1
|
Wang J, Ma L, Fang Y, Ye T, Li H, Lan P. Factors influencing glycocalyx degradation: a narrative review. Front Immunol 2025; 15:1490395. [PMID: 39885987 PMCID: PMC11779607 DOI: 10.3389/fimmu.2024.1490395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025] Open
Abstract
The glycocalyx is a layer of villus-like structure covering the luminal surface of vascular endothelial cells. Damage to the glycocalyx has been proven linked to the development of many diseases. However, the factors that promote damage to the glycocalyx are not fully elaborated. This review summarizes factors leading to the reduction of the glycocalyx in detail, including inflammatory factors, ischemia-reperfusion, oxidative stress, lipids, glucose, high sodium, female sex hormones and others. Additionally, the mechanisms underlying its degradation are discussed. To better prevent and treat related diseases induced by glycocalyx degradation, it is a meaningful measure to avoid these factors.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Lan Ma
- Department of Neurology, Wenzhou Traditional Chinese Medicine (TCM) Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Yu Fang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Tengteng Ye
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Hongbo Li
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Peng Lan
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
2
|
Adeva-Andany MM, Adeva-Contreras L, Fernandez-Fernandez C, Vila-Altesor M, Castro-Quintela E, Funcasta-Calderon R. Interferon Causes Endothelial Injury in Humans. Curr Rev Clin Exp Pharmacol 2025; 20:122-139. [PMID: 40326264 DOI: 10.2174/0127724328322183240922153629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 05/07/2025]
Abstract
Therapy with exogenous interferon and human conditions that feature endogenous interferon upregulation may be associated with endothelial damage that primarily involves small blood vessels. Endothelial injury associated with interferon may display different clinical expression, including thrombotic microangiopathy, Raynaud's phenomenon, vasculopathy of dermatomyositis and atrophic papulosis, interferon-associated skin angiopathy, systemic capillary leak syndrome, collapsing glomerulopathy, interstitial lung disease, pulmonary hypertension, and retinopathy. Interferon- induced endothelial damage involves complement-mediated injury, although pathogenic mechanisms by which interferon promote abnormal complement activation on endothelial cells are not fully understood. Human interferon-γ (type II interferon) binds to heparan sulfate on the endothelial surface, suggesting that overproduction of interferon-γ may hinder factor H attachment to the same location. Absence of factor H on self surfaces promotes activation of the alternative pathway of complement and complement-mediated endothelial damage. Type I interferon typically induces the generation of antibodies. Type I interferon upregulation may elicit the formation of autoantibodies against factor H. These autoantibodies block factor H binding to endothelial surfaces, abolishing the protective effect of factor H on complement-mediated damage. In addition, interferon induces insulin resistance which is associated with reduced heparan sulfate in the extracellular matrix, including the endothelial surface. Decreased amount of heparan sulfate suppresses factor H attachment, promoting activation of the alternative pathway of complement. Complement blockade with eculizumab (a monoclonal antibody against C5) improves endothelial damage in patients with thrombotic microangiopathy and other situations associated with interferon upregulation and interferon-induced endothelial injury, suggesting that complement-mediated injury is clinically relevant under conditions that feature interferon overproduction.
