (KLH-T/Tn + FA),
and oxidized mannan-conjugated T/Tn mixed with FA (ox-M-T/Tn + FA). Mice
immunized with ox-M-T/Tn + FA generated T/Tn-specific CD3, helper T (Th) cells,
major histocompatibility complex (MHC) II, and MHC I; T/Tn presentation was
significantly high and tolerogenic CD11b+ was the lowest among the
tumor models. To verify Th type, we stained intracellular cytokines (interferon
gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF),
interleukin (IL)-4, and IL-10) using CD3 co-staining. Th1 (IFN-γ and GM-CSF)
cytokines were highly expressed and showed high FasL/Fas ratios, cytotoxic T
lymphocyte (CTL) activity, and cytotoxic T lymphocyte precursor (CTLp) activity
in mice immunized with ox-M-T/Tn + FA. Lymphocyte infiltration was highest in
mice immunized with ox-M-T/Tn + FA. Additionally, we monitored FasL, MHC I,
CD301, and T/Tn expression levels using immunohistochemistry (IHC) on macrophage
and tumor sites. The expression of all markers was highest in the ox-M-T/Tn + FA
group. Furthermore, tumor retardation and survival rate were highest in the
ox-M-T/Tn + FA group. These results demonstrate that a vaccine formulation of
T/Tn conjugated with ox-M and mixed with FA-induced cellular immunity and
sustained a humoral immune response without over-activating the immune system,
thus effectively inhibiting tumor growth.
Collapse
Affiliation(s)
- Hye-Youn Son
- 1 Tumor Immunity Medical Research Center, Cancer Research Institute and Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Vasso Apostolopoulos
- 2 Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Footscray, VIC, Australia
| | - Chul-Woo Kim
- 1 Tumor Immunity Medical Research Center, Cancer Research Institute and Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Tapeinou A, Giannopoulou E, Simal C, Hansen BE, Kalofonos H, Apostolopoulos V, Vlamis-Gardikas A, Tselios T. Design, synthesis and evaluation of an anthraquinone derivative conjugated to myelin basic protein immunodominant (MBP 85-99) epitope: Towards selective immunosuppression. Eur J Med Chem 2017; 143:621-631. [PMID: 29216561 DOI: 10.1016/j.ejmech.2017.11.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 11/22/2017] [Indexed: 02/09/2023]
Abstract
Anthraquinone type compounds, especially di-substituted amino alkylamino anthraquinones have been widely studied as immunosuppressants. The anthraquinone ring is part of mitoxandrone that has been used for the treatment of multiple sclerosis (MS) and several types of tumors. A desired approach for the treatment of MS would be the immunosuppression and elimination of specific T cells that are responsible for the induction of the disease. Herein, the development of a peptide compound bearing an anthraquinone derivative with the potential to specifically destroy the encephalitogenic T cells responsible for the onset of MS is described. The compound consists of the myelin basic protein (MBP) 85-99 immunodominant epitope (MBP85-99) coupled to an anthraquinone type molecule (AQ) via a disulfide (S-S) and 6 amino hexanoic acid (Ahx) residues (AQ-S-S-(Ahx)6MBP85-99). AQ-S-S-(Ahx)6MBP85-99 could bind to HLA II DRB1*-1501 antigen with reasonable affinity (IC50 of 56 nM) The compound was localized to the nucleus of Jurkat cells (an immortalized line of human T lymphocytes) 10 min after its addition to the medium and resulted in lowered Bcl-2 levels (apoptosis). Entrance of the compound was abolished when cells were pre-treated with cisplatin, an inhibitor of thioredoxin reductase. Accordingly, levels of free thiols were elevated in the culture supernatants of Jurkat cells exposed to N-succinimidyl 3-(2-pyridyldithio) propionate coupled to (Ahx)6MBP85-99 via a disulphide (SPDP-S-S-(Ahx)6MBP85-99) but returned to normal after exposure to cisplatin. These results raise the possibility of AQ-S-S-(Ahx)6MBP85-99 being used as an eliminator of encephalitogenic T cells via implication of the thioredoxin system for the generation of the toxic, thiol-containing moiety (AQ-SH). Future experiments would ideally determine whether SPDP-S-S-(Ahx)6MBP85-99 could incorporate into HLA II DRB1*-1501 tetramers and neutralize encephalitogenic T cell lines sensitized to MBP85-99.
