1
|
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Takenouchi T, Tanaka J, Shimizu M, Kitazawa H, Uenishi H. Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms. Animals (Basel) 2022; 12:ani12223163. [PMID: 36428390 PMCID: PMC9686681 DOI: 10.3390/ani12223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Reduced productivity caused by infections, particularly respiratory diseases, is a serious problem in pig farming. We have previously reported polymorphisms in porcine pattern recognition receptor genes affecting molecular functions and demonstrated that the 2197A/C polymorphism in the nucleotide-binding oligomerization domain containing 2 (NOD2) gene influences porcine circovirus 2-induced mortality. Here, we investigated how these polymorphisms affect respiratory disease-induced lesions, using samples from a slaughterhouse dealing with pigs from two farms. Lung lesions were evaluated using two scoring systems, Goodwin (GW) and slaughterhouse pleuritis evaluation system (SPES), to determine the influence of Mycoplasma hyopneumoniae (Mhp) and Actinobacillus pleuropneumoniae (App), respectively. SPES scores were significantly higher when the 1205T allele of Toll-like receptor 5 (TLR5-1205T), rather than TLR5-1205C, was present. On the farm with more severe Mhp invasion, lower GW lesion scores were significantly associated with the presence of the NOD-like receptor family pyrin domain containing 3 (NLRP3)-2906G allele; where App invasion was worse, lower SPES scores were significantly associated with the presence of the NOD2-2197C allele. Combinations of polymorphisms in pattern recognition receptor genes can therefore be utilized for breeding for resistance against respiratory diseases in pigs. DNA markers of these polymorphisms can thus be used to improve productivity by reducing respiratory diseases due to bacterial pathogens in pig livestock.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Toshimi Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Junji Tanaka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Masanori Shimizu
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| |
Collapse
|
2
|
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Tanaka J, Hayashi N, Kitazawa H, Uenishi H. NOD2 Genotypes Affect the Symptoms and Mortality in the Porcine Circovirus 2-Spreading Pig Population. Genes (Basel) 2021; 12:genes12091424. [PMID: 34573406 PMCID: PMC8469532 DOI: 10.3390/genes12091424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
The nucleotide oligomerization domain (NOD)-like receptor 2 (NOD2) is an intracellular pattern recognition receptor that detects components of peptidoglycans from bacterial cell walls. NOD2 regulates bowel microorganisms, provides resistance against infections such as diarrhea, and reduces the risk of inflammatory bowel diseases in humans and mice. We previously demonstrated that a specific porcine NOD2 polymorphism (NOD2-2197A > C) augments the recognition of peptidoglycan components. In this study, the relationships between porcine NOD2-2197A/C genotypes affecting molecular functions and symptoms in a porcine circovirus 2b (PCV2b)-spreading Duroc pig population were investigated. The NOD2 allele (NOD2-2197A) with reduced recognition of the peptidoglycan components augmented the mortality of pigs at the growing stage in the PCV2b-spreading population. Comparison of NOD2 allele frequencies in the piglets before and after invasion of PCV2b indicated that the ratio of NOD2-2197A decreased in the population after the PCV2b epidemic. This data indicated that functional differences caused by NOD2-2197 polymorphisms have a marked impact on pig health and livestock productivity. We suggest that NOD2-2197CC is a PCV2 disease resistant polymorphism, which is useful for selective breeding by reducing mortality and increasing productivity.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan;
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Toshimi Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| | - Junji Tanaka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Noboru Hayashi
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| |
Collapse
|
3
|
Mishra SK, Dubey PK, Dhiman A, Dubey S, Verma D, Kaushik AC, Singh R, Niranjan SK, Vohra V, Mehrara KL, Kataria RS. Sequence-based structural analysis and evaluation of polymorphism in buffalo Nod-like receptor-1 gene. 3 Biotech 2019; 9:26. [PMID: 30622864 DOI: 10.1007/s13205-018-1534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, we have sequence characterized and analyzed the polymorphism in buffalo NOD1 (nucleotide-binding oligomerization domain 1) gene as well as its expression analysis. Full-length sequence analysis of NOD1 revealed this gene in buffalo being conserved with respect to the domain structures, similar to other species. Alternate splice variants having exon3 skipping also identified for the first time in the gene expressed in buffalo-purified peripheral blood mononuclear cells (PBMCs). Phylogenetically ruminant species were found to be clustering together and buffalo displaying maximum similarity with cattle. Sequencing of NOD1 across 12 Indian buffalo breeds identified 23 polymorphic sites within coding region, among which 16 were synonymous and 7 changes found to be non-synonymous. Four SNPs (single nucleotide polymorphisms) of them were genotyped in 393 animals belonging to 12 riverine, swamp and hybrid (riverine × swamp) buffalo populations of diverse phenotypes and utilities, showing variable allelic frequencies. Principal component analysis revealed, riverine and swamp buffaloes being distinctly placed with the distribution of breeds within the group based on the geographical isolation. Further, quantitative real-time PCR detected NOD1 expression in multiple tissues with PBMCs and lungs showing highest expression among the tissues examined. Structural analysis based on the translated amino acid sequence of buffalo NOD1 identified four protein interaction motifs LxxLL important for ligand binding. Molecular interaction analysis of iE-DAP and NOD1-LRR and their complex stability and binding-free energy studies indicated variable binding energies in buffalo and cattle NOD1. Overall, the study reveals unique structural features in buffalo NOD1, important for species-specific ligand interaction.
Collapse
|
4
|
Ainslie-Garcia MH, Farzan A, Jafarikia M, Lillie BN. Single nucleotide variants in innate immune genes associated with Salmonella shedding and colonization in swine on commercial farms. Vet Microbiol 2018; 219:171-177. [PMID: 29778193 DOI: 10.1016/j.vetmic.2018.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023]
Abstract
Foodborne human salmonellosis is an important food safety concern worldwide. Food-producing animals are one of the major sources of human salmonellosis, and thus control of Salmonella at the farm level could reduce Salmonella spread in the food supply system. Genetic selection of pigs with resistance to Salmonella infection may be one way to control Salmonella on swine farms. The objective of this study was to investigate the association between genetic variants in the porcine innate immune system with on-farm Salmonella shedding and Salmonella colonization tested at slaughter. Fourteen groups of pigs (total 809) were followed from birth to slaughter. Fecal samples collected five times at different stages of production and tissue samples obtained from tonsil and lymph nodes at slaughter were cultured for Salmonella. Genomic DNA was extracted and analyzed for 40 single nucleotide variants and two indels within porcine innate immune genes that were previously associated with Salmonella infection or other infectious diseases. A survey was used to collect information on farm management practices. A multilevel mixed-effects logistic regression modelling method was used to identify SNVs that are associated with Salmonella shedding and/or Salmonella colonization. One single nucleotide variant in the C-type lectin MBL1 and one single nucleotide variant in the cytosolic pattern recognition receptor NOD1 was associated with increased risk of on-farm shedding (p = 0.010) and internal colonization tested at slaughter (p = 0.018), respectively. These findings indicate the potential of these variants for genetic selection programs aimed at controlling Salmonella shedding and colonization in pigs.
Collapse
Affiliation(s)
| | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Mohsen Jafarikia
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Canadian Center for Swine Improvement, Inc. 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Abstract
The NLRC4 inflammasome, which recognizes flagellin and components of the type III secretion system, plays an important role in the clearance of intracellular bacteria. Here, we examined the genomic sequences carrying two genes encoding key components of the NLRC4 inflammasome-NLR family, CARD-containing 4 (NLRC4), and NLR apoptosis inhibitory protein (NAIP)-in pigs. Pigs have a single locus encoding NLRC4 and NAIP. Comparison of the sequences thus obtained with the corresponding regions in humans revealed the deletion of intermediate exons in both pig genes. In addition, the genomic sequences of both pig genes lacked valid open reading frames encoding functional NLRC4 or NAIP protein. Additional pigs representing multiple breeds and wild boars also lacked the exons that we failed to find through genome sequencing. Furthermore, neither the NLRC4 nor the NAIP gene was expressed in pigs. These findings indicate that pigs lack the NLRC4 inflammasome, an important factor involved in monitoring bacterial proteins and contributing to the clearance of intracellular pathogens. These results also suggest that genetic polymorphisms affecting the molecular functions of TLR2, TLR4, TLR5, and other pattern recognition receptors associated with the recognition of bacteria have a more profound influence on disease resistance in pigs than in other species.
