1
|
Ma J, Yiu WH, Tang SCW. Complement anaphylatoxins: Potential therapeutic target for diabetic kidney disease. Diabet Med 2025; 42:e15427. [PMID: 39189098 PMCID: PMC11733663 DOI: 10.1111/dme.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Diabetic kidney disease (DKD) is the most common cause of kidney failure, characterized by chronic inflammation and fibrosis. The complement system is increasingly implicated in the development and progression of diabetic nephropathy. The important complement anaphylatoxins C3a and C5a are key mediators of the innate immune system, which regulates cellular inflammation, oxidative stress, mitochondrial homeostasis and tissue fibrosis. This review summarizes the involvement of anaphylatoxins in the pathogenesis of diabetic kidney disease, highlights their important roles in the pathophysiologic changes of glomerulopathy, tubulointerstitial damage and immune cell infiltration, and discusses the modulatory effects of new anti-diabetic drugs acting on the complement system. Based on available clinical data and findings from the preclinical studies of complement blockade, anaphylatoxin-targeted therapeutics may become a promising approach for patients with DKD in the future.
Collapse
Affiliation(s)
- Jingyuan Ma
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| |
Collapse
|
2
|
Watanabe-Kusunoki K, Anders HJ. Balancing efficacy and safety of complement inhibitors. J Autoimmun 2024; 145:103216. [PMID: 38552408 DOI: 10.1016/j.jaut.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/15/2024]
Abstract
Complement inhibitors have been approved for several immune-mediated diseases and they are considered the next paradigm-shifting approach in the treatment of glomerulonephritis. The hierarchical organization of the complement system offers numerous molecular targets for therapeutic intervention. However, complement is an integral element of host defense and therefore complement inhibition can be associated with serious infectious complications. Here we give a closer look to the hierarchical complement system and how interfering with proximal versus distal or selective versus unselective molecular targets could determine efficacy and safety. Furthermore, we propose to consider the type of disease, immunological activity, and patient immunocompetence when stratifying patients, e.g., proximal/unselective targets for highly active and potentially fatal diseases while distal and selective targets may suit more chronic disease conditions with low or moderate disease activity requiring persistent complement blockade in patients with concomitant immunodeficiency. Certainly, there exists substantial promise for anti-complement therapeutics. However, balancing efficacy and safety will be key to establish powerful treatment effects with minimal adverse events, especially when complement blockade is continued over longer periods of time in chronic disorders.
Collapse
Affiliation(s)
- Kanako Watanabe-Kusunoki
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany; Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hans-Joachim Anders
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany.
| |
Collapse
|
3
|
Buelli S, Imberti B, Morigi M. The Complement C3a and C5a Signaling in Renal Diseases: A Bridge between Acute and Chronic Inflammation. Nephron Clin Pract 2024; 148:712-723. [PMID: 38452744 DOI: 10.1159/000538241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
The complement system, a cornerstone of the innate immune defense, typically confers protection against pathogens. However, in various clinical scenarios the complement's defensive actions can harm host cells, exacerbating immune and inflammatory responses. The central components C3 and C5 undergo proteolytic cleavage during complement activation, yielding small active fragments C3a and C5a anaphylatoxins. Traditionally, these fragments were associated with inflammation via the specific receptors C3a receptor (R), C5aR1 and C5aR2. Recent insights, however, spotlight the excessive C3a/C3aR and C5a/C5aR1 signaling as culprits in diverse disorders of inflammatory and autoimmune etiology. This is particularly true for several kidney diseases, where the potential involvement of anaphylatoxins in renal damage is supported by the enhanced renal expression of their receptors and the high levels of C3a and C5a in both plasma and urine. Furthermore, the production of complement proteins in the kidney, with different renal cells synthesizing C3 and C5, significantly contributes to local tissue injury. In the present review, we discuss the different aspects of C3a/C3aR and C5a/C5aR signaling in acute and chronic kidney diseases and explore the therapeutic potential of emerging targeted drugs for future clinical applications.
Collapse
Affiliation(s)
- Simona Buelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
4
|
Freeley SJ, Tham EL, Robson MG. The lectin pathway does not contribute to glomerular injury in the nephrotoxic nephritis model. Nephrology (Carlton) 2021; 27:208-214. [PMID: 34676615 DOI: 10.1111/nep.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
AIMS Rapidly progressive crescentic glomerulonephritis occurs in number systemic and primary glomerular diseases, including anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody vasculitis and lupus nephritis. Our understanding of pathogenic mechanisms comes from animal models of disease such as the nephrotoxic nephritis model. The lectin pathway of complement activation has been shown to play a key role in several models of inflammation including renal ischaemia reperfusion. However, the lectin pathway is not required for crescentic glomerulonephritis in the anti-myeloperoxidase model of anti-neutrophil cytoplasmic antibody vasculitis. The aim of the current study was to explore the role of the lectin pathway in the nephrotoxic nephritis model, which is another model of crescentic glomerulonephritis. METHODS Nephrotoxic nephritis was induced in wild type and mannan-binding lectin-associated serine protease-2 deficient mice. Diseases were assessed by quantifying glomerular crescents and macrophages, in addition to albuminuria and serum creatinine. RESULTS There was no difference between wild type and MASP-2 deficient mice in any of the histological or biochemical parameters of disease assessed. In addition, there was no difference in the humoral immune response to sheep IgG. CONCLUSION These data show that the lectin pathway of complement activation is not required for the development of crescentic glomerulonephritis in the nephrotoxic nephritis model, reinforcing previous findings in the anti-myeloperoxidase model.
