1
|
Spicer BA, Dunstone MA. Going full circle: Determining the structures of complement component 9. Methods Enzymol 2021; 649:103-123. [PMID: 33712184 DOI: 10.1016/bs.mie.2021.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pore forming proteins (PFPs) undergo dramatic conformational changes to punch holes in the target membrane. These PFPs have the ability to self-assemble, by way of oligomerization, and have the capacity to transform from a water soluble state (commonly referred to as fluid phase) to a membrane adhered form. Accordingly, PFPs are metastable, that is they are inert until the right conditions cause the release of potential energy stored in the conformational fold leading to a vast structural rearrangement into a membrane-inserted oligomeric form. However, the metastable state of PFPs poses a problem of leading to aggregation and precipitation in conditions typically required for structural biology techniques. Here, we discuss the protein chemistry of the MACPF protein complement component 9 (C9). C9 is part of a larger complex assembly known as the membrane attack complex (MAC) that has been studied extensively for its ability to form pores in bacteria. An unusual artifact of human C9 is the ability to form a soluble oligomeric state of the channel portion of the MAC, called polyC9. PolyC9 formation does not require the presence of membranes or other complement factors. It is only in recent years that structural studies of the MAC have become successful owing to improved recombinant DNA expression systems and the improvement of high-resolution techniques (both X-ray crystallography and single particle cryo-EM). We discuss the expression and purification of recombinant C9, crystallization of the soluble monomeric form of C9 and the preparation of the oligomeric polyC9.
Collapse
Affiliation(s)
- Bradley A Spicer
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Moreno-Hagelsieb G, Vitug B, Medrano-Soto A, Saier MH. The Membrane Attack Complex/Perforin Superfamily. J Mol Microbiol Biotechnol 2017; 27:252-267. [PMID: 29145176 DOI: 10.1159/000481286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
The membrane attack complex/perforin (MACPF) superfamily consists of a diverse group of proteins involved in bacterial pathogenesis and sporulation as well as eukaryotic immunity, embryonic development, neural migration and fruiting body formation. The present work shows that the evolutionary relationships between the members of the superfamily, previously suggested by comparison of their tertiary structures, can also be supported by analyses of their primary structures. The superfamily includes the MACPF family (TC 1.C.39), the cholesterol-dependent cytolysin (CDC) family (TC 1.C.12.1 and 1.C.12.2) and the pleurotolysin pore-forming (pleurotolysin B) family (TC 1.C.97.1), as revealed by expansion of each family by comparison against a large protein database, and by the comparisons of their hidden Markov models. Clustering analyses demonstrated grouping of the CDC homologues separately from the 12 MACPF subfamilies, which also grouped separately from the pleurotolysin B family. Members of the MACPF superfamily revealed a remarkably diverse range of proteins spanning eukaryotic, bacterial, and archaeal taxonomic domains, with notable variations in protein domain architectures. Our strategy should also be helpful in putting together other highly divergent protein families.
Collapse
|
3
|
Bayly-Jones C, Bubeck D, Dunstone MA. The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160221. [PMID: 28630159 PMCID: PMC5483522 DOI: 10.1098/rstb.2016.0221] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
The membrane attack complex (MAC) is an important innate immune effector of the complement terminal pathway that forms cytotoxic pores on the surface of microbes. Despite many years of research, MAC structure and mechanism of action have remained elusive, relying heavily on modelling and inference from biochemical experiments. Recent advances in structural biology, specifically cryo-electron microscopy, have provided new insights into the molecular mechanism of MAC assembly. Its unique 'split-washer' shape, coupled with an irregular giant β-barrel architecture, enable an atypical mechanism of hole punching and represent a novel system for which to study pore formation. This review will introduce the complement terminal pathway that leads to formation of the MAC. Moreover, it will discuss how structures of the pore and component proteins underpin a mechanism for MAC function, modulation and inhibition.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW2 7AZ, UK
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| |
Collapse
|
4
|
Tian Y, Koganti T, Yao Z, Cannon P, Shah P, Pietrovito L, Modesti A, Aiyetan P, DeLeon-Pennell K, Ma Y, Halade GV, Hicks C, Zhang H, Lindsey ML. Cardiac extracellular proteome profiling and membrane topology analysis using glycoproteomics. Proteomics Clin Appl 2015; 8:595-602. [PMID: 24920555 DOI: 10.1002/prca.201400009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 01/23/2023]
Abstract
PURPOSE Extracellular proteins are easily accessible, which presents a subproteome of molecular targets that have high diagnostic and therapeutic potential. Efforts have been made to catalog the cardiac extracellular matridome and analyze the topology of identified proteins for the design of therapeutic targets. Although many bioinformatics tools have been developed to predict protein topology, topology has been experimentally validated for only a very small portion of membrane proteins. The aim of this study was to use a glycoproteomics and MS approach to identify glycoproteins in the extracellular matridome of the infarcted left ventricle (LV) and provide experimental evidence for topological determination. EXPERIMENTAL DESIGN Glycoproteomics analysis was performed on eight biological replicates of LV samples from wild-type mice at 7 days following myocardial infarction using SPE of glycopeptides, followed by mass spectrometric identification of N-linked glycosylation sites for topology assessment. RESULTS We identified hundreds of glycoproteins, and the identified N-glycosylation sites provide novel information on the correct topology for membrane proteins present in the infarct setting. CONCLUSIONS AND CLINICAL RELEVANCE Our data provide the foundation for future studies of the LV infarct extracellular matridome, which may facilitate the discovery of drug targets and biomarkers.
