1
|
Sant'Anna MRV, Pereira-Filho AA, Mendes-Sousa AF, Silva NCS, Gontijo NF, Pereira MH, Koerich LB, D'Avila Pessoa GC, Andersen J, Araujo RN. Inhibition of vertebrate complement system by hematophagous arthropods: inhibitory molecules, mechanisms, physiological roles, and applications. INSECT SCIENCE 2024; 31:1334-1352. [PMID: 38246860 DOI: 10.1111/1744-7917.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.
Collapse
Affiliation(s)
- Mauricio Roberto Vianna Sant'Anna
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Adalberto Alves Pereira-Filho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Naylene Carvalho Sales Silva
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcos Horácio Pereira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Barbosa Koerich
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Grasielle Caldas D'Avila Pessoa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Isayeva G, Rumora K, Potlukova E, Leibfarth JP, Schäfer I, Bartha Z, Zellweger MJ, Trendelenburg M, Hejlesen TK, Hansen AG, Thiel S, Mueller C. Diagnostic and prognostic value of mannan-binding lectin associated protein (MAp19) for functionally relevant coronary artery disease. Clin Chim Acta 2024; 558:119668. [PMID: 38599540 DOI: 10.1016/j.cca.2024.119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND This study aimed to evaluate the diagnostic and prognostic potential of MAp19, a regulating component of the lectin pathway of the complement system, in patients with suspected functionally relevant coronary artery disease (fCAD) as well as the determinants of MAp19 levels. METHODS The presence of fCAD was adjudicated using myocardial perfusion imaging with single-photon emission tomography and, where available, coronary angiography. MAp19 levels were measured in participants at rest, at peak stress tests, and two hours after the stress. The study also tracked major cardiovascular events, including non-fatal myocardial infarction and cardiovascular death, over a five-year follow-up period. RESULTS Among the 1,571 patients analyzed (32.3 % women), fCAD was identified in 462 individuals (29.4 %). MAp19 demonstrated no diagnostic significance, yielding an area under the curve (AUC) of 0.51 (0.47-0.55). Throughout the five-year follow-up, 107 patients (6.8 %) experienced non-fatal myocardial infarctions, 99 (6.3 %) had cardiovascular death, 194 (12.3 %) experienced all cause death and 50 (3.1 %) suffered a stroke. Cox and Kaplan-Meier analysis confirmed prognostic value of MAp19 for myocardial infarction, but not for cardiovascular death. Significant increases in the concentration of MAp19 were observed during bicycle (p = 0.001) and combined stress tests (p = 0.001). CONCLUSION MAp19 demonstrated an association with the risk of myocardial infarction. Increases in MAp19 concentration were observed during bicycle and combined stress-tests.
Collapse
Affiliation(s)
- Ganna Isayeva
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| | - Klara Rumora
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Eliska Potlukova
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland; University Center of Internal Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jan-Philipp Leibfarth
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Ibrahim Schäfer
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Zsofia Bartha
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Michael J Zellweger
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| |
Collapse
|
3
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
González-Del-Barrio L, Pérez-Alós L, Cyranka L, Rosbjerg A, Nagy S, Prohászka Z, Garred P, Bayarri-Olmos R. MAP-2:CD55 chimeric construct effectively modulates complement activation. FASEB J 2023; 37:e23256. [PMID: 37823685 DOI: 10.1096/fj.202300571r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
The complement system is a complex, tightly regulated protein cascade involved in pathogen defense and the pathogenesis of several diseases. Thus, the development of complement modulators has risen as a potential treatment for complement-driven inflammatory pathologies. The enzymatically inactive MAP-2 has been reported to inhibit the lectin pathway by competing with its homologous serine protease MASP-2. The membrane-bound complement inhibitor CD55 acts on the C3/C5 convertase level. Here, we fused MAP-2 to the four N-terminal domains of CD55 generating a targeted chimeric inhibitor to modulate complement activation at two different levels of the complement cascade. Its biological properties were compared in vitro with the parent molecules. While MAP-2 and CD55 alone showed a minor inhibition of the three complement pathways when co-incubated with serum (IC50MAP-2+CD55 1-4 = 60.98, 36.10, and 97.01 nM on the classical, lectin, and alternative pathways, respectively), MAP-2:CD551-4 demonstrated a potent inhibitory activity (IC50MAP-2:CD55 1-4 = 2.94, 1.76, and 12.86 nM, respectively). This inhibitory activity was substantially enhanced when pre-complexes were formed with the lectin pathway recognition molecule mannose-binding lectin (IC50MAP-2:CD55 1-4 = 0.14 nM). MAP-2:CD551-4 was also effective at protecting sensitized sheep erythrocytes in a classical hemolytic assay (CH50 = 13.35 nM). Finally, the chimeric inhibitor reduced neutrophil activation in full blood after stimulation with Aspergillus fumigatus conidia, as well as phagocytosis of conidia by isolated activated neutrophils. Our results demonstrate that MAP-2:CD551-4 is a potent complement inhibitor reinforcing the idea that engineered fusion proteins are a promising design strategy for identifying and developing drug candidates to treat complement-mediated diseases.
Collapse
Affiliation(s)
- Lydia González-Del-Barrio
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Leon Cyranka
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Simon Nagy
- Research Laboratory, Department of Internal Medicine and Hematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Hematology, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Recombinant Protein and Antibody Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
5
|
Bennike TB. Advances in proteomics: characterization of the innate immune system after birth and during inflammation. Front Immunol 2023; 14:1254948. [PMID: 37868984 PMCID: PMC10587584 DOI: 10.3389/fimmu.2023.1254948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Proteomics is the characterization of the protein composition, the proteome, of a biological sample. It involves the large-scale identification and quantification of proteins, peptides, and post-translational modifications. This review focuses on recent developments in mass spectrometry-based proteomics and provides an overview of available methods for sample preparation to study the innate immune system. Recent advancements in the proteomics workflows, including sample preparation, have significantly improved the sensitivity and proteome coverage of biological samples including the technically difficult blood plasma. Proteomics is often applied in immunology and has been used to characterize the levels of innate immune system components after perturbations such as birth or during chronic inflammatory diseases like rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). In cancers, the tumor microenvironment may generate chronic inflammation and release cytokines to the circulation. In these situations, the innate immune system undergoes profound and long-lasting changes, the large-scale characterization of which may increase our biological understanding and help identify components with translational potential for guiding diagnosis and treatment decisions. With the ongoing technical development, proteomics will likely continue to provide increasing insights into complex biological processes and their implications for health and disease. Integrating proteomics with other omics data and utilizing multi-omics approaches have been demonstrated to give additional valuable insights into biological systems.
Collapse
Affiliation(s)
- Tue Bjerg Bennike
- Medical Microbiology and Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Ferro Desideri L, Artemiev D, Bernardi E, Paschon K, Zandi S, Zinkernagel M, Anguita R. Investigational drugs inhibiting complement for the treatment of geographic atrophy. Expert Opin Investig Drugs 2023; 32:1009-1016. [PMID: 37902056 DOI: 10.1080/13543784.2023.2276759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Geographic atrophy (GA) is a progressive form of age-related macular degeneration (AMD) that leads to severe visual impairment and central vision loss. Traditional treatment options for GA are limited, highlighting the need for new therapeutic approaches. In recent years, targeting the complement system has emerged as a promising strategy for the treatment of GA. AREAS COVERED This expert opinion article reviews the investigational drugs inhibiting the complement cascade for the treatment of GA. Specifically, it focuses on the recent FDA approved pegcetacoplan, a C3 complement inhibitor, and avacincaptad pegol, a C5 complement inhibitor, highlighting their potential efficacy and safety profiles based on clinical trial data. EXPERT OPINION FDA approval of intravitreal pegcetacoplan and avacincaptad pegol marks significant progress in the landscape of GA treatment. However, variable results from trials underscore the complex nature of GA and the importance of patient selection. Complement inhibition holds promise, but ongoing research is vital to refine treatment strategies and offer improved outcomes for GA patients.