Collapse
Affiliation(s)
- Simon J Freeley
- Life Sciences and Medicine, King's College London, London, UK
| | - El Li Tham
- Life Sciences and Medicine, King's College London, London, UK
| | | |
Collapse
|
5
|
Mejia-Vilet JM, Gómez-Ruiz IA, Cruz C, Méndez-Pérez RA, Comunidad-Bonilla RA, Uribe-Uribe NO, Nuñez-Alvarez CA, Morales-Buenrostro LE. Alternative complement pathway activation in thrombotic microangiopathy associated with lupus nephritis. Clin Rheumatol 2020; 40:2233-2242. [PMID: 33170371 DOI: 10.1007/s10067-020-05499-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION/OBJECTIVE Thrombotic microangiopathy (TMA) in systemic lupus erythematosus is a rare manifestation associated with activation of the complement system. This study aimed to compare plasma and urine complement activation products between patients with active lupus nephritis (aLN) and those with acute TMA plus concomitant active LN (aTMA+aLN). METHODS Plasma and urine samples were obtained from 20 patients with aTMA+aLN, 20 patients with aLN matched by the histological activity index, 5 patients with chronic TMA, 20 patients with inactive LN, and 10 kidney donors. Complement fragments C3a, C4a, C4d, Ba, C5a, C5bC9, and factor H were determined by ELISA; and kidney C4d deposition was detected by immunohistochemistry. Patients were followed for > 12 months and complement activation products re-measured after treatment in 10 aTMA+aLN patients. RESULTS Both aTMA+aLN and aLN groups had increased circulating C3a, Ba, and C5bC9; and decreased circulating C3, C4, C4a, C4d, and factor H. Urinary C3a, C5a, Ba, and C5bC9 were higher in patients with aTMA+aLN than in aLN. After treatment, levels of circulating C3, C4, and factor H increased; while levels of urinary C3a, C5a, Ba, and C5bC9 decreased in patients with aTMA+aLN. These changes were observed at each aTMA episode in two patients studied during repeated TMA episodes. There was no difference in C4d deposition in glomerular capillaries, tubular basement membrane, peritubular capillaries, and arterioles between patients with aLN and those aTMA+aLN. CONCLUSIONS Circulating and urine complement activation products suggest that thrombotic microangiopathy associated with LN is mediated through activation of the alternative complement pathway. Key Points • Immune-complex kidney disease in systemic lupus erythematosus (SLE) is associated with activation of the classical, lectin, and alternative complement pathways • Indirect evidence from measurement of circulating and urinary complement pathway activation products suggests that renal acute thrombotic microangiopathy in SLE is mediated by activation of the alternative complement pathway • C4d kidney immunohistochemistry may be positive in both immune complex nephritis and thrombotic microangiopathy. Therefore, it is not a specific marker of renal thrombotic microangiopathy in SLE.
Collapse
Affiliation(s)
- Juan M Mejia-Vilet
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Ismael A Gómez-Ruiz
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Cristino Cruz
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - R Angélica Méndez-Pérez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Roque A Comunidad-Bonilla
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Norma O Uribe-Uribe
- Department of Pathology and Pathologic Anatomy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos A Nuñez-Alvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis E Morales-Buenrostro
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|
6
|
Wei LL, Ma N, Wu KY, Wang JX, Diao TY, Zhao SJ, Bai L, Liu E, Li ZF, Zhou W, Chen D, Li K. Protective Role of C3aR (C3a Anaphylatoxin Receptor) Against Atherosclerosis in Atherosclerosis-Prone Mice. Arterioscler Thromb Vasc Biol 2020; 40:2070-2083. [PMID: 32762445 DOI: 10.1161/atvbaha.120.314150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Emerging evidence suggests that C3aR (C3a anaphylatoxin receptor) signaling has protective roles in various inflammatory-related diseases. However, its role in atherosclerosis has been unknown. The purpose of the study was to investigate the possible protective role of C3aR in aortic atherosclerosis and explore molecular and cellular mechanisms involved in the protection. Approach and Results: C3ar-/-/Apoe-/- mice were generated by cross-breeding of atherosclerosis-prone Apoe-/- mice and C3ar-/- mice. C3ar-/-/Apoe-/- mice and Apoe-/- mice (as a control) underwent high-fat diet for 16 weeks were assessed for (1) atherosclerotic plaque burden, (2) aortic tissue inflammation, (3) recruitment of CD11b+ leukocytes into atherosclerotic lesions, and (4) systemic inflammatory responses. Compared with Apoe-/- mice, C3ar-/-/Apoe-/- mice developed more severe atherosclerosis. In addition, C3ar-/-/Apoe-/- mice have increased local production of proinflammatory mediators (eg, CCL2 [chemokine (C-C motif) ligand 2], TNF [tumor necrosis factor]-α) and infiltration of monocyte/macrophage in aortic tissue, and their lesional macrophages displayed an M1-like phenotype. Local pathological changes were associated with enhanced systemic inflammatory responses (ie, elevated plasma levels of CCL2 and TNF-α, increased circulating inflammatory cells). In vitro analyses using peritoneal macrophages showed that C3a stimulation resulted in upregulation of M2-associated signaling and molecules, but suppression of M1-associated signaling and molecules, supporting the roles of C3a/C3aR axis in mediating anti-inflammatory response and promoting M2 macrophage polarization. CONCLUSIONS Our findings demonstrate a protective role for C3aR in the development of atherosclerosis and suggest that C3aR confers the protection through C3a/C3aR axis-mediated negative regulation of proinflammatory responses and modulation of macrophage toward the anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Lin-Lin Wei
- From the Core Research Laboratory (L.-L.W., N.M., K.-Y.W., J.-X.W., T.-Y.D., S.-J.Z., K.L.), Xi'an Jiaotong University, China
| | - Ning Ma
- From the Core Research Laboratory (L.-L.W., N.M., K.-Y.W., J.-X.W., T.-Y.D., S.-J.Z., K.L.), Xi'an Jiaotong University, China
| | - Kun-Yi Wu
- From the Core Research Laboratory (L.-L.W., N.M., K.-Y.W., J.-X.W., T.-Y.D., S.-J.Z., K.L.), Xi'an Jiaotong University, China
| | - Jia-Xing Wang
- From the Core Research Laboratory (L.-L.W., N.M., K.-Y.W., J.-X.W., T.-Y.D., S.-J.Z., K.L.), Xi'an Jiaotong University, China
| | - Teng-Yue Diao
- From the Core Research Laboratory (L.-L.W., N.M., K.-Y.W., J.-X.W., T.-Y.D., S.-J.Z., K.L.), Xi'an Jiaotong University, China
| | - Shu-Juan Zhao
- From the Core Research Laboratory (L.-L.W., N.M., K.-Y.W., J.-X.W., T.-Y.D., S.-J.Z., K.L.), Xi'an Jiaotong University, China