Collapse
Affiliation(s)
- Maria M Adeva-Andany
- Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán, s/n, Ferrol 15406, Spain
| | - Lucía Adeva-Contreras
- School of Medicine, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Carlos Fernandez-Fernandez
- Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán, s/n, Ferrol 15406, Spain
| | - Matilde Vila-Altesor
- Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán, s/n, Ferrol 15406, Spain
| | - Elvira Castro-Quintela
- Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán, s/n, Ferrol 15406, Spain
| | - Raquel Funcasta-Calderon
- Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán, s/n, Ferrol 15406, Spain
| |
Collapse
|
3
|
Tsiftsoglou SA, Gavriilaki E. A potential bimodal interplay between heme and complement factor H 402H in the deregulation of the complement alternative pathway by SARS-CoV-2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105698. [PMID: 39643072 DOI: 10.1016/j.meegid.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The recent discovery that the trimeric SARS-CoV-2 spike S glycoprotein carries heme within an NTD domain pocket of the S1 subunits, suggested that this virus may be cleverly utilizing heme, in addition to the S1 RBD domains, for invading target cells carrying a specific entry receptor like ACE2, TMEM106B and others. Studies during the COVID-19 pandemic revealed that the infectivity of this virus depends on cell surface heparan sulfate and that the infection induces non-canonical activation of the Complement Alternative pathway (AP) on the surface of infected cells. In our recent COVID-19 genomic studies, among the coding SNPs of interest we also detected the presence of the CFH rs1061170, rs800292 and rs1065489 within all the infected patient subgroups examined. The minor C allele of rs1061170 encodes CFH 402H that over the years has been associated with diseases characterized by complement dysregulation namely the age-related macular degeneration (AMD) and the atypical haemolytic uremic syndrome (aHUS). Also, more recently with the diminishment of CD4+ T cell responses with ageing. The rs800292 minor allele A encodes CFH 62I that supports enhanced cofactor activity for Complement factor I (CFI). Also, the rs1065489 minor allele T encodes CFH 936D and is located within the CCP16 domain that influences the affinity of CFH with extracellular laminins. A subsequent computational analysis revealed that the CFH residue 402 is located centrally within a heme-binding motif (HBM) in domain CCP7 (398YNQNYGRKF406). Heme on the viral spike glycoprotein S1 subunit could recruit CFH 402H for masking free viral particles from opsonisation, and when in proximity to cell surface, act as a bait disrupting CFH 402H from the heparan sulphate coat of the target cells. Publicly available genetic data for European populations indicate that the minor C allele of rs1061170 is present only in haplotypes that carry the major alleles of rs800292 and rs1065489. This combination encodes for CFH 402H that exhibits increased biochemical affinity for heme in proximity, without enhanced cofactor activity for CFI and weaker association with the extracellular matrix. In the theatre of infection, this combination can promote heme-mediated viral infection with weaker complement opsonisation and potential AP deregulation. This strategy may be evolutionary conserved among various classes of infectious agents.
Collapse
Affiliation(s)
- Stefanos A Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Department of Biomedical Sciences, School of Health Sciences, Alexander Campus, International Hellenic University, Sindos, 57400, Greece.
| | - Eleni Gavriilaki
- 2(nd) Propedeutic Department of Internal Medicine, Hippocration General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
4
|
Ergin B, van Rooij T, Lima A, Ince Y, Specht PA, Mik B, Aksu U, Yavuz-Aksu B, Kooiman K, de Jong N, Ince C. Intra-renal microcirculatory alterations on non-traumatic hemorrhagic shock induced acute kidney injury in pigs. J Clin Monit Comput 2023; 37:1193-1205. [PMID: 36745316 PMCID: PMC10520149 DOI: 10.1007/s10877-023-00978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is frequently seen in patients with hemorrhagic shock due to hypotension, tissue hypoxia, and inflammation despite adequate resuscitation. There is a lack of information concerning the alteration of renal microcirculation and perfusion during shock and resuscitation. The aim of this study was to investigate the possible role of renal microcirculatory alterations on development of renal dysfunction in a pig model of non-traumatic hemorrhagic shock (HS) induced AKI.Fully instrumented female pigs were divided into the two groups as Control (n = 6) and HS (n = 11). HS was achieved by withdrawing blood until mean arterial pressure (MAP) reached around 50 mmHg. After an hour cessation period, fluid resuscitation with balanced crystalloid was started for the duration of 1 h. The systemic and renal hemodynamics, renal microcirculatory perfusion (contrast-enhanced ultrasound (CEUS)) and the sublingual microcirculation were measured.CEUS peak enhancement was significantly increased in HS during shock, early-, and late resuscitation indicating perfusion defects in the renal cortex (p < 0.05 vs. baseline, BL) despite a stable renal blood flow (RBF) and urine output. Following normalization of systemic hemodynamics, we observed persistent hypoxia (high lactate) and high red blood cell (RBC) velocity just after initiation of resuscitation resulting in further endothelial and renal damage as shown by increased plasma sialic acid (p < 0.05 vs. BL) and NGAL levels. We also showed that total vessel density (TVD) and functional capillary density (FCD) were depleted during resuscitation (p < 0.05).In this study, we showed that the correction of systemic hemodynamic variables may not be accompanied with the improvement of renal cortical perfusion, intra-renal blood volume and renal damage following fluid resuscitation. We suggest that the measurement of renal injury biomarkers, systemic and renal microcirculation can be used for guiding to the optimization of fluid therapies.