Collapse
Affiliation(s)
- Anthi Tapeinou
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, GR-26504, Rion, Greece
| | - Carmen Simal
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece
| | - Bjarke E Hansen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Haralabos Kalofonos
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, GR-26504, Rion, Greece
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | | | - Theodore Tselios
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece.
| |
Collapse
|
13
|
Multiple Sclerosis: Immunopathology and Treatment Update. Brain Sci 2017; 7:brainsci7070078. [PMID: 28686222 PMCID: PMC5532591 DOI: 10.3390/brainsci7070078] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
The treatment of multiple sclerosis (MS) has changed over the last 20 years. All immunotherapeutic drugs target relapsing remitting MS (RRMS) and it still remains a medical challenge in MS to develop a treatment for progressive forms. The most common injectable disease-modifying therapies in RRMS include β-interferons 1a or 1b and glatiramer acetate. However, one of the major challenges of injectable disease-modifying therapies has been poor treatment adherence with approximately 50% of patients discontinuing the therapy within the first year. Herein, we go back to the basics to understand the immunopathophysiology of MS to gain insights in the development of new improved drug treatments. We present current disease-modifying therapies (interferons, glatiramer acetate, dimethyl fumarate, teriflunomide, fingolimod, mitoxantrone), humanized monoclonal antibodies (natalizumab, ofatumumb, ocrelizumab, alentuzumab, daclizumab) and emerging immune modulating approaches (stem cells, DNA vaccines, nanoparticles, altered peptide ligands) for the treatment of MS.
Collapse
|
14
|
Design and Synthesis of Non-Peptide Mimetics Mapping the Immunodominant Myelin Basic Protein (MBP 83-96) Epitope to Function as T-Cell Receptor Antagonists. Int J Mol Sci 2017; 18:ijms18061215. [PMID: 28594344 PMCID: PMC5486038 DOI: 10.3390/ijms18061215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/08/2023] Open
Abstract
Encephalitogenic T cells are heavily implicated in the pathogenesis of multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system. Their stimulation is triggered by the formation of a trimolecular complex between the human leukocyte antigen (HLA), an immunodominant myelin basic protein (MBP) epitope, and the T cell receptor (TCR). We detail herein our studies directed towards the rational design and synthesis of non-peptide mimetic molecules, based on the immunodominant MBP83-96 epitope that is recognized by the TCR in complex with HLA. We focused our attention on the inhibition of the trimolecular complex formation and consequently the inhibition of proliferation of activated T cells. A structure-based pharmacophore model was generated, in view of the interactions between the TCR and the HLA-MBP83-96 complex. As a result, new candidate molecules were designed based on lead compounds obtained through the ZINC database. Moreover, semi-empirical and density functional theory methods were applied for the prediction of the binding energy between the proposed non-peptide mimetics and the TCR. We synthesized six molecules that were further evaluated in vitro as TCR antagonists. Analogues 15 and 16 were able to inhibit to some extent the stimulation of T cells by the immunodominant MBP83-99 peptide from immunized mice. Inhibition was followed to a lesser degree by analogues 17 and 18 and then by analogue 19. These studies show that lead compounds 15 and 16 may be used for immunotherapy against MS.