| | - Liang Bai
- The Second Affiliated Hospital and Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., E.L.), Xi'an Jiaotong University, China
| | - Enqi Liu
- The Second Affiliated Hospital and Cardiovascular Research Center, School of Basic Medical Sciences, Health Science Center (L.B., E.L.), Xi'an Jiaotong University, China
| | - Zong-Fang Li
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy (Z.-F.L.), Xi'an Jiaotong University, China
| | - Wuding Zhou
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine (W.Z.), King's College London, United Kingdom
| | - Daxin Chen
- Department of Inflammation Biology, School of Immunology & Microbial Sciences (D.C.), King's College London, United Kingdom
| | - Ke Li
- From the Core Research Laboratory (L.-L.W., N.M., K.-Y.W., J.-X.W., T.-Y.D., S.-J.Z., K.L.), Xi'an Jiaotong University, China
| |
Collapse
|
7
|
Gao S, Cui Z, Zhao MH. The Complement C3a and C3a Receptor Pathway in Kidney Diseases. Front Immunol 2020; 11:1875. [PMID: 32973774 PMCID: PMC7461857 DOI: 10.3389/fimmu.2020.01875] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of some kidney diseases is closely associated with complement activation, where the C3a/C3a receptor (C3aR) might play a crucial role. C3a/C3aR has dual roles and may exert anti-inflammatory or pro-inflammatory effects depending on different cell types and diseases. In the kidneys, C3aR is primarily expressed on the tubular epithelium and less in glomerular podocytes. C3aR expression is enhanced and the levels of C3a in the plasma and urine are increased in kidney diseases of several types, and are associated with disease progression and severity. The C3a/C3aR pathway facilitates the progression of glomerular and tubulointerstitial diseases, while it has opposite effects on urinary tract infections. Clinical trials targeting C3a/C3aR in kidney diseases are lacking. Here, we reviewed the studies on the C3a/C3aR pathway in kidney disease, with the aim of understanding in-depth its controversial roles and its potential therapeutic value.
Collapse
Affiliation(s)
- Shuang Gao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
8
|
Muenstermann M, Strobel L, Klos A, Wetsel RA, Woodruff TM, Köhl J, Johswich KO. Distinct roles of the anaphylatoxin receptors C3aR, C5aR1 and C5aR2 in experimental meningococcal infections. Virulence 2019; 10:677-694. [PMID: 31274379 PMCID: PMC6650196 DOI: 10.1080/21505594.2019.1640035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/08/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023] Open
Abstract
The complement system is pivotal in the defense against invasive disease caused by Neisseria meningitidis (Nme, meningococcus), particularly via the membrane attack complex. Complement activation liberates the anaphylatoxins C3a and C5a, which activate three distinct G-protein coupled receptors, C3aR, C5aR1 and C5aR2 (anaphylatoxin receptors, ATRs). We recently discovered that C5aR1 exacerbates the course of the disease, revealing a downside of complement in Nme sepsis. Here, we compared the roles of all three ATRs during mouse nasal colonization, intraperitoneal infection and human whole blood infection with Nme. Deficiency of complement or ATRs did not alter nasal colonization, but significantly affected invasive disease: Compared to WT mice, the disease was aggravated in C3ar-/- mice, whereas C5ar1-/- and C5ar2-/- mice showed increased resistance to meningococcal sepsis. Surprisingly, deletion of either of the ATRs resulted in lower cytokine/chemokine responses, irrespective of the different susceptibilities of the mice. This was similar in ex vivo human whole blood infection using ATR inhibitors. Neutrophil responses to Nme were reduced in C5ar1-/- mouse blood. Upon stimulation with C5a plus Nme, mouse macrophages displayed reduced phosphorylation of ERK1/2, when C5aR1 or C5aR2 were ablated or inhibited, suggesting that both C5a-receptors prime an initial macrophage response to Nme. Finally, in vivo blockade of C5aR1 alone (PMX205) or along with C5aR2 (A8Δ71-73) resulted in ameliorated disease, whereas neither antagonizing C3aR (SB290157) nor its activation with a "super-agonist" peptide (WWGKKYRASKLGLAR) demonstrated a benefit. Thus, C5aR1 and C5aR2 augment disease pathology and are interesting targets for treatment, whereas C3aR is protective in experimental meningococcal sepsis.
Collapse
Affiliation(s)
- Marcel Muenstermann
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | - Lea Strobel
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | - Andreas Klos
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Hannover, Germany
| | - Rick A. Wetsel
- Institute of Molecular Medicine Center for Immunology and Autoimmune Diseases, The University of Texas Health Science Center, Houston, TX, USA
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kay O. Johswich
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Possible role of complement factor H in podocytes in clearing glomerular subendothelial immune complex deposits. Sci Rep 2019; 9:7857. [PMID: 31133737 PMCID: PMC6536504 DOI: 10.1038/s41598-019-44380-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Podocytes are known to express various complement factors including complement factor H (CFH) and to promote the removal of both subendothelial and subepithelial immune complex (IC) deposits. Using podocyte-selective injury model NEP25 mice and an IgG3-producing hybridoma clone 2B11.3 established by MRL/lpr mice, the present study investigated the role of podocyte complement regulation in only subendothelial IC deposition. In immunotoxin (LMB2) induced fatal podocyte injury (NEP25/LMB2) at day 12, glomerular CFH and C3a receptor (C3aR) expression was decreased as compared with NEP25/vehicle mice. In contrast, in sublytic podocyte injury 5 days after LMB2, glomerular CFH and C3aR expression was increased as compared with NEP25/vehicle mice. Intra-abdominal injection of 2B11.3 hybridoma to NEP25 mice (NEP25/hybridoma) caused IC deposition limited to the subendothelial area associated with unaltered CFH expression. NEP25/hybridoma mice with sublytic podocyte injury (NEP25/hybridoma/LMB2) resulted in increased glomerular CFH expression (1.7-fold) accompanied by decreased subendothelial IC deposition, as compared with NEP25/hybridoma. Immunostaining revealed that CFH was dominantly expressed in podocytes of NEP25/hybridoma/LMB2. In addition, puromycin-induced sublytic podocyte injury promoted CFH expression in immortalized mouse podocytes in vitro. These results suggest that in response to sublytic levels of injury, podocyte induced CFH expression locally and clearance of subendothelial IC deposits.