Collapse
Affiliation(s)
- Bülent Ergin
- Department of Adult Intensive Care, Erasmus MC, University Medical Center Rotterdam, Erasmus University, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Tom van Rooij
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Alex Lima
- Department of Adult Intensive Care, Erasmus MC, University Medical Center Rotterdam, Erasmus University, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Yasin Ince
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Patricia Ac Specht
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bert Mik
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ugur Aksu
- Department of Biology, Zoology Division, University of Istanbul, Istanbul, Turkey
| | | | - Klazina Kooiman
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
- Laboratory of Acoustical Wavefield Imaging, Department of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Can Ince
- Department of Adult Intensive Care, Erasmus MC, University Medical Center Rotterdam, Erasmus University, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Tsiftsoglou SA. Heme Interactions as Regulators of the Alternative Pathway Complement Responses and Implications for Heme-Associated Pathologies. Curr Issues Mol Biol 2023; 45:5198-5214. [PMID: 37367079 DOI: 10.3390/cimb45060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Heme (Fe2+-protoporphyrin IX) is a pigment of life, and as a prosthetic group in several hemoproteins, it contributes to diverse critical cellular processes. While its intracellular levels are tightly regulated by networks of heme-binding proteins (HeBPs), labile heme can be hazardous through oxidative processes. In blood plasma, heme is scavenged by hemopexin (HPX), albumin and several other proteins, while it also interacts directly with complement components C1q, C3 and factor I. These direct interactions block the classical pathway (CP) and distort the alternative pathway (AP). Errors or flaws in heme metabolism, causing uncontrolled intracellular oxidative stress, can lead to several severe hematological disorders. Direct interactions of extracellular heme with alternative pathway complement components (APCCs) may be implicated molecularly in diverse conditions at sites of abnormal cell damage and vascular injury. In such disorders, a deregulated AP could be associated with the heme-mediated disruption of the physiological heparan sulphate-CFH coat of stressed cells and the induction of local hemostatic responses. Within this conceptual frame, a computational evaluation of HBMs (heme-binding motifs) aimed to determine how heme interacts with APCCs and whether these interactions are affected by genetic variation within putative HBMs. Combined computational analysis and database mining identified putative HBMs in all of the 16 APCCs examined, with 10 exhibiting disease-associated genetic (SNPs) and/or epigenetic variation (PTMs). Overall, this article indicates that among the pleiotropic roles of heme reviewed, the interactions of heme with APCCs could induce differential AP-mediated hemostasis-driven pathologies in certain individuals.
Collapse
Affiliation(s)
- Stefanos A Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Laboux T, Maanaoui M, Allain F, Boulanger E, Denys A, Gibier JB, Glowacki F, Grolaux G, Grunenwald A, Howsam M, Lancel S, Lebas C, Lopez B, Roumenina L, Provôt F, Gnemmi V, Frimat M. Hemolysis is associated with altered heparan sulfate of the endothelial glycocalyx and with local complement activation in thrombotic microangiopathies. Kidney Int 2023:S0085-2538(23)00327-7. [PMID: 37164260 DOI: 10.1016/j.kint.2023.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 05/12/2023]
Abstract
The complement system plays a key role in the pathophysiology of kidney thrombotic microangiopathies (TMA), as illustrated by atypical hemolytic uremic syndrome. But complement abnormalities are not the only drivers of TMA lesions. Among other potential pathophysiological actors, we hypothesized that alteration of heparan sulfate (HS) in the endothelial glycocalyx could be important. To evaluate this, we analyzed clinical and histological features of kidney biopsies from a monocentric, retrospective cohort of 72 patients with TMA, particularly for HS integrity and markers of local complement activation. The role of heme (a major product of hemolysis) as an HS-degrading agent in vitro, and the impact of altering endothelial cell (ECs) HS on their ability to locally activate complement were studied. Compared with a positive control, glomerular HS staining was lower in 57 (79%) patients with TMA, moderately reduced in 20 (28%), and strongly reduced in 37 (51%) of these 57 cases. Strongly reduced HS density was significantly associated with both hemolysis at the time of biopsy and local complement activation (C3 and/or C5b-9 deposits). Using primary endothelial cells (HUVECs, Glomerular ECs), we observed decreased HS expression after short-term exposure to heme, and that artificial HS degradation by exposure to heparinase was associated with local complement activation. Further, prolonged exposure to heme modulated expression of several key genes of glycocalyx metabolism involved in coagulation regulation (C5-EPI, HS6ST1, HS3ST1). Thus, our study highlights the impact of hemolysis on the integrity of endothelial HS, both in patients and in endothelial cell models. Hence, acute alteration of HS may be a mechanism of heme-induced complement activation.