Collapse
|
15
|
Cyclic MOG 35-55 ameliorates clinical and neuropathological features of experimental autoimmune encephalomyelitis. Bioorg Med Chem 2017. [PMID: 28642030 DOI: 10.1016/j.bmc.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
EAE is induced to susceptible mice using linear peptides of myelin proteins of the central nervous system. Specific peptide motifs within the peptide-binding groove of the MHC peptide-complex determines the affinity of the peptide in each animal and the consequent T-cell receptor recognition and activation of the cell. Altered peptide ligand (APL) vaccination is a novel approach based on an effort to induce T-cell tolerance or alter cytokine profile from pro-inflammatory to anti-inflammatory. In the present study we synthesized the MOG35-55 peptide and altered its 3-dimensional conformation to make it a cyclic one (c-MOG35-55). EAE was induced in C57BL/6 mice and pathology was studied on acute and chronic phase of the disease. Our data indicates that c-MOG35-55 peptide alone induces a mild transient acute phase without chronic axonopathy. Administration of the c-MOG35-55 peptide at a 1:1 ratio during disease induction significantly ameliorates clinical disease and underlying pathology, such as demyelination and axonopathy in the acute and chronic phases. Binding and structural studies revealed milder interactions between the c-MOG35-55 and mouse or human MHC class II alleles (H2-IAb and HLA-DR2). Collectively, we provide data supporting for the first time the concept that the cyclic modification of an established encephalitogenic peptide ameliorates the clinical outcomes and underlying pathological processes of EAE. Such a cyclic modification of linear peptides could provide a novel treatment approach for future, patient-selective, immunomodulative treatments of multiple sclerosis.
Collapse
|
16
|
Cyclic citrullinated MBP 87-99 peptide stimulates T cell responses: Implications in triggering disease. Bioorg Med Chem 2016; 25:528-538. [PMID: 27908754 DOI: 10.1016/j.bmc.2016.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022]
Abstract
Amino acid mutations to agonist peptide epitopes of myelin proteins have been used to modulate immune responses and experimental autoimmune encephalomyelitis (EAE, animal model of multiple sclerosis). Such amino acid alteration are termed, altered peptide ligands (APL). We have shown that the agonist myelin basic protein (MBP) 87-99 epitope (MBP87-99) with crucial T cell receptor (TCR) substitutions at positions 91 and 96 (K91,P96 (TCR contact residues) to R91,A96; [R91,A96]MBP87-99) results in altered T cell responses and inhibits EAE symptoms. In this study, the role of citrullination of arginines in [R91,A96]MBP87-99 peptide analog was determined using in vivo experiments in combination with computational studies. The immunogenicity of linear [Cit91,A96,Cit97]MBP87-99 and its cyclic analog - cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 when conjugated to the carrier mannan (polysaccharide) were studied in SJL/J mice. It was found that mannosylated cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 peptide induced strong T cell proliferative responses and IFN-gamma cytokine secretion compared with the linear one. Moreover, the interaction of linear and cyclic peptide analogs with the major histocompatibility complex (MHC II, H2-IAs) and TCR was analyzed using molecular dynamics simulations at the receptor level, in order to gain a better understanding of the molecular recognition mechanisms that underly the different immunological profiles of citrullinated peptides compared to its agonist native counterpart MBP87-99 epitope. The results demonstrate that the citrullination of arginine in combination with the backbone conformation of mutated linear and cyclic analogs are significant elements for the immune response triggering the induction of pro-inflammatory cytokines.
Collapse
|
17
|
Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis. Eur J Med Chem 2015; 101:13-23. [DOI: 10.1016/j.ejmech.2015.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 12/27/2022]
|
18
|
Katsara M, Deraos S, Tselios TV, Pietersz G, Matsoukas J, Apostolopoulos V. Immune responses of linear and cyclic PLP139-151 mutant peptides in SJL/J mice: peptides in their free state versus mannan conjugation. Immunotherapy 2015; 6:709-24. [PMID: 25186603 DOI: 10.2217/imt.14.42] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The predominant proteins of the CNS are myelin basic protein, proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein. PLP139-151 is one of the major encephalitogenic epitopes of PLP. The epitope PLP139-151 binds to MHC class II (I-A(s)) of SJL/J mice and induces Th1 responses. AIM The aim was to synthesize and test the immunological activity and cyclic analogs of PLP139-151 peptide and determine the immunological differences between