Collapse
Affiliation(s)
- Lorenzo Ferro Desideri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dmitri Artemiev
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Enrico Bernardi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Karin Paschon
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Souska Zandi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rodrigo Anguita
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Vils SR, Troldborg A, Hvas AM, Thiel S. Platelets and the Lectin Pathway of Complement Activation in Patients with Systemic Lupus Erythematosus or Antiphospholipid Syndrome. TH OPEN 2023; 7:e155-e167. [PMID: 37333022 PMCID: PMC10270747 DOI: 10.1055/a-2087-0314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Background Patients with systemic lupus erythematosus (SLE) have an increased risk of thrombosis even when they do not have antiphospholipid syndrome (APS). Interactions between complement activation and activated platelets have been suggested in SLE and APS and could play a role in the increased thrombosis risk. Objectives To explore factors potentially related to the prothrombotic pathophysiology in patients with SLE, primary APS, and healthy controls, by investigating lectin pathway proteins (LPPs), complement activation, platelet aggregation, and platelet activation. Methods This cross-sectional cohort study included 20 SLE patients, 17 primary APS, and 39 healthy controls. Flow cytometry and light transmission aggregometry were used to assess platelet activation and aggregation. Using time-resolved immunofluorometric assays, the plasma concentrations of 11 LPPs and C3dg, reflecting complement activation, were measured. Results H-ficolin plasma concentrations were higher in SLE and APS patients than in controls ( p = 0.01 and p = 0.03). M-ficolin was lower in SLE than in APS ( p = 0.01) and controls ( p = 0.03). MAp19 was higher in APS patients than in SLE patients ( p = 0.01) and controls ( p < 0.001). In APS patients, MASP-2 and C3dg correlated negatively with platelet activation. Platelet-bound fibrinogen after agonist stimulation and C3dg concentrations correlated negatively with platelet activation. Conclusion We observed significant differences between SLE and APS patients regarding complement proteins and platelet activation. Particularly the negative correlations between MASP-2 and C3dg with platelet activation only observed in APS patients suggest that interactions between complement activation and platelets differ in SLE and APS.
Collapse
Affiliation(s)
| | - Anne Troldborg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Faculty of Health, Aarhus University, Aarhus, Denmark
- Thrombosis and Haemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Ding X, Qamar A, Liu H. The complement system testing in clinical laboratory. Clin Chim Acta 2023; 541:117238. [PMID: 36746263 DOI: 10.1016/j.cca.2023.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
With the advancement in research in the field of the complement system, a more comprehensive understanding developed about the complement system's role in the life process of an organism. It is a system of innate immune surveillance. This system plays a pivotal role in host defense against pathogens, inflammation, B and T cell homeostasis. Complement system analysis has a significant advantage in the assessment of the immune system status, diagnosis and prognosis of diseases, and medication guidelines. Currently, complement system testing is neither yet widely used across all clinical laboratoriesnor are the testing protocols yet systematic. Based on the current research, it is suggested that the analysis of complement activator-activated complement activity and total complement activity would be comprehensively assessed to evaluate the complement system's immunological function, and combine of the detection of its components to establish a systematic protocol for the complement system testing in the clinical laboratory. This article reviews the complement system's physiological role, disease relevance and the current testing status in clinical laboratories. Further more, some suggestions have also been provided for the preparation of complement standards i.e., the standardized preparation process for complement standards seems to be a feasible option given the easy inactivation of complement.
Collapse
Affiliation(s)
- Xuewei Ding
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Ayub Qamar
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
9
|
Hurler L, Toonen EJM, Kajdácsi E, van Bree B, Brandwijk RJMGE, de Bruin W, Lyons PA, Bergamaschi L, Sinkovits G, Cervenak L, Würzner R, Prohászka Z. Distinction of early complement classical and lectin pathway activation via quantification of C1s/C1-INH and MASP-1/C1-INH complexes using novel ELISAs. Front Immunol 2022; 13:1039765. [PMID: 36420270 PMCID: PMC9677118 DOI: 10.3389/fimmu.2022.1039765] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 07/22/2023] Open
Abstract
The most commonly used markers to assess complement activation are split products that are produced through activation of all three pathways and are located downstream of C3. In contrast, C4d derives from the cleavage of C4 and indicates either classical (CP) or lectin pathway (LP) activation. Although C4d is perfectly able to distinguish between CP/LP and alternative pathway (AP) activation, no well-established markers are available to differentiate between early CP and LP activation. Active enzymes of both pathways (C1s/C1r for the CP, MASP-1/MASP-2 for the LP) are regulated by C1 esterase inhibitor (C1-INH) through the formation of covalent complexes. Aim of this study was to develop validated immunoassays detecting C1s/C1-INH and MASP-1/C1-INH complex levels. Measurement of the complexes reveals information about the involvement of the respective pathways in complement-mediated diseases. Two sandwich ELISAs detecting C1s/C1-INH and MASP-1/C1-INH complex were developed and tested thoroughly, and it was investigated whether C1s/C1-INH and MASP-1/C1-INH complexes could serve as markers for either early CP or LP activation. In addition, a reference range for these complexes in healthy adults was defined, and the assays were clinically validated utilizing samples of 414 COVID-19 patients and 96 healthy controls. The immunoassays can reliably measure C1s/C1-INH and MASP-1/C1-INH complex concentrations in EDTA plasma from healthy and diseased individuals. Both complex levels are increased in serum when activated with zymosan, making them suitable markers for early classical and early lectin pathway activation. Furthermore, measurements of C1-INH complexes in 96 healthy adults showed normally distributed C1s/C1-INH complex levels with a physiological concentration of 1846 ± 1060 ng/mL (mean ± 2SD) and right-skewed distribution of MASP-1/C1-INH complex levels with a median concentration of 36.9 (13.18 - 87.89) ng/mL (2.5-97.5 percentile range), while levels of both complexes were increased in COVID-19 patients (p<0.0001). The newly developed assays measure C1-INH complex levels in an accurate way. C1s/C1-INH and MASP-1/C1-INH complexes are suitable markers to assess early classical and lectin pathway activation. An initial reference range was set and first studies showed that these markers have added value for investigating and unraveling complement activation in human disease.
Collapse
Affiliation(s)
- Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Erik J. M. Toonen
- Research and Development Department, Hycult Biotech, Uden, Netherlands
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Bregje van Bree
- Research and Development Department, Hycult Biotech, Uden, Netherlands
| | | | - Wieke de Bruin
- Research and Development Department, Hycult Biotech, Uden, Netherlands
| | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University – Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| |
Collapse
|
10
|
Arnold JN, Mitchell DA. Tinker, tailor, soldier, cell: the role of C-type lectins in the defense and promotion of disease. Protein Cell 2022; 14:4-16. [PMID: 36726757 PMCID: PMC9871964 DOI: 10.1093/procel/pwac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
C-type lectins (CTLs) represent a large family of soluble and membrane-bound proteins which bind calcium dependently via carbohydrate recognition domains (CRDs) to glycan residues presented on the surface of a variety of pathogens. The deconvolution of a cell's glycan code by CTLs underpins several important physiological processes in mammals such as pathogen neutralization and opsonization, leukocyte trafficking, and the inflammatory response. However, as our knowledge of CTLs has developed it has become apparent that the role of this innate immune family of proteins can be double-edged, where some pathogens have developed approaches to subvert and exploit CTL interactions to promote infection and sustain the pathological state. Equally, CTL interactions with host glycoproteins can contribute to inflammatory diseases such as arthritis and cancer whereby, in certain contexts, they exacerbate inflammation and drive malignant progression. This review discusses the 'dual agent' roles of some of the major mammalian CTLs in both resolving and promoting infection, inflammation and inflammatory disease and highlights opportunities and emerging approaches for their therapeutic modulation.