Collapse
Affiliation(s)
- Timothée Laboux
- University Lille, CHU Lille, Nephrology Department, Lille, France; University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Lille, France.
| | - Mehdi Maanaoui
- University Lille, CHU Lille, Nephrology Department, Lille, France; University Lille, Inserm, Institut Pasteur de Lille, U1190 - EGID, Lille, France
| | | | - Eric Boulanger
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Lille, France
| | - Agnès Denys
- University Lille, CNRS, UMR 8576 - UGSF, Lille, France
| | - Jean-Baptiste Gibier
- Univ. Lille, Pathology Department, F-59000, Lille, France; University Lille, Inserm, US1172, Lille, France
| | | | - Gaëlle Grolaux
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Lille, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Mike Howsam
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Lille, France
| | - Steve Lancel
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Lille, France
| | - Céline Lebas
- University Lille, CHU Lille, Nephrology Department, Lille, France
| | | | - Lubka Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - François Provôt
- University Lille, CHU Lille, Nephrology Department, Lille, France
| | - Viviane Gnemmi
- Univ. Lille, Pathology Department, F-59000, Lille, France; University Lille, CNRS, Inserm, U9020-UMR-S 1277, Lille, France
| | - Marie Frimat
- University Lille, CHU Lille, Nephrology Department, Lille, France; University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Lille, France.
| |
Collapse
|
7
|
Adeva-Andany MM, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, Domínguez-Montero A. Histological Manifestations of Diabetic Kidney Disease and its Relationship with Insulin Resistance. Curr Diabetes Rev 2023; 19:50-70. [PMID: 35346008 DOI: 10.2174/1573399818666220328145046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Histological manifestations of diabetic kidney disease (DKD) include mesangiolysis, mesangial matrix expansion, mesangial cell proliferation, thickening of the glomerular basement membrane, podocyte loss, foot process effacement, and hyalinosis of the glomerular arterioles, interstitial fibrosis, and tubular atrophy. Glomerulomegaly is a typical finding. Histological features of DKD may occur in the absence of clinical manifestations, having been documented in patients with normal urinary albumin excretion and normal glomerular filtration rate. Furthermore, the histological picture progresses over time, while clinical data may remain normal. Conversely, histological lesions of DKD improve with metabolic normalization following effective pancreas transplantation. Insulin resistance has been associated with the clinical manifestations of DKD (nephromegaly, glomerular hyperfiltration, albuminuria, and kidney failure). Likewise, insulin resistance may underlie the histological manifestations of DKD. Morphological changes of DKD are absent in newly diagnosed type 1 diabetes patients (with no insulin resistance) but appear afterward when insulin resistance develops. In contrast, structural lesions of DKD are typically present before the clinical diagnosis of type 2 diabetes. Several heterogeneous conditions that share the occurrence of insulin resistance, such as aging, obesity, acromegaly, lipodystrophy, cystic fibrosis, insulin receptor dysfunction, and Alström syndrome, also share both clinical and structural manifestations of kidney disease, including glomerulomegaly and other features of DKD, focal segmental glomerulosclerosis, and C3 glomerulopathy, which might be ascribed to the reduction in the synthesis of factor H binding sites (such as heparan sulfate) that leads to uncontrolled complement activation. Alström syndrome patients show systemic interstitial fibrosis markedly similar to that present in diabetes.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Lucía Adeva-Contreras
- University of Santiago de Compostela Medical School, Santiago de Compostela, Acoruna, Spain
| | - Carlos Fernández-Fernández
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Internal Medicine Department, Nephrology Division, Hospital General Juan Cardona c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
8
|
Yoshida Y, Nishi H. The role of the complement system in kidney glomerular capillary thrombosis. Front Immunol 2022; 13:981375. [PMID: 36189215 PMCID: PMC9515535 DOI: 10.3389/fimmu.2022.981375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system is part of the innate immune system. The crucial step in activating the complement system is the generation and regulation of C3 convertase complexes, which are needed to generate opsonins that promote phagocytosis, to generate C3a that regulates inflammation, and to initiate the lytic terminal pathway through the generation and activity of C5 convertases. A growing body of evidence has highlighted the interplay between the complement system, coagulation system, platelets, neutrophils, and endothelial cells. The kidneys are highly susceptible to complement-mediated injury in several genetic, infectious, and autoimmune diseases. Atypical hemolytic uremic syndrome (aHUS) and lupus nephritis (LN) are both characterized by thrombosis in the glomerular capillaries of the kidneys. In aHUS, congenital or acquired defects in complement regulators may trigger platelet aggregation and activation, resulting in the formation of platelet-rich thrombi in the kidneys. Because glomerular vasculopathy is usually noted with immunoglobulin and complement accumulation in LN, complement-mediated activation of tissue factors could partly explain the autoimmune mechanism of thrombosis. Thus, kidney glomerular capillary thrombosis is mediated by complement dysregulation and may also be associated with complement overactivation. Further investigation is required to clarify the interaction between these vascular components and develop specific therapeutic approaches.