adjuvant and conjugation to mannan. Materials & methods: We designed and synthesized cyclic peptides based on the linear PLP139-151 epitope by mutating critical T-cell receptor contact sites of residues W(144) and H(147), resulting in the mutant peptides PLP139-151, [L(144), R(147)]PLP139-151 or cyclo(139-151)PLP139-151 and cyclo(139-151) [L(144), R(147)]PLP139-151. In this study, mice were immunized with mutant peptides either emulsified in complete Freund's adjuvant or conjugated to reduced mannan and responses were assessed. RESULTS Linear double-mutant peptide [L(144), R(147)]PLP139-151 induced high levels of IL-4 responses and low levels of IgG total, and cyclization of this analog elicited low levels of IFN-γ. Moreover, linear [L(144), R(147)]PLP139-151 conjugated to reduced mannan did not induce IFN-γ, whilst both linear agonist PLP139-151 and cyclic agonist cyclo(139-151)PLP139-151 induced IFN-γ-secreting T cells. Molecular dynamics simulations of linear and cyclic(139-151)PLP139-151 analogs indicated the difference in topology of the most important for biological activity amino acids. CONCLUSION Cyclic double-mutant analog cyclo(139-151) [L(144), R(147)]PLP139-151 has potential for further studies for the immunotherapy of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Katsara
- Burnet Institute, Centre for Immunology, Immunology & Vaccine Laboratory, Melbourne, VIC, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Day S, Tselios T, Androutsou ME, Tapeinou A, Frilligou I, Stojanovska L, Matsoukas J, Apostolopoulos V. Mannosylated Linear and Cyclic Single Amino Acid Mutant Peptides Using a Small 10 Amino Acid Linker Constitute Promising Candidates Against Multiple Sclerosis. Front Immunol 2015; 6:136. [PMID: 26082772 PMCID: PMC4450228 DOI: 10.3389/fimmu.2015.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/11/2015] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a serious autoimmune demyelinating disease leading to loss of neurological function. The design and synthesis of various altered peptide ligands of immunodominant epitopes of myelin proteins to alter the autoimmune response, is a promising therapeutic approach for MS. In this study, linear and cyclic peptide analogs based on the myelin basic protein 83–99 (MBP83–99) immunodominant epitope conjugated to reduced mannan via the (KG)5 and keyhole limpet hemocyanin (KLH) bridge, respectively, were evaluated for their biological/immunological profiles in SJL/J mice. Of all the peptide analogs tested, linear MBP83–99(F91) and linear MBP83–99(Y91) conjugated to reduced mannan via a (KG)5 linker and cyclic MBP83–99(F91) conjugated to reduce mannan via KLH linker, yielded the best immunological profile and constitute novel candidates for further immunotherapeutic studies against MS in animal models and in human clinical trials.
Collapse
Affiliation(s)
- Stephanie Day
- Immunology and Vaccine Laboratory, Burnet Institute , Melbourne, VIC , Australia
| | | | - Maria-Eleni Androutsou
- Department of Chemistry, University of Patras , Patras , Greece ; Eldrug S.A. , Patras , Greece
| | - Anthi Tapeinou
- Department of Chemistry, University of Patras , Patras , Greece
| | - Irene Frilligou
- Department of Chemistry, University of Patras , Patras , Greece
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University , Melbourne, VIC , Australia
| | - John Matsoukas
- Department of Chemistry, University of Patras , Patras , Greece ; Eldrug S.A. , Patras , Greece
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University , Melbourne, VIC , Australia
| |
Collapse
|
20
|
Perera CJ, Duffy SS, Lees JG, Kim CF, Cameron B, Apostolopoulos V, Moalem-Taylor G. Active immunization with myelin-derived altered peptide ligand reduces mechanical pain hypersensitivity following peripheral nerve injury. J Neuroinflammation 2015; 12:28. [PMID: 25885812 PMCID: PMC4340611 DOI: 10.1186/s12974-015-0253-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background T cells have been implicated in neuropathic pain that is caused by peripheral nerve injury. Immunogenic myelin basic protein (MBP) peptides have been shown to initiate mechanical allodynia in a T cell-dependent manner. Antagonistic altered peptide ligands (APLs) are peptides with substitutions in amino acid residues at T cell receptor contact sites and can inhibit T cell function and modulate inflammatory responses. In the present study, we studied the effects of immunization with MBP-derived APL on pain behavior and neuroinflammation in an animal model of peripheral nerve injury. Methods Lewis rats were immunized subcutaneously at the base of the tail with either a weakly encephalitogenic peptide of MBP (cyclo-MBP87-99) or APL (cyclo-(87-99)[A91,A96]MBP87-99) in complete Freund’s adjuvant (CFA) or CFA only (control), following chronic constriction injury (CCI) of the left sciatic nerve. Pain hypersensitivity was