Collapse
Affiliation(s)
- Yuan Tian
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA; Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Weiland MH, Qian Y, Sodetz JM. Membrane pore formation by human complement: functional importance of the transmembrane β-hairpin (TMH) segments of C8α and C9. Mol Immunol 2013; 57:310-6. [PMID: 24239861 DOI: 10.1016/j.molimm.2013.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/12/2013] [Indexed: 10/26/2022]
Abstract
Human C8 and C9 have a key role in forming the pore-like "membrane attack complex" (MAC) of complement on bacterial cells. A possible mechanism for membrane insertion of these proteins was suggested when studies revealed a structural similarity between the MACPF domains of the C8α and C8β subunits and the pore-forming bacterial cholesterol-dependent cytolysins (CDCs). This similarity includes a pair of α-helical bundles that in the CDCs refold during pore formation to produce two transmembrane β-hairpins (TMH1 and TMH2). C9 is the major pore-forming component of the MAC and is also likely to contain two TMH segments because of its homology to C8α and C8β. To determine their potential for membrane insertion, the TMH sequences in C8α and those predicted to be in C9 were substituted for the TMH sequences in perfringolysin O (PFO), a well-characterized CDC. Only chimeric proteins containing TMH2 from C8α (PFO/αT2) or C9 (PFO/C9T2) could be expressed in soluble, active form. The PFO/αT2 and PFO/C9T2 chimeras retained significant hemolytic activity, formed pore-like structures on membranes, and could combine with PFO to form hemolytically active mixed complexes that were functionally similar to PFO alone. These results provide experimental evidence in support of the hypothesis that TMH segments in C8α and those predicted to be in C9 have a direct role in MAC membrane penetration and pore formation.
Collapse
Affiliation(s)
- Mitch H Weiland
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
6
|
Khan MA, Knox N, Prashar A, Alexander D, Abdel-Nour M, Duncan C, Tang P, Amatullah H, Dos Santos CC, Tijet N, Low DE, Pourcel C, Van Domselaar G, Terebiznik M, Ensminger AW, Guyard C. Comparative Genomics Reveal That Host-Innate Immune Responses Influence the Clinical Prevalence of Legionella pneumophila Serogroups. PLoS One 2013; 8:e67298. [PMID: 23826259 PMCID: PMC3694923 DOI: 10.1371/journal.pone.0067298] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
Legionella pneumophila is the primary etiologic agent of legionellosis, a potentially fatal respiratory illness. Amongst the sixteen described L. pneumophila serogroups, a majority of the clinical infections diagnosed using standard methods are serogroup 1 (Sg1). This high clinical prevalence of Sg1 is hypothesized to be linked to environmental specific advantages and/or to increased virulence of strains belonging to Sg1. The genetic determinants for this prevalence remain unknown primarily due to the limited genomic information available for non-Sg1 clinical strains. Through a systematic attempt to culture Legionella from patient respiratory samples, we have previously reported that 34% of all culture confirmed legionellosis cases in Ontario (n = 351) are caused by non-Sg1 Legionella. Phylogenetic analysis combining multiple-locus variable number tandem repeat analysis and sequence based typing profiles of all non-Sg1 identified that L. pneumophila clinical strains (n = 73) belonging to the two most prevalent molecular types were Sg6. We conducted whole genome sequencing of two strains representative of these sequence types and one distant neighbour. Comparative genomics of the three L. pneumophila Sg6 genomes reported here with published L. pneumophila serogroup 1 genomes identified genetic differences in the O-antigen biosynthetic cluster. Comparative optical mapping analysis between Sg6 and Sg1 further corroborated this finding. We confirmed an altered O-antigen profile of Sg6, and tested its possible effects on growth and replication in in vitro biological models and experimental murine infections. Our data indicates that while clinical Sg1 might not be better suited than Sg6 in colonizing environmental niches, increased bloodstream dissemination through resistance to the alternative pathway of complement mediated killing in the human host may explain its higher prevalence.