Collapse
Affiliation(s)
- Yoko Yoshida
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
9
|
Lo MW, Amarilla AA, Lee JD, Albornoz EA, Modhiran N, Clark RJ, Ferro V, Chhabra M, Khromykh AA, Watterson D, Woodruff TM. SARS-CoV-2 triggers complement activation through interactions with heparan sulfate. Clin Transl Immunology 2022; 11:e1413. [PMID: 35999893 PMCID: PMC9387400 DOI: 10.1002/cti2.1413] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives To determine whether SARS‐CoV‐2 can trigger complement activation, the pathways that are involved and the functional significance of the resultant effect. Methods SARS‐CoV‐2 was inoculated into a human lepirudin‐anticoagulated whole blood model, which contains a full repertoire of complement factors and leukocytes that express complement receptors. Complement activation was determined by measuring C5a production with an ELISA, and pretreatment with specific inhibitors was used to identify the pathways involved. The functional significance of this was then assessed by measuring markers of C5a signalling including leukocyte C5aR1 internalisation and CD11b upregulation with flow cytometry. Results SARS‐CoV‐2 inoculation in this whole blood model caused progressive C5a production over 24 h, which was significantly reduced by inhibitors for factor B, C3, C5 and heparan sulfate. However, this phenomenon could not be replicated in cell‐free plasma, highlighting the requirement for cell surface interactions with heparan sulfate. Functional analysis of this phenomenon revealed that C5aR1 signalling and CD11b upregulation in granulocytes and monocytes was delayed and only occurred after 24 h. Conclusion SARS‐CoV‐2 is a noncanonical alternative pathway activator that progressively triggers complement activation through interactions with heparan sulfate.
Collapse
Affiliation(s)
- Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia
| | - Eduardo A Albornoz
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia
| | - Richard J Clark
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia.,Australian Infectious Diseases Research Centre Global Virus Network Centre of Excellence Brisbane QLD Australia
| | - Mohit Chhabra
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia.,Australian Infectious Diseases Research Centre Global Virus Network Centre of Excellence Brisbane QLD Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia.,Australian Infectious Diseases Research Centre Global Virus Network Centre of Excellence Brisbane QLD Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia.,Australian Infectious Diseases Research Centre Global Virus Network Centre of Excellence Brisbane QLD Australia
| |
Collapse
|
10
|
Adeva-Andany MM, Carneiro-Freire N. Biochemical composition of the glomerular extracellular matrix in patients with diabetic kidney disease. World J Diabetes 2022; 13:498-520. [PMID: 36051430 PMCID: PMC9329837 DOI: 10.4239/wjd.v13.i7.498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
In the glomeruli, mesangial cells produce mesangial matrix while podocytes wrap glomerular capillaries with cellular extensions named foot processes and tether the glomerular basement membrane (GBM). The turnover of the mature GBM and the ability of adult podocytes to repair injured GBM are unclear. The actin cytoskeleton is a major cytoplasmic component of podocyte foot processes and links the cell to the GBM. Predominant components of the normal glomerular extracellular matrix (ECM) include glycosaminoglycans, proteoglycans, laminins, fibronectin-1, and several types of collagen. In patients with diabetes, multiorgan composition of extracellular tissues is anomalous, including the kidney, so that the constitution and arrangement of glomerular ECM is profoundly altered. In patients with diabetic kidney disease (DKD), the global quantity of glomerular ECM is increased. The level of sulfated proteoglycans is reduced while hyaluronic acid is augmented, compared to control subjects. The concentration of mesangial fibronectin-1 varies depending on the stage of DKD. Mesangial type III collagen is abundant in patients with DKD, unlike normal kidneys. The amount of type V and type VI collagens is higher in DKD and increases with the progression of the disease. The GBM contains lower amount of type IV collagen in DKD compared to normal tissue. Further, genetic variants in the α3 chain of type IV collagen may modulate susceptibility to DKD and end-stage kidney disease. Human cellular models of glomerular cells, analyses of human glomerular proteome, and improved microscopy procedures have been developed to investigate the molecular composition and organization of the human glomerular ECM.