tested by measurements of paw withdrawal threshold to mechanical stimuli, regulatory T cells in spleen and lymph nodes were analyzed by flow cytometry, and immune cell infiltration into the nervous system was assessed by immunohistochemistry (days 10 and 30 post-CCI). Cytokines were measured in serum and nervous tissue of nerve-injured rats (day 10 post-CCI). Results Rats immunized with the APL cyclo-(87-99)[A91,A96]MBP87-99 had significantly reduced mechanical pain hypersensitivity in the ipsilateral hindpaw compared to cyclo-MBP87-99-treated and control rats. This was associated with significantly decreased infiltration of T cells and ED1+ macrophages in the injured nerve of APL-treated animals. The percentage of anti-inflammatory (M2) macrophages was significantly upregulated in the APL-treated rats on day 30 post-CCI. Compared to the control rats, microglial activation in the ipsilateral lumbar spinal cord was significantly increased in the MBP-treated rats, but was not altered in the rats immunized with the MBP-derived APL. In addition, immunization with the APL significantly increased splenic regulatory T cells. Several cytokines were significantly altered after CCI, but no significant difference was observed between the APL-treated and control rats. Conclusions These results suggest that immune deviation by active immunization with a non-encephalitogenic MBP-derived APL mediates an analgesic effect in animals with peripheral nerve injury. Thus, T cell immunomodulation warrants further investigation as a possible therapeutic strategy for the treatment of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Chamini J Perera
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Samuel S Duffy
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Justin G Lees
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Cristina F Kim
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Barbara Cameron
- Centre for Infection and Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Centre for Chronic Disease Prevention and Management, Victoria University, Melbourne, VIC, Australia.
| | - Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| |
Collapse
|
21
|
Tian DH, Perera CJ, Apostolopoulos V, Moalem-Taylor G. Effects of vaccination with altered Peptide ligand on chronic pain in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Front Neurol 2013; 4:168. [PMID: 24194728 PMCID: PMC3810649 DOI: 10.3389/fneur.2013.00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/16/2013] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain is a chronic symptom of multiple sclerosis (MS) and affects nearly half of all MS sufferers. A key instigator of this pain is the pro-inflammatory response in MS. We investigated the behavioral effects of immunization with a mutant peptide of myelin basic protein (MBP), termed altered peptide ligand (APL), known to initiate immune deviation from a pro-inflammatory state to an anti-inflammatory response in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Male and female Lewis rats were injected with vehicle control or with varying doses of 50 or 100 μg guinea pig MBP in combination with or without APL. APL-treated animals established significantly lower disease severity compared to encephalitogenic MBP-treated animals. Animals with EAE developed mechanical, but not thermal pain hypersensitivity. Mechanical pain sensitivities were either improved or normalized during periods of clinical disease in male and female APL-treated animals as compared to the encephalitogenic group. No significant changes to thermal latency were observed upon co-immunization with APL. Together these data indicate that APL ameliorates disease states and selectively mediates an analgesic effect on EAE animals.
Collapse
Affiliation(s)
- David H Tian
- School of Medical Sciences, University of New South Wales , Sydney, NSW , Australia
| | | | | | | |
Collapse
|
22
|
Targeting antigens to dendritic cell receptors for vaccine development. JOURNAL OF DRUG DELIVERY 2013; 2013:869718. [PMID: 24228179 PMCID: PMC3817681 DOI: 10.1155/2013/869718] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are highly specialized antigen presenting cells of the immune system which play a key role in regulating immune responses. Depending on the method of antigen delivery, DCs stimulate immune responses or induce tolerance. As a consequence of the dual function of DCs, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. In vaccine development, a major aim is to induce strong, specific T-cell responses. This is achieved by targeting antigen to cell surface molecules on DCs that efficiently channel the antigen into endocytic compartments for loading onto MHC molecules and stimulation of T-cell responses. The most attractive cell surface receptors, expressed on DCs used as targets for antigen delivery for cancer and other diseases, are discussed.