Collapse
Affiliation(s)
- Mohammad Adil Khan
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Akriti Prashar
- Cell and Systems Biology and Biological Sciences, University of Toronto at Scarborough, Scarborough, Ontario, Canada
| | - David Alexander
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mena Abdel-Nour
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Hajera Amatullah
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Claudia C. Dos Santos
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Donald E. Low
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Christine Pourcel
- Institut de Génétique et Microbiologie, Université Paris-Sud, Paris, France
| | - Gary Van Domselaar
- Cell and Systems Biology and Biological Sciences, University of Toronto at Scarborough, Scarborough, Ontario, Canada
| | - Mauricio Terebiznik
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Alexander W. Ensminger
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cyril Guyard
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Trichinella spiralis paramyosin binds to C8 and C9 and protects the tissue-dwelling nematode from being attacked by host complement. PLoS Negl Trop Dis 2011; 5:e1225. [PMID: 21750743 PMCID: PMC3130009 DOI: 10.1371/journal.pntd.0001225] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/20/2011] [Indexed: 01/28/2023] Open
Abstract
Background Paramyosin is a thick myofibrillar protein found exclusively in invertebrates. Evidence suggested that paramyosin from helminths serves not only as a structural protein but also as an immunomodulatory agent. We previously reported that recombinant Trichinella spiralis paramyosin (Ts-Pmy) elicited a partial protective immunity in mice. In this study, the ability of Ts-Pmy to bind host complement components and protect against host complement attack was investigated. Methods and Findings In this study, the transcriptional and protein expression levels of Ts-Pmy were determined in T. spiralis newborn larva (NBL), muscle larva (ML) and adult worm developmental stages by RT-PCR and western blot analysis. Expression of Ts-Pmy at the outer membrane was observed in NBL and adult worms using immunogold electron microscopy and immunofluorescence staining. Functional analysis revealed that recombinant Ts-Pmy(rTs-Pmy) strongly bound to complement components C8 and C9 and inhibited the polymerization of C9 during the formation of the membrane attack complex (MAC). rTs-Pmy also inhibited the lysis of rabbit erythrocytes (ER) elicited by an alternative pathway-activated complement from guinea pig serum. Inhibition of native Ts-Pmy on the surface of NBL with a specific antiserum reduced larvae viability when under the attack of complement in vitro. In vivo passive transfer of anti-Ts-Pmy antiserum and complement-treated larvae into mice also significantly reduced the number of larvae that developed to ML. Conclusion These studies suggest that the outer membrane form of T. spiralis paramyosin plays an important role in the evasion of the host complement attack. Trichinellosis is a serious food borne parasitic disease caused by the consumption of meat contaminated with the infective larvae of Trichinella spiralis. The ability of the tissue-dwelling parasite to evade the host complement attack is essential for its survival and for establishing infection in the host. This study describes the expression of paramyosin, a muscular protein in invertebrates, on the surface of Trichinella spiralis and its role in the defense against the host complement attack as a survival strategy. Using a specific antiserum, expression of Trichinella spiralis paramyosin was detected on the outer membrane of the adult worms and newborn larvae. Functional analysis revealed that recombinant Trichinella spiralis paramyosin protein strongly bound human complement components C8 and C9 and inhibited the formation of the complement membrane attack complex. Neutralization with a specific antiserum greatly impaired the protective effect of paramyosin on the viability and infectivity of Trichinella spiralis newborn larva when under attack by complement. These studies suggest that the outer membrane form of Trichinella spiralis paramyosin plays an important role in the evasion of the host complement attack and is therefore a good target for vaccine and pharmaceutical development.
Collapse
|