Collapse
|
10
|
Wu KY, Zhang T, Zhao GX, Ma N, Zhao SJ, Wang N, Wang JX, Li ZF, Zhou W, Li K. The C3a/C3aR axis mediates anti-inflammatory activity and protects against uropathogenic E coli-induced kidney injury in mice. Kidney Int 2019; 96:612-627. [PMID: 31133456 DOI: 10.1016/j.kint.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 11/18/2022]
Abstract
Both the C3a/C3aR and C5a/C5aR1 axes are regarded as important pathways for inducing and regulating inflammatory responses. It is well documented that the C5a/C5aR1 axis is a potent inflammatory mediator in the pathogenesis of many clinic disorders. However, our understanding of the role of the C3a/C3aR axis in renal disorders remains limited. Contrary to the C5a/C5aR axis, we now show that the C3a/C3aR axis has a protective role in uropathogenic Escherichia coli (UPEC)-induced renal injury. C3aR-/- mice were found to develop severe renal pathology compared to wild type mice, a pathology characterized by intense tissue damage and an increased bacterial load within the kidney. This was associated with an overwhelming production of pro-inflammatory mediators and increased neutrophil infiltration in the kidney. Bone marrow chimera experiments found that tissue damage and bacterial load were significantly reduced in C3aR-/- mice that received bone marrow from wild type mice, compared with that in mice re-populated with bone marrow from C3aR-/- mice. This supports a critical role for C3aR on myeloid cells in the pathological process. Pharmacological treatment of mice with a C3aR agonist reduced both the extent of tissue injury and bacterial load. Mechanistic analyses indicated that the C3a/C3aR axis downregulates the lipopolysaccharide-induced pro-inflammatory responses in macrophages and facilitates the phagocytosis of UPEC by phagocytes. Thus, our findings clearly demonstrate a protective role of the C3a/C3aR axis in UPEC-induced renal injury, conferred by the suppression of pro-inflammatory responses and enhanced phagocytosis by macrophages.
Collapse
Affiliation(s)
- Kun-Yi Wu
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ting Zhang
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guo-Xiu Zhao
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ning Ma
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Juan Zhao
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Na Wang
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zong-Fang Li
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wuding Zhou
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, UK.
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
11
|
Cheng Q, Patel K, Lei B, Rucker L, Allen DP, Zhu P, Vasu C, Martins PN, Goddard M, Nadig SN, Atkinson C. Donor pretreatment with nebulized complement C3a receptor antagonist mitigates brain-death induced immunological injury post-lung transplant. Am J Transplant 2018; 18:2417-2428. [PMID: 29504277 PMCID: PMC6123303 DOI: 10.1111/ajt.14717] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 01/25/2023]
Abstract
Donor brain death (BD) is an inherent part of lung transplantation (LTx) and a key contributor to ischemia-reperfusion injury (IRI). Complement activation occurs as a consequence of BD in other solid organ Tx and exacerbates IRI, but the role of complement in LTx has not been investigated. Here, we investigate the utility of delivering nebulized C3a receptor antagonist (C3aRA) pretransplant to BD donor lungs in order to reduce post-LTx IRI. BD was induced in Balb/c donors, and lungs nebulized with C3aRA or vehicle 30 minutes prior to lung procurement. Lungs were then cold stored for 18 hours before transplantation into C57Bl/6 recipients. Donor lungs from living donors (LD) were removed and similarly stored. At 6 hours and 5 days post-LTx, recipients of BD donor lungs had exacerbated IRI and acute rejection (AR), respectively, compared to recipients receiving LD lungs, as determined by increased histopathological injury, immune cells, and cytokine levels. A single pretransplant nebulized dose of C3aRA to the donor significantly reduced IRI as compared to vehicle-treated BD donors, and returned IRI and AR grades to that seen following LD LTx. These data demonstrate a role for complement inhibition in the amelioration of IRI post-LTx in the context of donor BD.
Collapse
Affiliation(s)
- Qi Cheng
- Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,430030, China,Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA,Department of Surgery, Division of Transplant, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Kunal Patel
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA,Department of Surgery, Division of Transplant, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Biao Lei
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Lindsay Rucker
- Department of Surgery, Division of Transplant, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - D. Patterson Allen
- Department of Surgery, Division of Transplant, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Peng Zhu
- Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,430030, China,Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA,Department of Surgery, Division of Transplant, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Chentha Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Paulo N. Martins
- University of Massachusetts, UMass Memorial Medical Center, Department of Surgery, Transplant Division, Worcester, MA 01655, USA
| | - Martin Goddard
- Pathology Department, Papworth Hospital NHS Trust, Papworth Everard, Cambridge, England, CB3 8RE
| | - Satish N. Nadig
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA,Department of Surgery, Division of Transplant, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA,South Carolina Investigators in Transplantation (SCIT), Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA,Department of Surgery, Division of Transplant, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA,South Carolina Investigators in Transplantation (SCIT), Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA,Address for Correspondence. Dr Carl Atkinson, PhD. Department of Microbiology and Immunology, and Surgery. Medical University of South Carolina, Lee Patterson Allen Transplant Immunobiology Laboratory, Basic Science Department, 173 Ashley Avenue, Charleston, SC 29425 USA. Tel: 1-843-792-1716. Fax: 1-843-792-2464.
| |
Collapse
|
12
|
Dick J, Gan PY, Kitching AR, Holdsworth SR. The C3aR promotes macrophage infiltration and regulates ANCA production but does not affect glomerular injury in experimental anti-myeloperoxidase glomerulonephritis. PLoS One 2018; 13:e0190655. [PMID: 29315316 PMCID: PMC5760037 DOI: 10.1371/journal.pone.0190655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 11/18/2022] Open
Abstract
The anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitides are autoimmune diseases associated with significant morbidity and mortality. They often affect the kidney causing rapidly progressive glomerulonephritis. While signalling by complement anaphylatoxin C5a though the C5a receptor is important in this disease, the role of the anaphylatoxin C3a signalling via the C3a receptor (C3aR) is not known. Using two different murine models of anti-myeloperoxidase (MPO) glomerulonephritis, one mediated by passive transfer of anti-MPO antibodies, the other by cell-mediated immunity, we found that the C3aR did not alter histological disease severity. However, it promoted macrophage recruitment to the inflamed glomerulus and inhibited the generation of MPO-ANCA whilst not influencing T cell autoimmunity. Thus, whilst the C3aR modulates some elements of disease pathogenesis, overall it is not critical in effector responses and glomerular injury caused by autoimmunity to MPO.