Collapse
|
11
|
Ballermann BJ, Nyström J, Haraldsson B. The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2021; 8:766689. [PMID: 34912827 PMCID: PMC8667033 DOI: 10.3389/fmed.2021.766689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammatory activation and/or dysfunction of the glomerular endothelium triggers proteinuria in many systemic and localized vascular disorders. Among them are the thrombotic microangiopathies, many forms of glomerulonephritis, and acute inflammatory episodes like sepsis and COVID-19 illness. Another example is the chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic disorders like diabetes. While the glomerular endothelium is a porous sieve that filters prodigious amounts of water and small solutes, it also bars the bulk of albumin and large plasma proteins from passing into the glomerular filtrate. This endothelial barrier function is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer, that together form a relatively thick, mucinous coat composed of glycosaminoglycans, proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted and circulating proteins. The glycocalyx/endothelial surface layer not only covers the glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx components span or are attached to the apical endothelial cell plasma membrane and form the formal glycocalyx. Other components, including small proteoglycans and circulating proteins like albumin and orosomucoid, form the endothelial surface layer and are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound plasma albumin is a major constituent of the endothelial surface layer and contributes to its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular capillary wall to protein filtration has been demonstrated by many elegant studies. However, it can only be fully understood in the context of other components, including the glomerular basement membrane, the podocytes and reabsorption of proteins by tubule epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial surface layer disruption within glomerular capillaries will hopefully lead to pharmacological interventions that specifically target this important structure.
Collapse
Affiliation(s)
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Börje Haraldsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J Biol Chem 2021; 297:101085. [PMID: 34411562 PMCID: PMC8446806 DOI: 10.1016/j.jbc.2021.101085] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.
Collapse
|
13
|
Gómez Toledo A, Sorrentino JT, Sandoval DR, Malmström J, Lewis NE, Esko JD. A Systems View of the Heparan Sulfate Interactome. J Histochem Cytochem 2021; 69:105-119. [PMID: 33494649 PMCID: PMC7841697 DOI: 10.1369/0022155420988661] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate proteoglycans consist of a small family of proteins decorated with one or more covalently attached heparan sulfate glycosaminoglycan chains. These chains have intricate structural patterns based on the position of sulfate groups and uronic acid epimers, which dictate their ability to engage a large repertoire of heparan sulfate-binding proteins, including extracellular matrix proteins, growth factors and morphogens, cytokines and chemokines, apolipoproteins and lipases, adhesion and growth factor receptors, and components of the complement and coagulation system. This review highlights recent progress in the characterization of the so-called "heparan sulfate interactome," with a major focus on systems-wide strategies as a tool for discovery and characterization of this subproteome. In addition, we compiled all heparan sulfate-binding proteins reported in the literature to date and grouped them into a few major functional classes by applying a networking approach.
Collapse
Affiliation(s)
- Alejandro Gómez Toledo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - James T Sorrentino
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Johan Malmström
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, California
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Haque A, Cortes C, Alam MN, Sreedhar M, Ferreira VP, Pangburn MK. Characterization of Binding Properties of Individual Functional Sites of Human Complement Factor H. Front Immunol 2020; 11:1728. [PMID: 32849614 PMCID: PMC7417313 DOI: 10.3389/fimmu.2020.01728] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 01/15/2023] Open
Abstract
Factor H exists as a 155,000 dalton, extended protein composed of twenty small domains which is flexible enough that it folds back on itself. Factor H regulates complement activation through its interactions with C3b and polyanions. Three binding sites for C3b and multiple polyanion binding sites have been identified on Factor H. In intact Factor H these sites appear to act synergistically making their individual contributions difficult to distinguish. Recombinantly expressed fragments of human Factor H were examined using surface plasmon resonance (SPR) for interactions with C3, C3b, iC3b, C3c, and C3d. Eleven recombinant proteins of lengths from one to twenty domains were used to show that the three C3b-binding sites exhibit 100-fold different affinities for C3b. The N-terminal site [complement control protein (CCP) domains 1-6] bound C3b with a Kd of 0.08 μM and this interaction was not influenced by the presence or absence of domains 7 and 8. Full length Factor H similarly exhibited a Kd for C3b of 0.1 μM. Unexpectedly, the N-terminal site (CCP 1-6) bound native C3 with a Kd of 0.4 μM. The C-terminal domains (CCP 19-20) exhibited a Kd of 1.7 μM for C3b. We localized a weak third C3b binding site in the CCP 13-15 region with a Kd estimated to be ~15 μM. The C-terminal site (CCP 19-20) bound C3b, iC3b, and C3d equally well with a Kd of 1 to 2 μM. In order to identify and compare regions of Factor H that interact with polyanions a family of 18 overlapping three domain recombinant proteins spanning the entire length of Factor H were expressed and purified. Immobilized heparin was used as a model polyanion and SPR confirmed the presence of heparin binding sites in CCP 6-8 (Kd 1.2 μM) and in CCP 19-20 (4.9 μM) and suggested the existence of a weak third polyanion binding site in the center of Factor H (CCP 11-13). Our results unveil the relative contributions of different regions of Factor H to its regulation of complement, and may contribute to the understanding of how defects in certain Factor H domains lead to disease.