Collapse
|
11
|
Smolnikova MV, Tereshchenko SY. Proteins of the lectin pathway of the complement system activation: immunobiological functions, genetics and involvement in the pathogenesis of human diseases. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022; 12:209-221. [DOI: 10.15789/2220-7619-pot-1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The complement system is the most ancient components in the innate immunity, mainly functioning to primarily eliminate bacterial agents intravascularly. Moreover, the complement complex proteins play a role as a bridge between the systems of innate and adaptive immunity providing adequate conditions for maturation and differentiation of B- and T-lymphocytes. The complement system consists of plasma proteins and membrane receptors. Plasma proteins interact with each other via the three described cascade pathways lectin (which is most ancient phylogenetically), alternative and classical. Lectins are proteins comprising a separate superfamily of pattern-recognizing receptors able to sense molecules of oligo- and polysaccharide nature and induce their aggregation. Among all the lectins, ficolins (FCN) (common domain fibrinogen) and collectins (common domain collagen) mannose-binding lectin (MBL), hepatic and renal collectins have exert unique functions by complexing with carbohydrate components of microbial wall. Formation of a compound complex microbial wall polysaccharides + collectin/ficolin + specific mannose-binding lectin-associated serine proteases (MARP) results in the complement system activation, inflammatory reaction and bacterium elimination. Such scenario is proceeded along the lectin pathway compared to the two other pathways called classical and alternative. Examining a role of the complement system and congenital protein defects in the pathogenesis of various diseases is of topical interest because inborn deficiency of the complement components comprises at least 5% out of total primary immunodeficiency rate, whereas the aspects of their prevalence and pathogenesis remain unexplored. Relevance of investigating the complement system components for diverse populations is tremendous, taking into consideration accumulated evidence regarding an important role of the lectin pathway in viral infections. Lectins, the main proteins in the lectin pathway of the complement activation, are encoded by polymorphic genes, wherein single nucleotide polymorphisms (SNPs) result in altered protein conformation and expression, which, in turn, affects functionality and potential to respond to a pathogen. The distribution of the lectin polymorphic gene frequencies and their haplotypes displays extremely marked population differences. According to analyzing available data, population SNP frequencies including those associated with inborn deficiencies for components of the lectin pathway have been currently scarce or unexplored. hence, here we review major lectins and their functions, their functionally significant SNPs in diverse populations and their pathogenetic importance for host defense functions.
Collapse
|
12
|
Parker SE, Bellingham MC, Woodruff TM. Complement drives circuit modulation in the adult brain. Prog Neurobiol 2022; 214:102282. [DOI: 10.1016/j.pneurobio.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
13
|
Heal SL, Hardy LJ, Wilson CL, Ali M, Ariëns RAS, Foster R, Philippou H. Novel interaction of properdin and coagulation factor XI: Crosstalk between complement and coagulation. Res Pract Thromb Haemost 2022; 6:e12715. [PMID: 35647477 PMCID: PMC9130567 DOI: 10.1002/rth2.12715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background Evidence of crosstalk between the complement and coagulation cascades exists, and dysregulation of either pathway can lead to serious thromboinflammatory events. Both the intrinsic pathway of coagulation and the alternative pathway of complement interact with anionic surfaces, such as glycosaminoglycans. Hitherto, there is no evidence for a direct interaction of properdin (factor P [FP]), the only known positive regulator of complement, with coagulation factor XI (FXI) or activated FXI (FXIa). Objectives The aim was to investigate crosstalk between FP and the intrinsic pathway and the potential downstream consequences. Methods Chromogenic assays were established to characterize autoactivation of FXI in the presence of dextran sulfate (DXS), enzyme kinetics of FXIa, and the downstream effects of FP on intrinsic pathway activity. Substrate specificity changes were investigated using SDS-PAGE and liquid chromatography-mass spectrometry (LC-MS). Surface plasmon resonance (SPR) was used to determine direct binding between FP and FXIa. Results/Conclusions We identified a novel interaction of FP with FXIa resulting in functional consequences. FP reduces activity of autoactivated FXIa toward S-2288. FXIa can cleave FP in the presence of DXS, demonstrated using SDS-PAGE, and confirmed by LC-MS. FXIa can cleave factor IX (FIX) and FP in the presence of DXS, determined by SDS-PAGE. DXS alone modulates FXIa activity, and this effect is further modulated by FP. We demonstrate that FXI and FXIa bind to FP with high affinity. Furthermore, FX activation downstream of FXIa cleavage of FIX is modulated by FP. These findings suggest a novel intercommunication between complement and coagulation pathways.
Collapse
Affiliation(s)
- Samantha L. Heal
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Lewis J. Hardy
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Clare L. Wilson
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Majid Ali
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Robert A. S. Ariëns
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Helen Philippou
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
14
|
De Marco Verissimo C, Jewhurst HL, Dobó J, Gál P, Dalton JP, Cwiklinski K. Fasciola hepatica is refractory to complement killing by preventing attachment of mannose binding lectin (MBL) and inhibiting MBL-associated serine proteases (MASPs) with serpins. PLoS Pathog 2022; 18:e1010226. [PMID: 35007288 PMCID: PMC8782513 DOI: 10.1371/journal.ppat.1010226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/21/2022] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heather L. Jewhurst
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - John P. Dalton
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
15
|
Reif A, Lam K, Weidler S, Lott M, Boos I, Lokau J, Bretscher C, Mönnich M, Perkams L, Schmälzlein M, Graf C, Fischer J, Lechner C, Hallstein K, Becker S, Weyand M, Steegborn C, Schultheiss G, Rose‐John S, Garbers C, Unverzagt C. Natural Glycoforms of Human Interleukin 6 Show Atypical Plasma Clearance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andreas Reif
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Kevin Lam
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Sascha Weidler
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Marie Lott
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Irene Boos
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Juliane Lokau
- Department of Pathology Medical Faculty Otto von Guericke University Magdeburg 39120 Magdeburg Germany
| | | | - Manuel Mönnich
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Lukas Perkams
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Marina Schmälzlein
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Christopher Graf
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Jan‐Patrick Fischer
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Carolin Lechner
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Kerstin Hallstein
- Protein Engineering & Antibody Technologies Merck Healthcare KGaA Frankfurter Str. 250 64293 Darmstadt Germany
| | - Stefan Becker
- Protein Engineering & Antibody Technologies Merck Healthcare KGaA Frankfurter Str. 250 64293 Darmstadt Germany
| | - Michael Weyand
- Department of Biochemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Clemens Steegborn
- Department of Biochemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | | | | | - Christoph Garbers
- Department of Pathology Medical Faculty Otto von Guericke University Magdeburg 39120 Magdeburg Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
16
|
Reif A, Lam K, Weidler S, Lott M, Boos I, Lokau J, Bretscher C, Mönnich M, Perkams L, Schmälzlein M, Graf C, Fischer JP, Lechner C, Hallstein K, Becker S, Weyand M, Steegborn C, Schultheiss G, Rose-John S, Garbers C, Unverzagt C. Natural Glycoforms of Human Interleukin 6 Show Atypical Plasma Clearance. Angew Chem Int Ed Engl 2021; 60:13380-13387. [PMID: 33756033 PMCID: PMC8251587 DOI: 10.1002/anie.202101496] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/18/2022]
Abstract
A library of glycoforms of human interleukin 6 (IL‐6) comprising complex and mannosidic N‐glycans was generated by semisynthesis. The three segments were connected by sequential native chemical ligation followed by two‐step refolding. The central glycopeptide segments were assembled by pseudoproline‐assisted Lansbury aspartylation and subsequent enzymatic elongation of complex N‐glycans. Nine IL‐6 glycoforms were synthesized, seven of which were evaluated for in vivo plasma clearance in rats and compared to non‐glycosylated recombinant IL‐6 from E. coli. Each IL‐6 glycoform was tested in three animals and reproducibly showed individual serum clearances depending on the structure of the N‐glycan. The clearance rates were atypical, since the 2,6‐sialylated glycoforms of IL‐6 cleared faster than the corresponding asialo IL‐6 with terminal galactoses. Compared to non‐glycosylated IL‐6 the plasma clearance of IL‐6 glycoforms was delayed in the presence of larger and multibranched N‐glycans in most cases