Collapse
Affiliation(s)
- Jonathan Dick
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Poh-Yi Gan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
- Department of Paediatric Nephrology, Monash Children’s Hospital, Monash Health, Clayton, Victoria, Australia
| | - Stephen R. Holdsworth
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Complement components as promoters of immunological tolerance in dendritic cells. Semin Cell Dev Biol 2017; 85:143-152. [PMID: 29155220 DOI: 10.1016/j.semcdb.2017.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
Abstract
Complement and dendritic cells (DCs) share many functional features that drive the outcome of immune-inflammatory processes. Both have a sentinel function, acting as danger sensors specialized for a rapid, comprehensive and selective action against potential threats without damaging the healthy host cells. But while complement has been considered as a "master alarm" system poised for direct pathogen killing, DCs are regarded as "master regulators" or orchestrators of a vast range of effector immune cells for an effective immune response against threatening insults. The original definition of the complement system, coined to denote its auxiliary function to enhance or assist in the role of antibodies or phagocytes to clear microbes or damaged cells, envisaged an important crosstalk between the complement and the mononuclear phagocyte systems. More recent studies have shown that, depending on the microenvironmental conditions, several complement effectors are competent to influence the differentiation and/or function of different DC subsets toward immunogenicity or tolerance. In this review we will infer about the capability of complement activators and inhibitors to "condition" a tolerogenic and anti-inflammatory immune response by direct interaction with DC surface receptors, and about the implications of this knowledge to devise new complement-based therapeutic approaches for autoimmune pathologies.
Collapse
|
14
|
Thurman JM. Many drugs for many targets: novel treatments for complement-mediated glomerular disease. Nephrol Dial Transplant 2017; 32:i57-i64. [PMID: 28391332 DOI: 10.1093/ndt/gfw228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
There is a large body of experimental and clinical evidence that complement activation contributes to glomerular injury in multiple different diseases. However, the underlying mechanisms that trigger complement activation vary from disease to disease. Immune complexes activate the classical pathway of complement in many types of glomerulonephritis, whereas the alternative pathway and mannose-binding lectin pathways are directly activated in some diseases. Eculizumab is an inhibitory antibody to C5 that has been approved for the treatment of atypical hemolytic uremic syndrome, and case reports suggest that it is also effective in other types of glomerulonephritis. Furthermore, new complement-inhibitory drugs are being developed that target additional proteins within the complement cascade, raising the possibility of blocking the specific complement proteins involved in a given disease. This review examines the rationale for targeting different proteins within the complement cascade, the new anti-complement drugs currently in development and some of the challenges that investigators will face in bringing these drugs to the clinic.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, Division of Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
15
|
Quell KM, Karsten CM, Kordowski A, Almeida LN, Briukhovetska D, Wiese AV, Sun J, Ender F, Antoniou K, Schröder T, Schmudde I, Berger JL, König P, Vollbrandt T, Laumonnier Y, Köhl J. Monitoring C3aR Expression Using a Floxed tdTomato-C3aR Reporter Knock-in Mouse. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28626064 DOI: 10.4049/jimmunol.1700318] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
C3a exerts multiple biologic functions through activation of its cognate C3a receptor. C3-/- and C3aR-/- mice have been instrumental in defining important roles of the C3a/C3aR axis in the regulation of acute and chronic inflammatory diseases, including ischemia/reperfusion injury, allergic asthma, autoimmune nephritis, and rheumatoid arthritis. Surprisingly little is known about C3aR expression and function in immune and stromal cells. To close this gap, we generated a floxed tandem-dye Tomato (tdTomato)-C3aR reporter knock-in mouse, which we used to monitor C3aR expression in cells residing in the lung, airways, lamina propria (LP) of the small intestine, brain, visceral adipose tissue, bone marrow (BM), spleen, and the circulation. We found a strong expression of tdTomato-C3aR in the brain, lung, LP, and visceral adipose tissue, whereas it was minor in the spleen, blood, BM, and the airways. Most macrophage and eosinophil populations were tdTomato-C3aR+ Interestingly, most tissue eosinophils and some macrophage populations expressed C3aR intracellularly. BM-derived dendritic cells (DCs), lung-resident cluster of differentiation (CD) 11b+ conventional DCs (cDCs) and monocyte-derived DCs, LP CD103+, and CD11b+ cDCs but not pulmonary CD103+ cDCs and splenic DCs were tdTomato-C3aR+ Surprisingly, neither BM, blood, lung neutrophils, nor mast cells expressed C3aR. Similarly, all lymphoid-derived cells were tdTomato-C3aR-, except some LP-derived type 3 innate lymphoid cells. Pulmonary and LP-derived epithelial cells expressed at best minor levels of C3aR. In summary, we provide novel insights into the expression pattern of C3aR in mice. The floxed C3aR knock-in mouse will help to reliably track and conditionally delete C3aR expression in experimental models of inflammation.
