1
|
Jiang HS, Lv LX, Wang JX. Anti-lipopolysaccharide factor D from kuruma shrimp exhibits antiviral activity. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:52-61. [PMID: 37073360 PMCID: PMC10077183 DOI: 10.1007/s42995-021-00113-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/17/2021] [Indexed: 05/03/2023]
Abstract
Anti-lipopolysaccharide factors (ALFs) exhibit a potent antimicrobial activity against a broad range of bacteria, filamentous fungi, and viruses. In previous reports, seven groups of ALFs (groups A-G) were identified in penaeid shrimp. Among them, group D showed negative net charges and weak antimicrobial activity. Whether this group has antiviral function is not clear. In this study, the ALF sequences of penaeid shrimp were analyzed, and eight groups of ALF family (groups A-H) were identified. The four ALFs including MjALF-C2, MjALF-D1, MjALF-D2, and MjALF-E2 from kuruma shrimp Marsupenaeus japonicus were expressed recombinantly in Escherichia coli, and the antiviral activity was screened via injection of purified recombinant ALFs into shrimp following white spot syndrome virus (WSSV) infection. Results showed that the expression of Vp28 (WSSV envelope protein) decreased significantly in the MjALF-D2-injected shrimp only. Therefore, MjALF-D2 was chosen for further study. Expression pattern analysis showed that MjAlf-D2 was upregulated in shrimp challenged by WSSV. The WSSV replication was detected in RNA, genomic DNA, and protein levels using VP28 and Ie1 (immediate-early gene of WSSV) as indicators in MjALF-D2-injected shrimp following WSSV infection. Results showed that WSSV replication was significantly inhibited compared with that in the rTRX- or PBS-injected control groups. After knockdown of MjAlf-D2 in shrimp by RNA interference, the WSSV replication increased significantly in the shrimp. All these results suggested that MjALF-D2 has an antiviral function in shrimp immunity, and the recombinant ALF-D2 has a potential application for viral disease control in shrimp aquaculture.
Collapse
Affiliation(s)
- Hai-Shan Jiang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237 China
| | - Li-Xia Lv
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237 China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237 China
| |
Collapse
|
2
|
Hou ZG, Wang Y, Hui K, Fang WH, Zhao S, Zhang JX, Ma H, Li XC. A novel anti-lipopolysaccharide factor SpALF6 in mud crab Scylla paramamosain exhibiting different antimicrobial activity from its single amino acid mutant. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:44-56. [PMID: 28232132 DOI: 10.1016/j.dci.2017.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
In crustaceans, anti-lipopolysaccharide factors (ALFs) are important immune effectors that have sequence diversity and exhibit broad antimicrobial activities. In this study, we characterized a novel ALF homolog SpALF6 from mud crab Scylla paramamosain and its variant SpALF6-V, which was generated by mutations of two amino acids (H46 to R and A110 to P) due to the presence of two single nucleotide polymorphisms (SNPs). SpALF6 was an anionic peptide with isoelectric point (pI) 6.79, whereas SpALF6-V was a cationic protein with pI 7.98. These two proteins shared a common lipopolysaccharide (LPS)-binding domain (LBD) with pI 6.05. SpALF6 was expressed mainly in hemocytes and up-regulated by Vibrio parahaemolyticus or Staphylococcus aureus challenge, indicating that SpALF6 may participate in the antibacterial immune responses. To investigate the likely functional differences between SpALF6 and SpALF6-V and elucidate the underlying mechanisms, a single amino acid mutant SpALF6-M (from H46 to R, outside but very close to LBD), which had the same pI as SpALF6-V, was harvested by a fusion PCR. Then, both SpALF6 and SpALF6-M were overexpressed and purified to test antimicrobial activity and binding activity to microbial cells or polysaccharides. SpALF6-M exhibited more potent antimicrobial and cell-binding activity on Gram-positive bacteria and fungi than SpALF6. Furthermore, SpALF6-M possessed stronger lipoteichoic acid (LTA)-binding activity than SpALF6, demonstrating that this particular positively charged amino acid outside but close to LBD contributed to the increase in SpALF6-M antibacterial activity. In addition, SpALF6 LBD peptide and its biotin-labeled form were synthesized in this study. Results showed that this anionic LBD peptide itself did not exhibit any significant antimicrobial activity against 10 kinds of microorganisms but it possessed strong binding activity to LPS, LTA, and peptidoglycan. These findings suggested that this anionic LBD was still an important active center and required collaboration with some particular positively charged amino acids outside LBD to exhibit antibacterial activity. Thus, SpALF6-M antimicrobial activity was increased by the mutation of H46 to R instead of A110 to P, which did not change the protein charge, suggesting that SpALF6-V may have more potent antimicrobial activity than SpALF6 and play more important roles in antibacterial immunity. This study provided a new insight into the mechanisms of how ALF amino acid sequence diversity resulted in their functional divergence.
Collapse
Affiliation(s)
- Zhi-Guo Hou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China; School of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Kaimin Hui
- College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Shu Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Jing-Xiao Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063 China.