Collapse
Affiliation(s)
- Andreas Reif
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Kevin Lam
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Sascha Weidler
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Marie Lott
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Irene Boos
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Juliane Lokau
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, 39120, Magdeburg, Germany
| | | | - Manuel Mönnich
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Lukas Perkams
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Marina Schmälzlein
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Christopher Graf
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Jan-Patrick Fischer
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Carolin Lechner
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Kerstin Hallstein
- Protein Engineering & Antibody Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering & Antibody Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Michael Weyand
- Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | | | - Stefan Rose-John
- Department of Biochemistry, Kiel University, 24098, Kiel, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
17
|
Fatoba O, Itokazu T, Yamashita T. Complement cascade functions during brain development and neurodegeneration. FEBS J 2021; 289:2085-2109. [PMID: 33599083 DOI: 10.1111/febs.15772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The complement system, an essential tightly regulated innate immune system, is a key regulator of normal central nervous system (CNS) development and function. However, aberrant complement component expression and activation in the brain may culminate into marked neuroinflammatory response, neurodegenerative processes and cognitive impairment. Over the years, complement-mediated neuroinflammatory responses and complement-driven neurodegeneration have been increasingly implicated in the pathogenesis of a wide spectrum of CNS disorders. This review describes how complement system contributes to normal brain development and function. We also discuss how pathologic insults such as misfolded proteins, lipid droplet/lipid droplet-associated protein or glycosaminoglycan accumulation could trigger complement-mediated neuroinflammatory responses and neurodegenerative process in neurodegenerative proteinopathies, age-related macular degeneration and neurodegenerative lysosomal storage disorders.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
18
|
Targeting the Complement Serine Protease MASP-2 as a Therapeutic Strategy for Coronavirus Infections. Viruses 2021; 13:v13020312. [PMID: 33671334 PMCID: PMC7923061 DOI: 10.3390/v13020312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
MASP-2, mannose-binding protein-associated serine protease 2, is a key enzyme in the lectin pathway of complement activation. Hyperactivation of this protein by human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 has been found to contribute to aberrant complement activation in patients, leading to aggravated lung injury with potentially fatal consequences. This hyperactivation is triggered in the lungs through a conserved, direct interaction between MASP-2 and coronavirus nucleocapsid (N) proteins. Blocking this interaction with monoclonal antibodies and interfering directly with the catalytic activity of MASP-2, have been found to alleviate coronavirus-induced lung injury both in vitro and in vivo. In this study, a virtual library of 8736 licensed drugs and clinical agents has been screened in silico according to two parallel strategies. The first strategy aims at identifying direct inhibitors of MASP-2 catalytic activity, while the second strategy focusses on finding protein-protein interaction inhibitors (PPIs) of MASP-2 and coronaviral N proteins. Such agents could represent promising support treatment options to prevent lung injury and reduce mortality rates of infections caused by both present and future-emerging coronaviruses. Forty-six drug repurposing candidates were purchased and, for the ones selected as potential direct inhibitors of MASP-2, a preliminary in vitro assay was conducted to assess their interference with the lectin pathway of complement activation. Some of the tested agents displayed a dose-response inhibitory activity of the lectin pathway, potentially providing the basis for a viable support strategy to prevent the severe complications of coronavirus infections.
Collapse
|
19
|
A SNaPshot Assay for Determination of the Mannose-Binding Lectin Gene Variants and an Algorithm for Calculation of Haplogenotype Combinations. Diagnostics (Basel) 2021; 11:diagnostics11020301. [PMID: 33668563 PMCID: PMC7918147 DOI: 10.3390/diagnostics11020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Mannose-binding lectin (MBL) deficiency caused by the variability in the MBL2 gene is responsible for the susceptibility to and severity of various infectious and autoimmune diseases. A combination of six single nucleotide polymorphisms (SNPs) has a major impact on MBL levels in circulation. The aim of this study is to design and validate a sensitive and economical method for determining MBL2 haplogenotypes. The SNaPshot assay is designed and optimized to genotype six SNPs (rs1800451, rs1800450, rs5030737, rs7095891, rs7096206, rs11003125) and is validated by comparing results with Sanger sequencing. Additionally, an algorithm for online calculation of haplogenotype combinations from the determined genotypes is developed. Three hundred and twenty-eight DNA samples from healthy individuals from the Czech population are genotyped. Minor allele frequencies (MAFs) in the Czech population are in accordance with those present in the European population. The SNaPshot assay for MBL2 genotyping is a high-throughput, cost-effective technique that can be used in further genetic-association studies or in clinical practice. Moreover, a freely available online application for the calculation of haplogenotypes from SNPs is developed within the scope of this project.
Collapse
|
20
|
Galindo-Izquierdo M, Pablos Alvarez JL. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021; 10:cells10010148. [PMID: 33451011 PMCID: PMC7828564 DOI: 10.3390/cells10010148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The complement system (CS) includes more than 50 proteins and its main function is to recognize and protect against foreign or damaged molecular components. Other homeostatic functions of CS are the elimination of apoptotic debris, neurological development, and the control of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will review the main rheumatologic autoimmune processes in which complement plays a pathogenic role and its potential relevance as a therapeutic target.
Collapse
|
21
|
Ram Kumar Pandian S, Arunachalam S, Deepak V, Kunjiappan S, Sundar K. Targeting complement cascade: an alternative strategy for COVID-19. 3 Biotech 2020; 10:479. [PMID: 33088671 PMCID: PMC7571295 DOI: 10.1007/s13205-020-02464-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/03/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system is a stakeholder of the innate and adaptive immune system and has evolved as a crucial player of defense with multifaceted biological effects. Activation of three complement pathways leads to consecutive enzyme reactions resulting in complement components (C3 and C5), activation of mast cells and neutrophils by anaphylatoxins (C3a and C5a), the formation of membrane attack complex (MAC) and end up with opsonization. However, the dysregulation of complement cascade leads to unsolicited cytokine storm, inflammation, deterioration of alveolar lining cells, culminating in acquired respiratory destructive syndrome (ARDS). Similar pathogenesis is observed with the middle east respiratory syndrome (MERS), severe acquired respiratory syndrome (SARS), and SARS-CoV-2. Activation of the lectin pathway via mannose-binding lectin associated serine protease 2 (MASP2) is witnessed under discrete viral infections including COVID-19. Consequently, the spontaneous activation and deposits of complement components were traced in animal models and autopsy of COVID-19 patients. Pre-clinical and clinical studies evidence that the inhibition of complement components results in reduced complement deposits on target and non-target tissues, and aid in recovery from the pathological conditions of ARDS. Complement inhibitors (monoclonal antibody, protein, peptide, small molecules, etc.) exhibit great promise in blocking the activity of complement components and its downstream effects under various pathological conditions including SARS-CoV. Therefore, we hypothesize that targeting the potential complement inhibitors and complement cascade to counteract lung inflammation would be a better strategy to treat COVID-19.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Venkataraman Deepak
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
- Department of Human Sciences, University of Derby, London, United Kingdom
| | - Selvaraj Kunjiappan
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| |
Collapse
|
22
|
Holt CB, Hoffmann-Petersen IT, Hansen TK, Parving HH, Thiel S, Hovind P, Tarnow L, Rossing P, Østergaard JA. Association between severe diabetic retinopathy and lectin pathway proteins - an 18-year follow-up study with newly diagnosed type 1 diabetes patients. Immunobiology 2020; 225:151939. [PMID: 32381273 DOI: 10.1016/j.imbio.2020.151939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/18/2022]
Affiliation(s)
- C B Holt
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Aarhus University, Aarhus, Denmark.