Collapse
Affiliation(s)
- Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Anna Kordowski
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | | | - Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Jing Sun
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Konstantina Antoniou
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
| | - Inken Schmudde
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Johann L Berger
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck 23562, Germany
| | - Tillman Vollbrandt
- Cell Analysis Core Facility, University of Lübeck, Lübeck 23562, Germany; and
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany;
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany; .,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
16
|
Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol 2017; 89:44-58. [PMID: 28600003 DOI: 10.1016/j.molimm.2017.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
The anaphylatoxins (AT) C3a and C5a play important roles as mediators of inflammation. Further, they regulate and control multiple innate and adaptive immune responses through binding and activation of their cognate G protein-coupled receptors, i.e. C3a receptor (C3aR), C5a receptor 1 (C5aR1) and C5a receptor 2 (C5aR2), although the latter lacks important sequence motifs for G protein-coupling. Based on their pleiotropic functions, they contribute not only to tissue homeostasis but drive, perpetuate and resolve immune responses in many inflammatory diseases including infections, malignancies, autoimmune as well as allergic diseases. During the past few years, transcriptome expression data provided detailed insights into AT receptor tissue mRNA expression. In contrast, our understanding of cellular AT receptor expression in human and mouse tissues under steady and inflammatory conditions is still sketchy. Ligand binding studies, flow cytometric and immunohistochemical analyses convincingly demonstrated tissue-specific C5aR1 expression in various cells of myeloid origin. However, a detailed map for C3aR or C5aR2 expression in human or mouse tissue cells is still lacking. Also, reports about AT expression in lymphoid cells is still controversial. To understand the multiple roles of the ATs in the innate and adaptive immune networks, a detailed understanding of their receptor expression in health and disease is required. Recent findings obtained with novel GFP or tdTomato AT-receptor knock-in mice provide detailed insights into their expression pattern in tissue immune and stroma cells. Here, we will provide an update about our current knowledge of AT receptor expression pattern in humans and mice.
Collapse
|
17
|
Mizuno M, Suzuki Y, Ito Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin Exp Nephrol 2017; 22:3-14. [DOI: 10.1007/s10157-017-1405-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
|
18
|
Thurman JM, Le Quintrec M. Targeting the complement cascade: novel treatments coming down the pike. Kidney Int 2016; 90:746-52. [PMID: 27325183 DOI: 10.1016/j.kint.2016.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022]
Abstract
The complement cascade is a vital component of both the innate and adaptive immune systems. Complement activation also contributes to the pathogenesis of many diseases, however, and the kidney is particularly susceptible to complement-mediated injury. Drugs that block complement activation can rapidly reduce tissue inflammation and also attenuate the adaptive immune response to foreign and tissue antigens. Eculizumab is a monoclonal antibody that prevents the cleavage of C5. It has been approved for the treatment of atypical hemolytic uremic syndrome, and it has been used in selected patients with other kidney diseases. Many additional drugs are also in development for blocking the complement cascade, including new monoclonal antibodies, recombinant proteins, small molecules, and small interfering RNA agents. Validation of these new drugs as effective treatments for kidney diseases faces several challenges. Many complement-mediated kidney diseases are rare, so it is not feasible to test all of the new drugs in numerous different rare diseases. The onset and course of the diseases are heterogeneous; many of these diseases also carry a lifelong risk of recurrence, and it is not clear how long complement inhibition must be maintained. In spite of these challenges, new therapeutic options for targeting the complement system will likely become available in the near future and may prove useful for treating patients with kidney disease.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Moglie Le Quintrec
- Department of Nephrology and Renal Transplantation, Lapeyronnie Hospital and INSERM U1183, Institute of Regenerative Medicine and Biotherapies, Montpellier, France
| |
Collapse
|
19
|
Larkin PB, Muchowski PJ. Genetic Deficiency of Complement Component 3 Does Not Alter Disease Progression in a Mouse Model of Huntington's Disease. J Huntingtons Dis 2016; 1:107-18. [PMID: 23097680 DOI: 10.3233/jhd-2012-120021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several genes and proteins of the complement cascade are present at elevated levels in brains of patients with Huntington's disease (HD). The complement cascade is well characterized as an effector arm of the immune system, and in the brain it is important for developmental synapse elimination. We hypothesized that increased levels of complement in HD brains contributes to disease progression, perhaps by contributing to synapse elimination or inflammatory signaling. We tested this hypothesis in the R6/2 mouse model of HD by crossing mice deficient in complement component 3 (C3), a crucial complement protein found at increased levels in HD brains, to R6/2 mice and monitoring behavioral and neuropathological disease progression. We found no alterations in multiple behavioral assays, weight or survival in R6/2 mice lacking C3. We also quantified the expression of several complement cascade genes in R6/2 brains and found that the large scale upregulation of complement genes observed in HD brains is not mirrored in R6/2 brains. These data show that C3 deficiency does not alter disease progression in the R6/2 mouse model of HD.
Collapse
Affiliation(s)
- Paul B Larkin
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
| | | |
Collapse
|
20
|
Bao L, Cunningham PN, Quigg RJ. Complement in Lupus Nephritis: New Perspectives. KIDNEY DISEASES 2015; 1:91-9. [PMID: 27536669 DOI: 10.1159/000431278] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disorder caused by loss of tolerance to self-antigens, the production of autoantibodies and deposition of complement-fixing immune complexes (ICs) in injured tissues. SLE is characterized by a wide range of clinical manifestations and targeted organs, with lupus nephritis being one of the most serious complications. The complement system consists of three pathways and is tightly controlled by a set of regulatory proteins to prevent injudicious complement activation on host tissue. The involvement of the complement system in the pathogenesis of SLE is well accepted; yet, its exact role is still not clear. SUMMARY Complement plays dual roles in the pathogenesis of SLE. On the one hand, the complement system appears to have protective features in that hereditary homozygous deficiencies of classical pathway components, such as C1q and C4, are associated with an increased risk for SLE. On the other hand, IC-mediated activation of complement in affected tissues is clearly evident in both experimental and human SLE along with pathological features that are logical consequences of complement activation. Studies in genetically altered mice have shown that lack of complement inhibitors, such as complement factor H (CFH) or decay-accelerating factor (DAF) accelerates the development of experimental lupus nephritis, while treatment with recombinant protein inhibitors, such as Crry-Ig, CR2-Crry, CR2-DAF and CR2-CFH, ameliorates the disease development. Complement-targeted drugs, including soluble complement receptor 1 (TP10), C1 esterase inhibitor and a monoclonal anti-C5 antibody (eculizumab), have been shown to inhibit complement safely, and are now being investigated in a variety of clinical conditions. KEY MESSAGES SLE is an autoimmune disorder which targets multiple systems. Complement is centrally involved and plays dual roles in the pathogenesis of SLE. Studies from experimental lupus models and clinical trials support the use of complement-targeted therapy in the treatment of SLE.