Collapse
|
23
|
Divergent and convergent synthesis of polymannosylated dibranched antigenic peptide of the immunodominant epitope MBP(83-99). Bioorg Med Chem 2013; 21:6718-25. [PMID: 23993671 DOI: 10.1016/j.bmc.2013.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/17/2013] [Accepted: 08/05/2013] [Indexed: 11/24/2022]
Abstract
Multiple antigenic peptide (MAP) systems are dendrimeric structures bearing multiple copies of identical or different peptide epitopes, and they have been demonstrated to show enhanced immunogenicity. Herein, we report the direct (divergent) and indirect (convergent) synthesis, using contemporary synthetic approaches, of a di-branched antigenic peptide (di-BAP) containing the immunodominant epitope MBP(83-99), which is implicated in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The direct synthesis (di-BAP 1) was performed using microwave irradiation. The indirect synthesis (di-BAP 2) was carried out performing an efficient chemoselective coupling reaction through the formation of a thioether bond. Both di-BAPs were conjugated to polysaccharide mannan since mannosylation is a promising technique to achieve modulation in immune response. The conjugation was achieved through free amino groups of both di-BAPs via the formation of Schiff bases. The mannan-conjugated di-BAPs were further evaluated in vivo in a prophylactic vaccination protocol, prior to EAE induction in Lewis rats.
Collapse
|
24
|
Potamitis C, Matsoukas MT, Tselios T, Mavromoustakos T, Golič Grdadolnik S. Conformational analysis of the ΜΒΡ83-99 (Phe91) and ΜΒΡ83-99 (Tyr91) peptide analogues and study of their interactions with the HLA-DR2 and human TCR receptors by using molecular dynamics. J Comput Aided Mol Des 2011; 25:837-53. [PMID: 21898163 DOI: 10.1007/s10822-011-9467-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 08/17/2011] [Indexed: 11/27/2022]
Abstract
The two new synthetic analogues of the MBP(83-99) epitope substituted at Lys(91) (primary TCR contact) with Phe [MBP(83-99) (Phe(91))] or Tyr [MBP(83-99) (Tyr(91))], have been structurally elucidated using 1D and 2D high resolution NMR studies. The conformational analysis of the two altered peptide ligands (APLs) has been performed and showed that they adopt a linear and extended conformation which is in agreement with the structural requirements of the peptides that interact with the HLA-DR2 and TCR receptors. In addition, Molecular Dynamics (MD) simulations of the two analogues in complex with HLA-DR2 (DRA, DRB1*1501) and TCR were performed. Similarities and differences of the binding motif of the two analogues were observed which provide a possible explanation of their biological activity. Their differences in the binding mode in comparison with the MBP(83-99) epitope may also explain their antagonistic versus agonistic activity. The obtained results clearly indicate that substitutions in crucial amino acids (TCR contacts) in combination with the specific conformational characteristics of the MBP(83-99) immunodominant epitope lead to an alteration of their biological activity. These results make the rational drug design intriguing since the biological activity is very sensitive to the substitution and conformation of the mutated MBP epitopes.