| | | | - T K Hansen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - H-H Parving
- Department of Medical Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - S Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - P Hovind
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - L Tarnow
- Steno Diabetes Center, Sjaelland, Denmark
| | - P Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; University of Copenhagen, Copenhagen, Denmark
| | - J A Østergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
Pedersen H, Jensen RK, Hansen AG, Gadeberg TAF, Thiel S, Laursen NS, Andersen GR. A C3-specific nanobody that blocks all three activation pathways in the human and murine complement system. J Biol Chem 2020; 295:8746-8758. [PMID: 32376685 DOI: 10.1074/jbc.ra119.012339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
The complement system is a tightly controlled proteolytic cascade in the innate immune system, which tags intruding pathogens and dying host cells for clearance. An essential protein in this process is complement component C3. Uncontrolled complement activation has been implicated in several human diseases and disorders and has spurred the development of therapeutic approaches that modulate the complement system. Here, using purified proteins and several biochemical assays and surface plasmon resonance, we report that our nanobody, hC3Nb2, inhibits C3 deposition by all complement pathways. We observe that the hC3Nb2 nanobody binds human native C3 and its degradation products with low nanomolar affinity and does not interfere with the endogenous regulation of C3b deposition mediated by Factors H and I. Using negative stain EM analysis and functional assays, we demonstrate that hC3Nb2 inhibits the substrate-convertase interaction by binding to the MG3 and MG4 domains of C3 and C3b. Furthermore, we notice that hC3Nb2 is cross-reactive and inhibits the lectin and alternative pathway in murine serum. We conclude that hC3Nb2 is a potent, general, and versatile inhibitor of the human and murine complement cascades. Its cross-reactivity suggests that this nanobody may be valuable for analysis of complement activation within animal models of both acute and chronic diseases.
Collapse
Affiliation(s)
- Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rasmus K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Trine A F Gadeberg
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nick S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
24
|
Troldborg A, Thiel S, Mistegaard CE, Hansen A, Korsholm T, Stengaard‐Pedersen K, Loft AG. Plasma levels of H- and L-ficolin are increased in axial spondyloarthritis: improvement of disease identification. Clin Exp Immunol 2020; 199:79-87. [PMID: 31518441 PMCID: PMC6904737 DOI: 10.1111/cei.13374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 12/15/2022] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that primarily affects the axial skeleton. A predominance of innate versus adaptive immune responses have been reported in axSpA, indicating a prominent autoinflammatory component of the disease. Little is known about the lectin pathway proteins (LPPs) of the complement system in relation to axSpA. We have investigated LPPs in patients with axSpA and control individuals. Plasma samples were obtained from a cross-sectional cohort of 120 patients with a clinical diagnosis of axSpA and from 144 age- and gender-matched controls. The plasma concentrations of 11 LPPs were measured, using sandwich-type time-resolved immunofluorometric assays in patients and controls, and related to clinical diagnosis and disease activity. Three LPPs [H-ficolin (ficolin-3), L-ficolin (ficolin-2) and collectin liver 1 (CL-L1)] were significantly higher in axSpA patients than in controls (P < 0·0001) and one LPP, collectin kidney 1 (CL-K1), was significantly lower (P < 0·0001). Further, combining H- or L-ficolin concentrations above the 75th percentile of the respective H- or L-ficolin concentration measured in controls with human leucocyte antigen (HLA)-B27 positivity yielded axSpA diagnostic specificities of 99/99% and positive likelihood ratios of 68/62, respectively. H-ficolin and L-ficolin plasma concentrations were found to be elevated in axSpA patients regardless of time since diagnosis. H-ficolin and L-ficolin may represent diagnostic biomarkers for patients with axSpA and should be further evaluated. Our results showed no association between disease activity and the measured LPP concentrations. This result might be due to the cross-sectional design, and should be further investigated.
Collapse
Affiliation(s)
- A. Troldborg
- Department of RheumatologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhusDenmark
| | - S. Thiel
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - C. E. Mistegaard
- Department of RheumatologyAarhus University HospitalAarhusDenmark
| | - A. Hansen
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | | | | | - A. G. Loft
- Department of RheumatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhusDenmark
| |
Collapse
|
25
|
Ficolin-3 Deficiency Is Associated with Disease and an Increased Risk of Systemic Lupus Erythematosus. J Clin Immunol 2019; 39:421-429. [DOI: 10.1007/s10875-019-00627-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/07/2019] [Indexed: 01/06/2023]
|
26
|
Troldborg A, Thiel S, Trendelenburg M, Friebus-Kardash J, Nehring J, Steffensen R, Hansen SWK, Laska MJ, Deleuran B, Jensenius JC, Voss A, Stengaard-Pedersen K. The Lectin Pathway of Complement Activation in Patients with Systemic Lupus Erythematosus. J Rheumatol 2018; 45:1136-1144. [PMID: 29907670 DOI: 10.3899/jrheum.171033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The pathogenesis of systemic lupus erythematosus (SLE) involves complement activation. Activation of complement through the classical pathway (CP) is well established. However, complement activation through pattern recognition not only happens through the CP, but also through the lectin pathway (LP). We investigated the hypothesis that the LP is activated in SLE and involved in the pathogenesis of the disease. METHODS Using immunoassays developed in-house, we measured concentrations of LP proteins in a cohort of 372 patients with SLE and 170 controls. We estimated complement activation measuring total C3, and investigated whether LP protein concentrations were associated with complement activation and disease activity. Protein changes and disease activity over time were assessed in a cohort of 52 patients with SLE followed with repeated samples over a 5-year period. RESULTS Concentrations of LP proteins in SLE were altered compared with controls. The differences observed in LP proteins associated with complement activation were reflected by a decrease in total C3. The pattern recognition molecules (M-ficolin, CL-L1, and CL-K1), the serine protease (MASP-3), and the associated protein (MAp19) displayed a negative correlation with disease activity. Changes in MASP-2 concentrations over time correlated significantly with increased disease activity. Association between active proteinuria and serum concentration was observed for MASP-3 and MAp19. CONCLUSION In patients with SLE, we measured specific changes in LP proteins that are associated with complement activation and disease activity, indicating that the LP is activated in patients with SLE. These novel findings substantiate the involvement of the LP in SLE.