Collapse
Affiliation(s)
- Lihua Bao
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Ill., USA
| | - Patrick N Cunningham
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Ill., USA
| | - Richard J Quigg
- Division of Nephrology, University at Buffalo School of Medicine, Buffalo, N.Y., USA
| |
Collapse
|
21
|
Coulthard LG, Woodruff TM. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. THE JOURNAL OF IMMUNOLOGY 2015; 194:3542-8. [PMID: 25848071 DOI: 10.4049/jimmunol.1403068] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complement activation product C3a is often described as a proinflammatory mediator, alongside its downstream cousin, C5a. However, emerging studies show that C3a has several anti-inflammatory facets in vivo. For example, in the acute inflammatory response, C3a acts in direct opposition to C5a, through preventing the accumulation of neutrophils in inflamed tissues by independently regulating their mobilization. This acute, protective, and opposing activity of C3a to C5a is also illustrated in models of septicemia. In this article, we reinvestigate the discovery and original classification of C3a as a proinflammatory mediator and highlight the emerging studies demonstrating anti-inflammatory effects for C3a in the immune response. It is our hope that this review illuminates these apparently contradictory roles for C3a and challenges the general dogma surrounding C3a, which, historically, has ubiquitously been described as a proinflammatory mediator. In light of this, we urge investigators to use "inflammatory modulator" as the descriptor for C3a.
Collapse
Affiliation(s)
- Liam G Coulthard
- School of Biomedical Sciences, University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia 4072, Queensland, Australia
| |
Collapse
|
22
|
|
23
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
24
|
Marian V, Anolik JH. Treatment targets in systemic lupus erythematosus: biology and clinical perspective. Arthritis Res Ther 2012; 14 Suppl 4:S3. [PMID: 23281796 PMCID: PMC3535717 DOI: 10.1186/ar3917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex disease characterized by numerous autoantibodies and clinical involvement in multiple organ systems. The immunological events triggering the onset and progression of clinical manifestations are also complex and multi-step, including breach of tolerance in the adaptive immune system, amplification of autoimmunity through innate and adaptive immune system dysregulation, and end-organ damage. Studies of murine genetic manipulations and human risk variants have provided important clues to the cellular and molecular pathogenesis of SLE, operating at multiple of these steps. The breakdown of B-cell tolerance is probably a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B-cell activation thresholds, B-cell longevity, and apoptotic cell processing. Examples of amplification of autoimmunity on the adaptive immune system side include disturbances in B-cell/T-cell collaboration. B cells can also amplify innate immune cell activation via antibody-dependent and antibody-independent mechanisms. Indeed, one of the key amplification loops in SLE is the activation of plasmacytoid dendritic cells via autoantibodies and RNA-containing and DNA-containing immune complexes, which act as Toll-like receptor ligands, stimulating the secretion of large quantities of IFNα. A more recent link between the innate and adaptive immune system in SLE includes the neutrophil, which can be primed by interferon and autoantibodies to release neutrophil extracellular traps as an additional source of immunogenic DNA, histones, and neutrophil proteins. The innate immune system activation then feeds back, driving autoreactive B-cell and T-cell survival and maturation. This self-perpetuating disease cycle creates the opportunity for targeted treatment inventions at multiple steps.
Collapse
Affiliation(s)
- Valentin Marian
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
25
|
Lim R, Lappas M. Decreased expression of complement 3a receptor (C3aR) in human placentas from severe preeclamptic pregnancies. Eur J Obstet Gynecol Reprod Biol 2012; 165:194-8. [PMID: 22901903 DOI: 10.1016/j.ejogrb.2012.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/11/2012] [Accepted: 08/01/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to determine the expression of the anaphylatoxin receptors complement C3a receptor (C3aR) and C5a receptor (C5aR) in the placentas of pregnancies complicated by severe early onset preeclampsia. STUDY DESIGN We recruited women with pregnancies complicated by severe early-onset preeclampsia (n=19, 11 of which were further complicated with IUGR) and women with preterm pregnancies not affected by preeclampsia (n=8). Gene and protein expression of C3aR and C5aR was analysed by quantitative RT-PCR and Western blotting, respectively. RESULTS C3aR was detected in the Hofbauer cells in the villous stroma of the placenta. C5aR staining was detected in the syncytiotrophoblast and endothelial cells. We found significantly decreased expression of C3aR mRNA and protein expression in placentas with preeclampsia compared to controls. However, C5aR expression was not significantly different between preeclamptic and control placentas at either the mRNA or protein level. CONCLUSIONS Decreased C3aR expression indicates a dysregulation of the complement system in the placentas of preeclamptic women. Further studies would elucidate the exact mechanisms that complement has in preeclampsia.
Collapse
Affiliation(s)
- Ratana Lim
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
26
|
Peng Q, Li K, Smyth LA, Xing G, Wang N, Meader L, Lu B, Sacks SH, Zhou W. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol 2012; 23:1474-85. [PMID: 22797180 DOI: 10.1681/asn.2011111072] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal ischemia reperfusion injury triggers complement activation, but whether and how the small proinflammatory fragments C3a and C5a contribute to the pathogenesis of this injury remains to be elucidated. Using C3aR-, C5aR-, or C3aR/C5aR-deficient mice and models of renal ischemia-reperfusion injury, we found that deficiency of either or both of these receptors protected mice from injury, but the C3aR/C5aR- and C5aR-deficient mice were most protected. Protection from injury was associated with less cellular infiltration and lower mRNA levels of kidney injury molecule-1, proinflammatory mediators, and adhesion molecules in postischemic kidneys. Furthermore, chimera studies showed that the absence of C3aR and C5aR on renal tubular epithelial cells or circulating leukocytes attenuated renal ischemia-reperfusion injury. In vitro, C3a and C5a stimulation induced inflammatory mediators from both renal tubular epithelial cells and macrophages after hypoxia/reoxygenation. In conclusion, although both C3a and C5a contribute to renal ischemia-reperfusion injury, the pathogenic role of C5a in this injury predominates. These data also suggest that expression of C3aR and C5aR on both renal and circulating leukocytes contributes to the pathogenesis of renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qi Peng
- MRC Centre for Transplantation, King's College London, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shimp SK, Chafin CB, Regna NL, Hammond SE, Read MA, Caudell DL, Rylander M, Reilly CM. Heat shock protein 90 inhibition by 17-DMAG lessens disease in the MRL/lpr mouse model of systemic lupus erythematosus. Cell Mol Immunol 2012; 9:255-66. [PMID: 22543833 DOI: 10.1038/cmi.2012.5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Elevated expression of heat shock protein 90 (HSP90) has been found in kidneys and serum of systemic lupus erythematosus (SLE) patients and MRL/Mp-Fas(lpr)/Fas(lpr) (MRL/lpr) autoimmune mice. We investigated if inhibition of HSP90 would reduce disease in MRL/lpr mice. In vitro, pretreatment of mesangial cells with HSP90 inhibitor Geldanamycin prior to immune-stimulation showed reduced expression of IL-6, IL-12 and NO. In vivo, we found HSP90 expression was elevated in MRL/lpr kidneys when compared to C57BL/6 mice and MRL/lpr mice treated with HSP90 inhibitor 17-DMAG. MRL/lpr mice treated with 17-DMAG showed decreased proteinuria and reduced serum anti-dsDNA antibody production. Glomerulonephritis and glomerular IgG and C3 were not significantly affected by administration of 17-DMAG in MRL/lpr. 17-DMAG increased CD8(+) T cells, reduced double-negative T cells, decreased the CD4/CD8 ratio and reduced follicular B cells. These studies suggest that HSP90 may play a role in regulating T-cell differentiation and activation and that HSP90 inhibition may reduce inflammation in lupus.