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China.
| |
Collapse
|
3
|
Qiao K, Xu WF, Chen HY, Peng H, Zhang YQ, Huang WS, Wang SP, An Z, Shan ZG, Chen FY, Wang KJ. A new antimicrobial peptide SCY2 identified in Scylla Paramamosain exerting a potential role of reproductive immunity. FISH & SHELLFISH IMMUNOLOGY 2016; 51:251-262. [PMID: 26911409 DOI: 10.1016/j.fsi.2016.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
A new antimicrobial peptide named SCY2 with 65.08% identity in amino acid sequence to the known scygonadin (SCY1) was first characterized in Scylla paramamosain based on its cloned full-length cDNA and genomic DNA sequences. The SCY2 gene was dominantly expressed in the ejaculatory duct of male crabs and its mRNA transcripts were discerned mainly in the glandular epithelium of the inner wall and the secretion inside the ejaculatory duct. Although the SCY2 gene could not be induced with the challenge of the bacteria and fungi tested, its induction reached the highest level at the peak period of mating in mature male crabs either in June or November, suggesting its induction was likely related to seasonal reproduction changes. Moreover, it was interesting to note that, from analysis of its transcripts and protein, SCY2 was significantly expressed only in the ejaculatory duct of pre-copulatory males before mating, however it was clearly detected in the spermatheca of post-copulatory females after mating accompanied by the decreased level of SCY2 expression in the ejaculatory duct. These results suggested that the SCY2 was probably transferred from the male during mating action with the female for the purpose of protecting fertilization. The recombinant SCY2 was more active against the Gram-positive than the Gram-negative bacteria tested. It was further observed that the SCY2 transcripts were significantly increased with addition of exogenous progesterone in tissue cultures whereas the several other hormones tested had no any effect on SCY2 expression, indicating that there might be a relationship between the SCY2 expression and the induction of hormones in vivo. In summary, this study demonstrated that one role of SCY2 was likely to be involved in crab reproduction and it exerted its reproductive immune function through the mating action and the maintenance of inner sterility in the spermatheca of the female, thus leading to successful fertilization of S. paramamosain.
Collapse
Affiliation(s)
- Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Wan-Fang Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Ya-Qun Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Wen-Shu Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Shu-Ping Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Zhe An
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Zhong-Guo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
4
|
Tassanakajon A, Somboonwiwat K, Amparyup P. Sequence diversity and evolution of antimicrobial peptides in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:324-341. [PMID: 24950415 DOI: 10.1016/j.dci.2014.05.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
5
|
The role of biophysical parameters in the antilipopolysaccharide activities of antimicrobial peptides from marine fish. Mar Drugs 2014; 12:1471-94. [PMID: 24633250 PMCID: PMC3967222 DOI: 10.3390/md12031471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 01/03/2023] Open
Abstract
Numerous antimicrobial peptides (AMPs) from marine fish have been identified, isolated and characterized. These peptides act as host defense molecules that exert antimicrobial effects by targeting the lipopolysaccharide (LPS) of Gram-negative bacteria. The LPS-AMP interactions are driven by the biophysical properties of AMPs. In this review, therefore, we will focus on the physiochemical properties of AMPs; that is, the contributions made by their sequences, net charge, hydrophobicity and amphipathicity to their mechanism of action. Moreover, the interactions between LPS and fish AMPs and the structure of fish AMPs with LPS bound will also be discussed. A better understanding of the biophysical properties will be useful in the design of AMPs effective against septic shock and multidrug-resistant bacterial strains, including those that commonly produce wound infections.
Collapse
|
6
|
Zhu L, Lan JF, Huang YQ, Zhang C, Zhou JF, Fang WH, Yao XJ, Wang H, Li XC. SpALF4: a newly identified anti-lipopolysaccharide factor from the mud crab Scylla paramamosain with broad spectrum antimicrobial activity. FISH & SHELLFISH IMMUNOLOGY 2014; 36:172-180. [PMID: 24239582 DOI: 10.1016/j.fsi.2013.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides with binding and neutralizing activities to lipopolysaccharide (LPS) in crustaceans. This study identified and characterized a novel ALF homolog (SpALF4) from the mud crab Scylla paramamosain. The complete cDNA of SpALF4 had 756 bp with a 381 bp open reading frame encoding a protein with 126 aa. The deduced protein contained a signal peptide and a LPS-binding domain. SpALF4 shared the highest identity with PtALF5 at amino acid level but exhibited low similarity with most of other crustacean ALFs. Furthermore, different from the previously identified three SpALF homologs and most of other ALFs, SpALF4 had a low isoelectric point (pI) for the mature peptide and the LPS-binding domain with the values of 6.93 and 6.74, respectively. These results indicate that SpALF4 may be a unique ALF homolog with special biological function in the mud crab. Similar to the spatial structure of ALFPm3, SpALF4 contains three α-helices packed against a four-strand β-sheet, and an amphipathic loop formed by a disulphide bond between two conserved cysteine residues in LPS-binding domain. SpALF4, mainly distributed in hemocytes, could be upregulated by Vibrio harveyi, Staphylococcus aureus, or white spot syndrome virus. Recombinant SpALF4 could inhibit the growth of Gram-negative bacteria (V. harveyi, Vibrio anguillarum, Vibrio alginolyticus, Aeromonas hydrophila, Pseudomonas putida), Gram-positive bacteria (S. aureus and Bacillus megaterium), and a fungus Candida albicans to varying degrees. Further study showed that it could also bind to all the aforementioned microorganisms except S. aureus. These results demonstrate that SpALF4 is a unique ALF homolog with potent antimicrobial activity against bacteria and fungi. This characteristic suggests SpALF4 plays an essential function in immune defense against pathogen invasion in mud crab.
Collapse
Affiliation(s)
- Lei Zhu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Jiang-Feng Lan
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Qing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Chao Zhang
- College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jun-Fang Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China.
| | - Xiao-Juan Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Hao Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, Shanghai 200090, China.
| |
Collapse
|