Collapse
Affiliation(s)
- Anne Troldborg
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland. .,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University.
| | - Steffen Thiel
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Marten Trendelenburg
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Justa Friebus-Kardash
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Josephine Nehring
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Rudi Steffensen
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Søren Werner Karlskov Hansen
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Magdalena Janina Laska
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Bent Deleuran
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Jens Christian Jensenius
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Anne Voss
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| | - Kristian Stengaard-Pedersen
- From the Department of Rheumatology, Aarhus University Hospital; Institute of Clinical Medicine, and Department of Biomedicine, Aarhus University, Aarhus; Department of Clinical Immunology, Aalborg University Hospital, Aalborg; Department of Cancer and Inflammation Research, University of Southern Denmark; Department of Rheumatology, Odense University Hospital, Odense, Denmark; Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,A. Troldborg, MD, PhD, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University; S. Thiel, PhD, Professor, Department of Biomedicine, Aarhus University; M. Trendelenburg, PhD, Professor, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Friebus-Kardash, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; J. Nehring, MD, Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; R. Steffensen, PhD, Department of Clinical Immunology, Aalborg University Hospital; S.W. Hansen, PhD, Associate Professor, Department of Cancer and Inflammation Research, University of Southern Denmark; M.J. Laska, PhD, Associate Professor, Institute of Clinical Medicine, Aarhus University, and Division of Internal Medicine and Department of Biomedicine, University Hospital Basel, University of Basel; B. Deleuran, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Department of Biomedicine, Aarhus University; J.C. Jensenius, PhD, Professor, Department of Biomedicine, Aarhus University; A. Voss, MD, PhD, Department of Rheumatology, Odense University Hospital; K. Stengaard-Pedersen, PhD, Professor, Department of Rheumatology, Aarhus University Hospital, and Institute of Clinical Medicine, Aarhus University
| |
Collapse
|
27
|
Panagiotou A, Trendelenburg M, Osthoff M. The Lectin Pathway of Complement in Myocardial Ischemia/Reperfusion Injury-Review of Its Significance and the Potential Impact of Therapeutic Interference by C1 Esterase Inhibitor. Front Immunol 2018; 9:1151. [PMID: 29910807 PMCID: PMC5992395 DOI: 10.3389/fimmu.2018.01151] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality in modern medicine. Early reperfusion accomplished by primary percutaneous coronary intervention is pivotal for reducing myocardial damage in ST elevation AMI. However, restoration of coronary blood flow may paradoxically trigger cardiomyocyte death secondary to a reperfusion-induced inflammatory process, which may account for a significant proportion of the final infarct size. Unfortunately, recent human trials targeting myocardial ischemia/reperfusion (I/R) injury have yielded disappointing results. In experimental models of myocardial I/R injury, the complement system, and in particular the lectin pathway, have been identified as major contributors. In line with this, C1 esterase inhibitor (C1INH), the natural inhibitor of the lectin pathway, was shown to significantly ameliorate myocardial I/R injury. However, the hypothesis of a considerable augmentation of myocardial I/R injury by activation of the lectin pathway has not yet been confirmed in humans, which questions the efficacy of a therapeutic strategy solely aimed at the inhibition of the lectin pathway after human AMI. Thus, as C1INH is a multiple-action inhibitor targeting several pathways and mediators simultaneously in addition to the lectin pathway, such as the contact and coagulation system and tissue leukocyte infiltration, this may be considered as being advantageous over exclusive inhibition of the lectin pathway. In this review, we summarize current concepts and evidence addressing the role of the lectin pathway as a potent mediator/modulator of myocardial I/R injury in animal models and in patients. In addition, we focus on the evidence and the potential advantages of using the natural inhibitor of the lectin pathway, C1INH, as a future therapeutic approach in AMI given its ability to interfere with several plasmatic cascades. Ameliorating myocardial I/R injury by targeting the complement system and other plasmatic cascades remains a valid option for future therapeutic interventions.
Collapse
Affiliation(s)
- Anneza Panagiotou
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Kouser L, Paudyal B, Kaur A, Stenbeck G, Jones LA, Abozaid SM, Stover CM, Flahaut E, Sim RB, Kishore U. Human Properdin Opsonizes Nanoparticles and Triggers a Potent Pro-inflammatory Response by Macrophages without Involving Complement Activation. Front Immunol 2018; 9:131. [PMID: 29483907 PMCID: PMC5816341 DOI: 10.3389/fimmu.2018.00131] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
Development of nanoparticles as tissue-specific drug delivery platforms can be considerably influenced by the complement system because of their inherent pro-inflammatory and tumorigenic consequences. The complement activation pathways, and its recognition subcomponents, can modulate clearance of the nanoparticles and subsequent inflammatory response and thus alter the intended translational applications. Here, we report, for the first time, that human properdin, an upregulator of the complement alternative pathway, can opsonize functionalized carbon nanotubes (CNTs) via its thrombospondin type I repeat (TSR) 4 and 5. Binding of properdin and TSR4+5 is likely to involve charge pattern/polarity recognition of the CNT surface since both carboxymethyl cellulose-coated carbon nanotubes (CMC-CNT) and oxidized (Ox-CNT) bound these proteins well. Properdin enhanced the uptake of CMC-CNTs by a macrophage cell line, THP-1, mounting a robust pro-inflammatory immune response, as revealed by qRT-PCR, multiplex cytokine array, and NF-κB nuclear translocation analyses. Properdin can be locally synthesized by immune cells in an inflammatory microenvironment, and thus, its interaction with nanoparticles is of considerable importance. In addition, recombinant TSR4+5 coated on the CMC-CNTs inhibited complement consumption by CMC-CNTs, suggesting that nanoparticle decoration with TSR4+5, can be potentially used as a complement inhibitor in a number of pathological contexts arising due to exaggerated complement activation.
Collapse
Affiliation(s)
- Lubna Kouser
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Basudev Paudyal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Anuvinder Kaur
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Gudrun Stenbeck
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Lucy A. Jones
- Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Suhair M. Abozaid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Cordula M. Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Emmanuel Flahaut
- Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
29
|
Schatz-Jakobsen JA, Pedersen DV, Andersen GR. Structural insight into proteolytic activation and regulation of the complement system. Immunol Rev 2017; 274:59-73. [PMID: 27782336 DOI: 10.1111/imr.12465] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complement system is a highly complex and carefully regulated proteolytic cascade activated through three different pathways depending on the activator recognized. The structural knowledge regarding the intricate proteolytic enzymes that activate and control complement has increased dramatically over the last decade. This development has been pivotal for understanding how mutations within complement proteins might contribute to pathogenesis and has spurred new strategies for development of complement therapeutics. Here we describe and discuss the complement system from a structural perspective and integrate the most recent findings obtained by crystallography, small-angle X-ray scattering, and electron microscopy. In particular, we focus on the proteolytic enzymes governing activation and their products carrying the biological effector functions. Additionally, we present the structural basis for some of the best known complement inhibitors. The large number of accumulated molecular structures enables us to visualize the relative size, position, and overall orientation of many of the most interesting complement proteins and assembled complexes on activator surfaces and in membranes.
Collapse
Affiliation(s)
| | - Dennis V Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
30
|
Troldborg A, Hansen A, Hansen SWK, Jensenius JC, Stengaard-Pedersen K, Thiel S. Lectin complement pathway proteins in healthy individuals. Clin Exp Immunol 2017; 188:138-147. [DOI: 10.1111/cei.12909] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- A. Troldborg
- Department of Rheumatology, Aarhus University; Aarhus Denmark
- Institute of Clinical Medicine, Aarhus University; Aarhus Denmark
| | - A. Hansen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - S. W. K. Hansen
- Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - J. C. Jensenius
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - K. Stengaard-Pedersen
- Department of Rheumatology, Aarhus University; Aarhus Denmark
- Institute of Clinical Medicine, Aarhus University; Aarhus Denmark
| | - S. Thiel
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
31
|
Abstract
The complement system is an important part of the innate and adaptive immune systems. Originally characterized as a single serum component contributing to the killing of bacteria, we now know that there are close to sixty complement proteins, multiple activation pathways and a wide range of effector functions mediated by complement. The system plays a critical role in host defense against bacteria, viruses, fungi and other pathogens. However, inappropriate complement activation contributes to the pathophysiology of autoimmune diseases and many inflammatory syndromes. Over the last several decades, therapeutic approaches to inhibit complement activation at various steps in the pathways have met with initial success, particularly at the level of the terminal pathway. This success, combined with insight from animal model studies, has lead to an unprecedented effort by biotech and pharmaceutical companies to begin developing complement inhibitors. As a result, complement has been brought for the first time to the attention of pharmacologists, toxicologists, project managers and others in the drug development industry, as well as those in the investment world. The purpose of this primer is to provide a broad overview of complement immunobiology to help those new to complement understand the rationale behind the current therapeutic directions and the investment potential of these new therapeutics.