Collapse
Affiliation(s)
- C Potamitis
- National Hellenic Research Foundation, Institute of Organic and Pharmaceutical Chemistry, Vas. Constantinou 48, 11635 Athens, Greece
| | | | | | | | | |
Collapse
|
25
|
Problems with molecular mechanics implementations on the example of 4-benzoyl-1-(4-methyl-imidazol-5-yl)-carbonylthiosemicarbazide. J Mol Model 2011; 18:843-9. [DOI: 10.1007/s00894-011-1117-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 05/03/2011] [Indexed: 12/25/2022]
|
26
|
Katsara M, Yuriev E, Ramsland PA, Tselios T, Deraos G, Lourbopoulos A, Grigoriadis N, Matsoukas J, Apostolopoulos V. Altered peptide ligands of myelin basic protein ( MBP87-99 ) conjugated to reduced mannan modulate immune responses in mice. Immunology 2010; 128:521-33. [PMID: 19930042 DOI: 10.1111/j.1365-2567.2009.03137.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mutations of peptides to generate altered peptide ligands, capable of switching immune responses from T helper 1 (Th1) to T helper 2 (Th2), are promising candidates for the immunotherapy of autoimmune diseases such as multiple sclerosis (MS). We synthesized two mutant peptides from myelin basic protein 87-99 (MBP(87-99)), an immunodominant peptide epitope identified in MS. Mutations of residues K(91) and P(96), known to be critical T-cell receptor (TCR) contact sites, resulted in the mutant peptides [R(91), A(96)]MBP(87-99) and [A(91), A(96)]MBP(87-99). Immunization of mice with these altered peptide ligands emulsified in complete Freund's adjuvant induced both interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) responses compared with only IFN-gamma responses induced to the native MBP(87-99) peptide. It was of interest that [R(91), A(96)]MBP(87-99) conjugated to reduced mannan induced 70% less IFN-gamma compared with the native MBP(87-99) peptide. However, [A(91), A(96)]MBP(87-99) conjugated to reduced mannan did not induce IFN-gamma-secreting T cells, but elicited very high levels of interleukin-4 (IL-4). Furthermore, antibodies generated to [A(91), A(96)]MBP(87-99) peptide conjugated to reduced mannan did not cross-react with the native MBP(87-99) peptide. By molecular modelling of the mutant peptides in complex with major histocompatibility complex (MHC) class II, I-A(s), novel interactions were noted. It is clear that the double-mutant peptide analogue [A(91), A(96)]MBP(87-99) conjugated to reduced mannan is able to divert immune responses from Th1 to Th2 and is a promising mutant peptide analogue for use in studies investigating potential treatments for MS.
Collapse
Affiliation(s)
- Maria Katsara
- Immunology and Vaccine, and Structural Immunology Laboratories, Burnet Institute, Centre for Immunology, AMREP, Prahran, Vic., Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Katsara M, Deraos G, Tselios T, Matsoukas MT, Friligou I, Matsoukas J, Apostolopoulos V. Design and synthesis of a cyclic double mutant peptide (cyclo(87-99)[A91,A96]MBP87-99) induces altered responses in mice after conjugation to mannan: implications in the immunotherapy of multiple sclerosis. J Med Chem 2009; 52:214-8. [PMID: 19072222 DOI: 10.1021/jm801250v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Altered peptide ligands that alter immune responses are a promising approach to the immunotherapy of multiple sclerosis. Cyclic peptides are of interest because the limited stability of linear peptides restricts their use in vivo. We designed and synthesized a cyclic double mutant peptide from MBP(87-99)-[cyclo(87-99)[A(91),A(96)]MBP(87-99)]. Immunization of mice, in CFA reduced Th1 responses. However, when conjugated to reduced mannan, a significant further reduction of Th1 responses and moderate Th2 responses were induced.
Collapse
Affiliation(s)
- Maria Katsara
- Burnet Institute, Immunology and Vaccine Laboratory, Heidelberg, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Katsara M, Minigo G, Plebanski M, Apostolopoulos V. The good, the bad and the ugly: how altered peptide ligands modulate immunity. Expert Opin Biol Ther 2009; 8:1873-84. [PMID: 18990075 DOI: 10.1517/14712590802494501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The basis of T cell immune responses is the specific recognition of an immunogenic peptide epitope by a T cell receptor. Peptide alterations of such T cell epitopes with single or few amino acid variations can have drastic effects on the outcome of this recognition. These altered peptide ligands can act as modulators of immune responses as they are capable of downregulating or upregulating responses. OBJECTIVE/METHODS We review how altered peptide ligands can have 'good' 'bad' and 'ugly' outcomes in treating diseases. RESULTS/CONCLUSION Altered peptide ligands have been used as immunotherapeutics in autoimmune (and allergic) diseases, infectious diseases and cancer. In the next five years we anticipate seeing a number of altered peptide ligands in clinical trials, progressing from contradictory classifications of good, bad or ugly, to the exciting outcome of 'useful'.
