1
|
Girelli Zubani G, Zivojnovic M, De Smet A, Albagli-Curiel O, Huetz F, Weill JC, Reynaud CA, Storck S. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs. J Exp Med 2017; 214:1169-1180. [PMID: 28283534 PMCID: PMC5379981 DOI: 10.1084/jem.20161576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Girelli Zubani et al. show that the Pms2 component of the mismatch repair complex and multiple uracil glycosylases contribute, each with a distinct strand bias, to enlarge the Ig gene mutation spectrum from G-C to A-T bases. During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung−/−Pms2−/− mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases.
Collapse
Affiliation(s)
- Giulia Girelli Zubani
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Marija Zivojnovic
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Annie De Smet
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Olivier Albagli-Curiel
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Faculté de Médecine-Site Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - François Huetz
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France.,Département d'Immunologie, Institut Pasteur, 75015 Paris, France
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Sébastien Storck
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| |
Collapse
|
3
|
Kasar S, Kim J, Improgo R, Tiao G, Polak P, Haradhvala N, Lawrence MS, Kiezun A, Fernandes SM, Bahl S, Sougnez C, Gabriel S, Lander ES, Kim HT, Getz G, Brown JR. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat Commun 2015; 6:8866. [PMID: 26638776 PMCID: PMC4686820 DOI: 10.1038/ncomms9866] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/08/2015] [Indexed: 12/17/2022] Open
Abstract
Patients with chromosome 13q deletion or normal cytogenetics represent the majority of chronic lymphocytic leukaemia (CLL) cases, yet have relatively few driver mutations. To better understand their genomic landscape, here we perform whole-genome sequencing on a cohort of patients enriched with these cytogenetic characteristics. Mutations in known CLL drivers are seen in only 33% of this cohort, and associated with normal cytogenetics and unmutated IGHV. The most commonly mutated gene in our cohort, IGLL5, shows a mutational pattern suggestive of activation-induced cytidine deaminase (AID) activity. Unsupervised analysis of mutational signatures demonstrates the activities of canonical AID (c-AID), leading to clustered mutations near active transcriptional start sites; non-canonical AID (nc-AID), leading to genome-wide non-clustered mutations, and an ageing signature responsible for most mutations. Using mutation clonality to infer time of onset, we find that while ageing and c-AID activities are ongoing, nc-AID-associated mutations likely occur earlier in tumour evolution. The oncogenic events driving indolent chronic lymphocytic leukaemia are relatively unknown. Here, the authors perform whole genome sequencing on 30 such tumours and identify recurrent mutations in IGLL5 and two activation induced cytidine deaminase signatures that are operative at different stages of CLL evolution.
Collapse
Affiliation(s)
- S Kasar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - J Kim
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - R Improgo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - G Tiao
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - P Polak
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - N Haradhvala
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - M S Lawrence
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - A Kiezun
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - S M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - S Bahl
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - C Sougnez
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - S Gabriel
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - E S Lander
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - H T Kim
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - G Getz
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - J R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
4
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Dingler FA, Kemmerich K, Neuberger MS, Rada C. Uracil excision by endogenous SMUG1 glycosylase promotes efficient Ig class switching and impacts on A:T substitutions during somatic mutation. Eur J Immunol 2014; 44:1925-35. [PMID: 24771041 PMCID: PMC4158878 DOI: 10.1002/eji.201444482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/06/2014] [Accepted: 04/15/2014] [Indexed: 12/23/2022]
Abstract
Excision of uracil introduced into the immunoglobulin loci by AID is central to antibody diversification. While predominantly carried out by the UNG uracil‐DNA glycosylase as reflected by deficiency in immunoglobulin class switching in Ung−/− mice, the deficiency is incomplete, as evidenced by the emergence of switched IgG in the serum of Ung−/− mice. Lack of switching in mice deficient in both UNG and MSH2 suggested that mismatch repair initiated a backup pathway. We now show that most of the residual class switching in Ung−/− mice depends upon the endogenous SMUG1 uracil‐DNA glycosylase, with in vitro switching to IgG1 as well as serum IgG3, IgG2b, and IgA greatly diminished in Ung−/−Smug1−/− mice, and that Smug1 partially compensates for Ung deficiency over time. Nonetheless, using a highly MSH2‐dependent mechanism, Ung−/−Smug1−/− mice can still produce detectable levels of switched isotypes, especially IgG1. While not affecting the pattern of base substitutions, SMUG1 deficiency in an Ung−/− background further reduces somatic hypermutation at A:T base pairs. Our data reveal an essential requirement for uracil excision in class switching and in facilitating noncanonical mismatch repair for the A:T phase of hypermutation presumably by creating nicks near the U:G lesion recognized by MSH2.