Collapse
Affiliation(s)
- Aftabul Haque
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States.,The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - M Nurul Alam
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States.,Department of Biology, College of Arts, Sciences, and Education, Texas A&M University-Texarkana, Texarkana, TX, United States
| | - Maladi Sreedhar
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Michael K Pangburn
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States
| |
Collapse
|
15
|
Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 2017; 274:307-329. [PMID: 27782324 DOI: 10.1111/imr.12479] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Frimat
- INSERM UMR 995, Lille, France.,Nephrology Department, CHU Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
16
|
Chen CY, Dai CS, Lee CC, Shyu YC, Huang TS, Yeung L, Sun CC, Yang HY, Wu IW. Association between macular degeneration and mild to moderate chronic kidney disease: A nationwide population-based study. Medicine (Baltimore) 2017; 96:e6405. [PMID: 28296786 PMCID: PMC5369941 DOI: 10.1097/md.0000000000006405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Chronic kidney disease (CKD) and macular degeneration (MD) are 2 grave diseases leading to significant disability secondary to renal failure and blindness. The 2 diseases share not only common risk factors but also similar pathogenic mechanisms to renal and retinal injuries. Previous epidemiological studies indicated association between these 2 diseases. However, this concept is challenged by recent investigations. Patients with mild to moderate CKD (n = 30,696) between January 1, 1995 and December 31, 2005 were selected from the Taiwan National Health Insurance Database. Controls (n = 122,784) were matched by age, gender, diabetes mellitus type 2, and hypertension status (1:4 ratios). The risk of MD was compared between the 2 groups. The mean age of patients was 54.9 ± 15.7 years. The proportion of MD was 2.7% in mild to moderate CKD patients and 1.9% in normal controls (P < 0.001); and, 0.39% and 0.26% (P < 0.001) in advanced MD. Mild to moderate CKD patients had higher risk for MD [adjusted odds ratio (OR), 1.301; 95% confidence interval (CI), 1.200-1.411; P < 0.001] than normal renal function subjects. The association was more pronounced for advanced MD. From all age strata (10 years increase), the presence of CKD in those patients aged less than 40 years had highest OR for all MD (OR = 2.125, 95% CI: 1.417-3.186, P < 0.001). The results were consistent in interaction terms, highlighting the importance of CKD in young age patient for risk of MD. The high risk for MD in mild to moderate CKD patients remains significant after adjustment for personal habits (alcohol drinking and smoking, model 1; OR: 1.371; 95% CI: 1.265-1.486; P < 0.001), comorbidities (dyslipidemia, cerebrovascular disease, and peripheral vascular disease, model 2; OR: 1.369; 95% CI: 1.264-1.484; P < 0.001) and all these factors (model 3; OR: 1.320, 95% CI: 1.218-1.431, P < 0.001). This association was consistent in the subanalysis, excluding those patients with diabetic retinopathy. Proper diagnosis and timely intervention should be warranted to retard visual loss of these patients.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung
| | - Ciou-Sia Dai
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung
- College of Medicine, Chang Gung University, Taoyuan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital
| | - Ting-Shuo Huang
- College of Medicine, Chang Gung University, Taoyuan
- Department of General Surgery
| | - Ling Yeung
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung
| | - Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkuo, Taiwan
| | - I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung
- College of Medicine, Chang Gung University, Taoyuan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital
| |
Collapse
|
17
|
Costa R, Urbani A, Salvalaio M, Bellesso S, Cieri D, Zancan I, Filocamo M, Bonaldo P, Szabò I, Tomanin R, Moro E. Perturbations in cell signaling elicit early cardiac defects in mucopolysaccharidosis type II. Hum Mol Genet 2017; 26:1643-1655. [DOI: 10.1093/hmg/ddx069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/28/2023] Open
|
18
|