Collapse
|
6
|
Tohno M, Shinkai H, Toki D, Okumura N, Tajima K, Uenishi H. Identification of the Q969R gain-of-function polymorphism in the gene encoding porcine NLRP3 and its distribution in pigs of Asian and European origin. Immunogenetics 2016; 68:693-701. [PMID: 27236661 DOI: 10.1007/s00251-016-0917-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
The nucleotide-binding domain, leucine-rich-containing family, pyrin-domain containing-3 (NLRP3) inflammasome comprises the major components caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and NLRP3. NLRP3 plays important roles in maintaining immune homeostasis mediated by intestinal microorganisms and in the immunostimulatory properties of vaccine adjuvants used to induce an immune response. In the present study, we first cloned a complementary DNA (cDNA) encoding porcine ASC because its genomic sequence was not completely determined. The availability of the ASC cDNA enabled us to reconstitute porcine NLRP3 inflammasomes using an in vitro system that led to the identification of the immune functions of porcine NLRP3 and ASC based on the production of interleukin-1β (IL-1β). Further, we identified six synonymous and six nonsynonymous single-nucleotide polymorphisms (SNPs) in the coding sequence of NLRP3 of six breeds of pigs, including major commercial breeds. Among the nonsynonymous SNPs, the Q969R polymorphism is associated with an increased release of IL-1β compared with other porcine NLRP3 variants, indicating that this polymorphism represents a gain-of-function mutation. This allele was detected in 100 % of the analyzed Chinese Jinhua and Japanese wild boars, suggesting that the allele is maintained in the major commercial native European breeds Landrace, Large White, and Berkshire. These findings represent an important contribution to our knowledge of the diversity of NLRP3 nucleotide sequences among various pig populations. Moreover, efforts to exploit the gain of function induced by the Q969R polymorphism promise to improve pig breeding and husbandry by conferring enhanced resistance to pathogens as well as contributing to vaccine efficacy.
Collapse
Affiliation(s)
- Masanori Tohno
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan.
| | - Hiroki Shinkai
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Daisuke Toki
- Animal Research Division, Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Naohiko Okumura
- Animal Research Division, Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Kiyoshi Tajima
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
7
|
Shinkai H, Toki D, Okumura N, Takenouchi T, Kitani H, Uenishi H. Polymorphisms of the immune-modulating receptor dectin-1 in pigs: their functional influence and distribution in pig populations. Immunogenetics 2016; 68:275-84. [PMID: 26762386 DOI: 10.1007/s00251-016-0900-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Dectin-1, a C-type lectin receptor that recognizes fungal β-glucans, is involved in antifungal immunity and the regulation of intestinal immune homeostasis. Dectin-1 is involved in both synthesis and maturation of interleukin-1β, a key pro-inflammatory cytokine in immunity. Here, we assessed the genetic diversity in the gene encoding dectin-1 (CLEC7A) within various pig populations and examined the influence of these polymorphisms on the two different signaling pathways after ligand recognition. An amino-acid polymorphism located in the carbohydrate-recognition domain, leucine to serine at position 138 (L138S), which occurred exclusively in Japanese wild boars at low frequency, significantly increased NF-κB induction but not caspase-8 activity after stimulation with zymosan. In contrast, other amino-acid polymorphisms present at comparatively high frequency in commercial pig populations had little influence on ligand recognition. These results suggest that functionally neutral polymorphisms in dectin-1 are widespread in pig populations.
Collapse
Affiliation(s)
- Hiroki Shinkai
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Daisuke Toki
- Animal Research Division, Institute of Japan Association for Techno-Innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Naohiko Okumura
- Animal Research Division, Institute of Japan Association for Techno-Innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroshi Kitani
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hirohide Uenishi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan. .,Animal Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|