Collapse
Affiliation(s)
- Scott R Barnum
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. S., BBRB/744, Birmingham, AL 35294, United States; Department of Neurology, University of Alabama at Birmingham, 845 19th St. S., BBRB/744, Birmingham, AL 35294, United States.
| |
Collapse
|
32
|
Croll TI, Andersen GR. Re-evaluation of low-resolution crystal structures via interactive molecular-dynamics flexible fitting (iMDFF): a case study in complement C4. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:1006-16. [PMID: 27599733 DOI: 10.1107/s2059798316012201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/27/2016] [Indexed: 11/10/2022]
Abstract
While the rapid proliferation of high-resolution structures in the Protein Data Bank provides a rich set of templates for starting models, it remains the case that a great many structures both past and present are built at least in part by hand-threading through low-resolution and/or weak electron density. With current model-building tools this task can be challenging, and the de facto standard for acceptable error rates (in the form of atomic clashes and unfavourable backbone and side-chain conformations) in structures based on data with dmax not exceeding 3.5 Å reflects this. When combined with other factors such as model bias, these residual errors can conspire to make more serious errors in the protein fold difficult or impossible to detect. The three recently published 3.6-4.2 Å resolution structures of complement C4 (PDB entries 4fxg, 4fxk and 4xam) rank in the top quartile of structures of comparable resolution both in terms of Rfree and MolProbity score, yet, as shown here, contain register errors in six β-strands. By applying a molecular-dynamics force field that explicitly models interatomic forces and hence excludes most physically impossible conformations, the recently developed interactive molecular-dynamics flexible fitting (iMDFF) approach significantly reduces the complexity of the conformational space to be searched during manual rebuilding. This substantially improves the rate of detection and correction of register errors, and allows user-guided model building in maps with a resolution lower than 3.5 Å to converge to solutions with a stereochemical quality comparable to atomic resolution structures. Here, iMDFF has been used to individually correct and re-refine these three structures to MolProbity scores of <1.7, and strategies for working with such challenging data sets are suggested. Notably, the improved model allowed the resolution for complement C4b to be extended from 4.2 to 3.5 Å as demonstrated by paired refinement.
Collapse
Affiliation(s)
- Tristan Ian Croll
- Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| |
Collapse
|
33
|
Mortensen S, Jensen JK, Andersen GR. Solution Structures of Complement C2 and Its C4 Complexes Propose Pathway-specific Mechanisms for Control and Activation of the Complement Proconvertases. J Biol Chem 2016; 291:16494-507. [PMID: 27252379 DOI: 10.1074/jbc.m116.722017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 01/03/2023] Open
Abstract
The lectin (LP) and classical (CP) pathways are two of the three main activation cascades of the complement system. These pathways start with recognition of different pathogen- or danger-associated molecular patterns and include identical steps of proteolytic activation of complement component C4, formation of the C3 proconvertase C4b2, followed by cleavage of complement component C2 within C4b2 resulting in the C3 convertase C4b2a. Here, we describe the solution structures of the two central complexes of the pathways, C3 proconvertase and C3 convertase, as well as the unbound zymogen C2 obtained by small angle x-ray scattering analysis. We analyzed both native and enzymatically deglycosylated C4b2 and C2 and showed that the resulting structural models were independent of the glycans. The small angle x-ray scattering-derived models suggest a different activation mode for the CP/LP C3 proconvertase as compared with that established for the alternative pathway proconvertase C3bB. This is likely due to the rather different structural and functional properties of the proteases activating the proconvertases. The solution structure of a stabilized form of the active CP/LP C3 convertase C4b2a is strikingly similar to the crystal structure of the alternative pathway C3 convertase C3bBb, which is in accordance with their identical functions in cleaving the complement proteins C3 and C5.
Collapse
Affiliation(s)
- Sofia Mortensen
- From the Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-800 Aarhus, Denmark
| | - Jan K Jensen
- From the Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-800 Aarhus, Denmark
| | - Gregers R Andersen
- From the Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-800 Aarhus, Denmark
| |
Collapse
|
34
|
Complement MASP-1 enhances adhesion between endothelial cells and neutrophils by up-regulating E-selectin expression. Mol Immunol 2016; 75:38-47. [PMID: 27219453 DOI: 10.1016/j.molimm.2016.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 12/31/2022]
Abstract
The complement system and neutrophil granulocytes are indispensable in the immune response against extracellular pathogens such as bacteria and fungi. Endothelial cells also participate in antimicrobial immunity largely by regulating the homing of leukocytes through their cytokine production and their pattern of cell surface adhesion molecules. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), a complement lectin pathway enzyme, is able to activate endothelial cells by cleaving protease activated receptors, which leads to cytokine production and enables neutrophil chemotaxis. Therefore, we aimed to investigate how recombinant MASP-1 (rMASP-1) can modify the pattern of P-selectin, E-selectin, ICAM-1, ICAM-2, and VCAM-1 adhesion molecules in human umbilical vein endothelial cells (HUVEC), and whether these changes can enhance the adherence between endothelial cells and neutrophil granulocyte model cells (differentiated PLB-985). We found that HUVECs activated by rMASP-1 decreased the expression of ICAM-2 and increased that of E-selectin, whereas ICAM-1, VCAM-1 and P-selectin expression remained unchanged. Furthermore, these changes resulted in increased adherence between differentiated PLB-985 cells and endothelial cells. Our finding suggests that complement MASP-1 can increase adhesion between neutrophils and endothelial cells in a direct fashion. This is in agreement with our previous finding that MASP-1 increases the production of pro-inflammatory cytokines (such as IL-6 and IL-8) and chemotaxis, and may thereby boost neutrophil functions. This newly described cooperation between complement lectin pathway and neutrophils via endothelial cells may be an effective tool to enhance the antimicrobial immune response.
Collapse
|
35
|
Gunput STG, Wouters D, Nazmi K, Cukkemane N, Brouwer M, Veerman ECI, Ligtenberg AJM. Salivary agglutinin is the major component in human saliva that modulates the lectin pathway of the complement system. Innate Immun 2016; 22:257-65. [DOI: 10.1177/1753425916642614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Saliva interacts with blood after mucosal damage or leakage of gingival crevicular fluid. Surface-adsorbed salivary agglutinin (SAG) activates the lectin pathway (LP) of the complement system via mannose-binding lectin, while SAG in solution inhibits complement activation. In the present study we investigated if, next to SAG, whole and glandular saliva itself and other salivary glycoproteins activate or inhibit the LP. Complement activation was measured by detecting C4 deposition on microtiter plates coated with saliva or purified proteins. Complement inhibition was measured after incubating serum with saliva or proteins in microtiter plates coated with mannan, an LP activator. Adsorbed whole, sublingual and submandibular saliva showed LP-dependent complement activation. Blood group secretors, but not non-secretors, activated the LP. Saliva of both secretors and non-secretors inhibited C4 deposition on mannan. After depletion of SAG, saliva no longer inhibited the LP. Other salivary proteins, including amylase, MUC5B and histatin 2, did not activate or inhibit the LP. Surface-adsorbed whole saliva and glandular saliva samples activate the LP of complement, depending on the presence of SAG and the secretor status of the donor. In solution, saliva inhibits the LP, depending on the presence of SAG, but independent of the secretor status.