Collapse
Affiliation(s)
- Maria Katsara
- Immunology and Vaccine Laboratory, The Macfarlane Burnet Institute incorporating The Austin Research Institute, Studley Road, Heidelberg, VIC 3084, Australia
| | | | | | | |
Collapse
|
29
|
Deraos G, Chatzantoni K, Matsoukas MT, Tselios T, Deraos S, Katsara M, Papathanasopoulos P, Vynios D, Apostolopoulos V, Mouzaki A, Matsoukas J. Citrullination of linear and cyclic altered peptide ligands from myelin basic protein (MBP(87-99)) epitope elicits a Th1 polarized response by T cells isolated from multiple sclerosis patients: implications in triggering disease. J Med Chem 2008; 51:7834-7842. [PMID: 19053745 DOI: 10.1021/jm800891n] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Derangement of cellular immunity is central in the pathophysiology of multiple sclerosis (MS) and is often manifested by abnormal cytokine production. We investigated cytokine secretion in peripheral blood mononuclear cells (PBMC) of 18 MS patients and 15 controls and correlated cytokine polarization with the nature of antigenic stimulus. We synthesized two novel citrullinated peptides, linear [Cit(91), Ala(96), Cit(97)]MBP(87-99) and cyclo(87-99)[Cit(91), Ala(96), Cit(97)]MBP(87-99) that resulted from citrullination of 91,97 Arg residues in antagonists, linear [Arg(91), Ala(96)]MBP(87-99) and cyclo(87-99)[Arg(91), Ala(96)]MBP(87-99) peptides. PBMC from MS patients and controls were cultured with citrullinated peptides, and both peptides caused a Th1 polarization in all MS patients studied. In contrast, culture with noncitrullinated MBP peptides resulted in heterogeneous cytokine secretion that differed between individual patients. Thus, citrullination of self-antigens may potentially trigger disease in susceptible individuals. This finding may open new avenues in drug design of new substances that inhibit citrullination and arrest epitope spreading and worsening of MS.
Collapse
Affiliation(s)
- George Deraos
- Department of Chemistry, University of Patras, Patras 26500, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
A double mutation of MBP(83-99) peptide induces IL-4 responses and antagonizes IFN-gamma responses. J Neuroimmunol 2008; 200:77-89. [PMID: 18675465 DOI: 10.1016/j.jneuroim.2008.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022]
Abstract
A number of treatment options are available to multiple sclerosis patients, however this needs to be improved. Herein, we designed and synthesized a number of peptides by mutating principal TCR contact residues based on MBP(83-99) peptide epitope. Immunization of SJL/J mice with MBP(83-99) and mutant [A(91)]MBP(83-99), [E(91)]MBP(83-99), [F(91)]MBP(83-99), [Y(91)]MBP(83-99), and [R(91), A(96)]MBP(83-99) peptides, induced IFN-gamma, and only [R(91), A(96)]MBP(83-99) mutant peptide was able to induce IL-4 secretion by T cells. T cells against the native MBP(83-99) peptide cross-reacted with all peptides except [Y(91)]MBP(83-99) and [R(91),A(96)]MBP(83-99). The double mutant [R(91), A(96)]MBP(83-99) was able to antagonize IFN-gamma production in vitro by T cells against the native MBP(83-99) peptide. Antibodies generated to [R(91), A(96)]MBP(83-99) did not cross-react with whole MBP protein. Molecular modeling between peptide analogs and H2 I-A(s) demonstrated novel interactions. The [R(91), A(96)]MBP(83-99) double mutant peptide analog is the most promising for further therapeutic studies.
Collapse
|
31
|
Katsara M, Matsoukas J, Deraos G, Apostolopoulos V. Towards immunotherapeutic drugs and vaccines against multiple sclerosis. Acta Biochim Biophys Sin (Shanghai) 2008; 40:636-42. [PMID: 18604455 DOI: 10.1111/j.1745-7270.2008.00444.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. Numerous treatment options are available to MS patients; however, these options need to be improved. Herein, we review the current drugs and therapeutic approaches available to MS patients, preclinical trial interventions and recent animal model studies for the potential therapy of MS. Since the current treatment of MS remains elusive and is limited, animal studies and clinical research offers an optimistic outlook.
Collapse
Affiliation(s)
- Maria Katsara
- Burnet Institute, Austin Campus, Immunology and Vaccine Laboratory, Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | | | |
Collapse
|