Collapse
Affiliation(s)
- Samuel K Shimp
- Virginia Tech-Wake Forest School of Biomedical Engineering and Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 21061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Systemic lupus erythematosus is a prototypic autoimmune disease characterized by autoantibody production and immune complex formation/deposition in target organs such as the kidney. Resultant local inflammation then leads to organ damage. Nephritis, a major cause of morbidity and mortality in patients with lupus, occurs in approximately 50% of lupus patients. In the present review, we provide an overview of the current research and knowledge concerning mechanisms of renal injury in both lupus-prone mouse models and human lupus patients.
Collapse
|
29
|
Abstract
To prevent injury to host tissues, complement activation is regulated by a number of plasma and membrane-associated proteins, most of which limit C3 and C5 activation. An influx of circulating C3 from a syngeneic host into donor kidneys deficient in Crry (a membrane protein that reduces C3 convertase activity) causes spontaneous complement activation, primarily in the tubulointerstitum, leading to renal failure. To determine the roles of the C3a and C5a anaphylatoxins in tubulointerstitial inflammation and fibrosis, kidneys from Crry-/-C3-/- mice were transplanted into hosts lacking the C3a and/or C5a receptor. While unrestricted complement activation in the tubules was not affected by receptor status in the transplant recipient, C3a receptor deficiency in the recipients led to significantly reduced renal leukocyte infiltration and the extent of tubulointerstitial inflammation and fibrosis, all of which led to preserved renal function. The absence of C5a receptors in recipients was not only inconsequential, but the protective effect of C3a receptor deficiency was also eliminated, suggesting distinct roles of C3a and C5a receptor signaling in this model. There was significant infiltration of the tubulointerstitum with 7/4+F4/80+CD11b+ myelomonocytic cells and Thy1.2+ T cells along injured tubules, and interstitial collagen I and III deposition, all of which were C3a receptor dependent. Thus, blockade of C3a receptor signaling is a possible treatment to reduce renal inflammation and preserve renal function associated with complement activation.
Collapse
|
30
|
Bao L, Haas M, Quigg RJ. Complement factor H deficiency accelerates development of lupus nephritis. J Am Soc Nephrol 2010; 22:285-95. [PMID: 21148254 DOI: 10.1681/asn.2010060647] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Complement factor H (CfH) is a key regulator of the alternative pathway, and its presence on mouse platelets and podocytes allows the processing of immune complexes. Because of the role of immune complexes in the pathophysiology of lupus nephritis, we studied the role of CfH in the development of nephritis in MRL-lpr mice, an animal model of lupus. At 12 weeks, CfH-deficient MRL-lpr mice had significantly more albuminuria and higher BUN levels than MRL-lpr controls. Cfh-deficient MRL-lpr mice also experienced earlier mortality: at 14 weeks, 6 of 9 CfH-deficient MRL-lpr mice had died of renal failure, whereas all 11 littermate CfH-sufficient MRL-lpr mice were alive (P ≤ 0.001). Histologically, CfH-deficient MRL-lpr mice developed severe diffuse lupus nephritis by 12 weeks (glomerulonephritis scores of 2.6 ± 0.4 versus 0.4 ± 0.2 in littermate controls, P = 0.001). Similar to other CfH-deficient mouse models on nonautoimmune backgrounds, immunofluorescence staining showed extensive linear C3 staining along glomerular capillary walls. IgG was present in the mesangium and peripheral capillary walls along with excessive infiltration of macrophages and neutrophils. Ultrastructurally, there were subendothelial and subepithelial immune deposits and extensive podocyte foot process effacement. In summary, the loss of CfH accelerates the development of lupus nephritis and recapitulates the functional and structural features of the human disease. This illustrates the critical role of complement regulation and metabolism of immune complexes in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Lihua Bao
- Section of Nephrology, The University of Chicago, 5841 S. Maryland Avenue, MC5100, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
31
|
Scully CCG, Blakeney JS, Singh R, Hoang HN, Abbenante G, Reid RC, Fairlie DP. Selective Hexapeptide Agonists and Antagonists for Human Complement C3a Receptor. J Med Chem 2010; 53:4938-48. [DOI: 10.1021/jm1003705] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Conor C. G. Scully
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jade S. Blakeney
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ranee Singh
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Huy N. Hoang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Giovanni Abbenante
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C. Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
32
|
Fisette A, Cianflone K. The ASP and C5L2 pathway: another bridge between inflammation and metabolic homeostasis. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Cheung YH, Loh C, Pau E, Kim J, Wither J. Insights into the genetic basis and immunopathogenesis of systemic lupus erythematosus from the study of mouse models. Semin Immunol 2009; 21:372-82. [DOI: 10.1016/j.smim.2009.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/23/2009] [Indexed: 01/15/2023]
|