Collapse
Affiliation(s)
- Sabrina TG Gunput
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Nivedita Cukkemane
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Mieke Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Enno CI Veerman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Antoon JM Ligtenberg
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6:262. [PMID: 26082779 PMCID: PMC4451739 DOI: 10.3389/fimmu.2015.00262] [Citation(s) in RCA: 1115] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| | - Sarah Elizabeth Church
- UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; UMR_S 1138, Cordeliers Research Center, Integrative Cancer Immunology Team, INSERM , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| |
Collapse
|
37
|
Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement System Part II: Role in Immunity. Front Immunol 2015; 6:257. [PMID: 26074922 PMCID: PMC4443744 DOI: 10.3389/fimmu.2015.00257] [Citation(s) in RCA: 709] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022] Open
Abstract
The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France
| | - Remi Noe
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France ; Ecole Pratique des Hautes Études (EPHE) , Paris , France
| | - Lise Halbwachs-Mecarelli
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMRS 1138, Centre de Recherche des Cordeliers, INSERM , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Université Paris 06 , Paris , France
| |
Collapse
|
38
|
Mortensen S, Kidmose RT, Petersen SV, Szilágyi Á, Prohászka Z, Andersen GR. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement. THE JOURNAL OF IMMUNOLOGY 2015; 194:5488-96. [PMID: 25911760 DOI: 10.4049/jimmunol.1500087] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/22/2015] [Indexed: 11/19/2022]
Abstract
Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details of the rearrangement accompanying C4 cleavage and suggest intramolecular flexibility of C4b. The conformations of C4b and its paralogue C3b are shown to be remarkably conserved, suggesting that the convertases from the classical and alternative pathways are likely to share their overall architecture and mode of substrate recognition. We propose an overall molecular model for the classical pathway C5 convertase in complex with C5, suggesting that C3b increases the affinity for the substrate by inducing conformational changes in C4b rather than a direct interaction with C5. C4b-specific features revealed by our structural studies are probably involved in the assembly of the classical pathway C3/C5 convertases and C4b binding to regulators.
Collapse
Affiliation(s)
- Sofia Mortensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Rune T Kidmose
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Steen V Petersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark; and
| | - Ágnes Szilágyi
- 3rd Department of Internal Medicine, Semmelweis University, Budapest 1125, Hungary
| | - Zoltan Prohászka
- 3rd Department of Internal Medicine, Semmelweis University, Budapest 1125, Hungary
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark;
| |
Collapse
|
39
|
Complement activation contributes to the anti-methicillin-resistant Staphylococcus aureus effect of natural anti-keratin antibody. Biochem Biophys Res Commun 2015; 461:142-7. [PMID: 25862372 DOI: 10.1016/j.bbrc.2015.03.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains a major public health problem worldwide because of its strong resistance to a variety of antibiotics. Natural immunoglobulin (Ig) M antibodies have been reported to protect against microbial infections. In the present study, the function of a monoclonal natural anti-keratin antibody IgM (named 3B4) in MRSA infection was evaluated. The binding of 3B4 to MRSA was studied using immunofluorescence assay and flow cytometry (FCM). The binding of 3B4 to mannose-binding lectin (MBL) and complement activation were detected by ELISA. For the in vivo study, transgenic mice for the VH gene from 3B4 (TgVH 3B4) were used. After infection, the bacterial burden was examined in the kidney, spleen and enterocelia. Inflammatory cytokine levels and the neutrophil ratio in peritoneal lavage fluid (PLF) were assessed by ELISA and FCM, respectively. Additionally, the total serum hemolytic activity (CH50) in the early stage of infection was detected by ELISA. The results showed that 3B4 bound directly to MRSA and MBL, and the interaction between 3B4 and MRSA/MBL led to the activation of the classic and the MBL pathway in vitro. After 48 h of MRSA infection, the bacterial load in the kidney, spleen and enterocelia was significantly decreased in TgVH 3B4 mice (P < 0.05) compared with wild-type mice. Levels of IL-6, TNF-α, and IFN-γ were increased after MRSA infection. The levels of IL-6 and TNF-α in TgVH 3B4 mice were decreased by 49.1% and 59.4% compared to wild-type mice. Additionally, the neutrophil ratio in the PLF of TgVH 3B4 mice was decreased by 65.9%. The CH50 value was significantly higher in TgVH 3B4 mice than in wild-type mice, indicating that 3B4 promoted the activation of the complement system in MRSA infected mice. The results reveal an important role of 3B4 in the anti-MRSA immune response, and the complement activation contributes to this effect.
Collapse
|
40
|
Lectins: getting familiar with translators of the sugar code. Molecules 2015; 20:1788-823. [PMID: 25621423 PMCID: PMC6272290 DOI: 10.3390/molecules20021788] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/23/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022] Open
Abstract
The view on the significance of the presence of glycans in glycoconjugates is undergoing a paradigmatic change. Initially mostly considered to be rather inert and passive, the concept of the sugar code identifies glycans as highly versatile platform to store information. Their chemical properties endow carbohydrates to form oligomers with unsurpassed structural variability. Owing to their capacity to engage in hydrogen (and coordination) bonding and C-H/π-interactions these “code words” can be “read” (in Latin, legere) by specific receptors. A distinct class of carbohydrate-binding proteins are the lectins. More than a dozen protein folds have developed carbohydrate-binding capacity in vertebrates. Taking galectins as an example, distinct expression patterns are traced. The availability of labeled endogenous lectins facilitates monitoring of tissue reactivity, extending the scope of lectin histochemistry beyond that which traditionally involved plant lectins. Presentation of glycan and its cognate lectin can be orchestrated, making a glycan-based effector pathway in growth control of tumor and activated T cells possible. In order to unravel the structural basis of lectin specificity for particular glycoconjugates mimetics of branched glycans and programmable models of cell surfaces are being developed by strategic combination of lectin research with synthetic and supramolecular chemistry.
Collapse
|
41
|
Gunput ST, Ligtenberg AJ, Terlouw B, Brouwer M, Veerman EC, Wouters D. Complement activation by salivary agglutinin is secretor status dependent. Biol Chem 2015; 396:35-43. [DOI: 10.1515/hsz-2014-0200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/20/2014] [Indexed: 11/15/2022]
Abstract
Abstract
After mucosal damage or gingival inflammation, complement proteins leak into the oral cavity and mix with salivary proteins such as salivary agglutinin (SAG/gp-340/DMBT1). This protein is encoded by the gene Deleted in Malignant Brain Tumors 1 (DMBT1), and it aggregates bacteria, viruses and fungi, and activates the lectin pathway of the complement system. In the lectin pathway, carbohydrate structures on pathogens or altered self cells are recognized. SAG is highly glycosylated, partly on the basis of the donor’s blood group status. Whereas secretors express Lewis b, Lewis y, and antigens from the ABO-blood group system on SAG, non-secretors do not. Through mannose-binding lectin (MBL) binding and C4 deposition assays, we aimed to identify the chemical structures on SAG that are responsible for complement activation. The complement-activating properties of SAG were completely abolished by oxidation of its carbohydrate moiety. SAG-mediated activation of complement was also inhibited in the presence of saccharides such as fucose and Lewis b carbohydrates, and also after pretreatment with the fucose-binding lectin, Anguilla anguilla agglutinin. Complement activation was significantly (p<0.01) higher in secretors than in non-secretors. Our results suggest that fucose-rich oligosaccharide sidechains, such as Lewis b antigens, are involved in the activation of complement by SAG.
Collapse
|