Collapse
|
6
|
Haque S, Yan XJ, Rosen L, McCormick S, Chiorazzi N, Mongini PKA. Effects of prostaglandin E2 on p53 mRNA transcription and p53 mutagenesis during T-cell-independent human B-cell clonal expansion. FASEB J 2013; 28:627-43. [PMID: 24145719 DOI: 10.1096/fj.13-237792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Within T-cell-dependent germinal centers, p53 gene transcription is repressed by Bcl-6 and is thus less vulnerable to mutation. Malignant lymphomas within inflamed extranodal sites exhibit a relatively high incidence of p53 mutations. The latter might originate from normal B-cell clones manifesting activation-induced cytosine deaminase (AID) and up-regulated p53 following T-cell-independent (TI) stimulation. We here examine p53 gene transcription in such TI clones, with a focus on modulatory effects of prostaglandin E2 (PGE2), and evaluate progeny for p53 mutations. Resting IgM(+)IgD(+)CD27(-) B cells from human tonsils were labeled with CFSE and stimulated in vitro with complement-coated antigen surrogate, IL-4, and BAFF ± exogenous PGE2 (50 nM) or an analog specific for the EP2 PGE2 receptor. We use flow cytometry to measure p53 and AID protein within variably divided blasts, qRT-PCR of p53 mRNA from cultures with or without actinomycin D to monitor mRNA transcription/stability, and single-cell p53 RT-PCR/sequencing to assess progeny for p53 mutations. We report that EP2 signaling triggers increased p53 gene transcriptional activity in AID(+) cycling blasts (P<0.01). Progeny exhibit p53 mutations at a frequency (8.5 × 10(-4)) greater than the baseline error rate (<0.8 × 10(-4)). We conclude that, devoid of the repressive influences of Bcl-6, dividing B lymphoblasts in inflamed tissues should display heightened p53 transcription and increased risk of p53 mutagenesis.
Collapse
Affiliation(s)
- Shabirul Haque
- 1Laboratory of B-Cell Biology, Karches Center for CLL Research and Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Schrader CE, Linehan EK, Ucher AJ, Bertocci B, Stavnezer J. DNA polymerases β and λ do not directly affect Ig variable region somatic hypermutation although their absence reduces the frequency of mutations. DNA Repair (Amst) 2013; 12:1087-93. [PMID: 24084171 DOI: 10.1016/j.dnarep.2013.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 11/28/2022]
Abstract
During somatic hypermutation (SHM) of antibody variable (V) region genes, activation-induced cytidine deaminase (AID) converts dC to dU, and dUs can either be excised by uracil DNA glycosylase (UNG), by mismatch repair, or replicated over. If UNG excises the dU, the abasic site could be cleaved by AP-endonuclease (APE), introducing the single-strand DNA breaks (SSBs) required for generating mutations at A:T bp, which are known to depend upon mismatch repair and DNA Pol η. DNA Pol β or λ could instead repair the lesion correctly. To assess the involvement of Pols β and λ in SHM of antibody genes, we analyzed mutations in the VDJh4 3' flanking region in Peyer's patch germinal center (GC) B cells from polβ(-/-)polλ(-/-), polλ(-/-), and polβ(-/-) mice. We find that deficiency of either or both polymerases results in a modest but significant decrease in V region SHM, with Pol β having a greater effect, but there is no effect on mutation specificity, suggesting they have no direct role in SHM. Instead, the effect on SHM appears to be due to a role for these enzymes in GC B cell proliferation or viability. The results suggest that the BER pathway is not important during V region SHM for generating mutations at A:T bp. Furthermore, this implies that most of the SSBs required for Pol η to enter and create A:T mutations are likely generated during replication instead. These results contrast with the inhibitory effect of Pol β on mutations at the Ig Sμ locus, Sμ DSBs and class switch recombination (CSR) reported previously. We show here that B cells deficient in Pol λ or both Pol β and λ proliferate normally in culture and undergo slightly elevated CSR, as shown previously for Pol β-deficient B cells.
Collapse
Affiliation(s)
- Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | | | | | | | | |
Collapse
|