Cheng MJ, Kumar R, Sridhar S, Webster TJ, Ebong EE. Endothelial glycocalyx conditions influence nanoparticle uptake for passive targeting. Int J Nanomedicine 2016; 11:3305-15. [PMID: 27499624 PMCID: PMC4959595 DOI: 10.2147/ijn.s106299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases are facilitated by endothelial cell (EC) dysfunction and coincide with EC glycocalyx coat shedding. These diseases may be prevented by delivering medications to affected vascular regions using circulating nanoparticle (NP) drug carriers. The objective of the present study was to observe how the delivery of 10 nm polyethylene glycol-coated gold NPs (PEG-AuNP) to ECs is impacted by glycocalyx structure on the EC surface. Rat fat pad endothelial cells were chosen for their robust glycocalyx, verified by fluorescent immunolabeling of adsorbed albumin and integrated heparan sulfate (HS) chains. Confocal fluorescent imaging revealed a ~3 µm thick glycocalyx layer, covering 75% of the ECs and containing abundant HS. This healthy glycocalyx hindered the uptake of PEG-AuNP as expected because glycocalyx pores are typically 7 nm wide. Additional glycocalyx models tested included: a collapsed glycocalyx obtained by culturing cells in reduced protein media, a degraded glycocalyx obtained by applying heparinase III enzyme to specifically cleave HS, and a recovered glycocalyx obtained by supplementing exogenous HS into the media after enzyme degradation. The collapsed glycocalyx waŝ2 µm thick with unchanged EC coverage and sustained HS content. The degraded glycocalyx showed similar changes in EC thickness and coverage but its HS thickness was reduced to 0.7 µm and spanned only 10% of the original EC surface. Both dysfunctional models retained six- to sevenfold more PEG-AuNP compared to the healthy glycocalyx. The collapsed glycocalyx permitted NPs to cross the glycocalyx into intracellular spaces, whereas the degraded glycocalyx trapped the PEG-AuNP within the glycocalyx. The repaired glycocalyx model partially restored HS thickness to 1.2 µm and 44% coverage of the ECs, but it was able to reverse the NP uptake back to baseline levels. In summary, this study showed that the glycocalyx structure is critical for NP uptake by ECs and may serve as a passive pathway for delivering NPs to dysfunctional ECs.
Collapse
Affiliation(s)
| | - Rajiv Kumar
- Department of Physics, Northeastern University
| | - Srinivas Sridhar
- Department of Chemical Engineering
- Department of Physics, Northeastern University
- Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Thomas J Webster
- Department of Chemical Engineering
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
19
|
Loeven MA, Rops AL, Lehtinen MJ, van Kuppevelt TH, Daha MR, Smith RJ, Bakker M, Berden JH, Rabelink TJ, Jokiranta TS, van der Vlag J. Mutations in Complement Factor H Impair Alternative Pathway Regulation on Mouse Glomerular Endothelial Cells in Vitro. J Biol Chem 2016; 291:4974-81. [PMID: 26728463 DOI: 10.1074/jbc.m115.702506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 01/28/2023] Open
Abstract
Complement factor H (FH) inhibits complement activation and interacts with glomerular endothelium via its complement control protein domains 19 and 20, which also recognize heparan sulfate (HS). Abnormalities in FH are associated with the renal diseases atypical hemolytic uremic syndrome and dense deposit disease and the ocular disease age-related macular degeneration. Although FH systemically controls complement activation, clinical phenotypes selectively manifest in kidneys and eyes, suggesting the presence of tissue-specific determinants of disease development. Recent results imply the importance of tissue-specifically expressed, sulfated glycosaminoglycans (GAGs), like HS, in determining FH binding to and activity on host tissues. Therefore, we investigated which GAGs mediate human FH and recombinant human FH complement control proteins domains 19 and 20 (FH19-20) binding to mouse glomerular endothelial cells (mGEnCs) in ELISA. Furthermore, we evaluated the functional defects of FH19-20 mutants during complement activation by measuring C3b deposition on mGEnCs using flow cytometry. FH and FH19-20 bound dose-dependently to mGEnCs and TNF-α treatment increased binding of both proteins, whereas heparinase digestion and competition with heparin/HS inhibited binding. Furthermore, 2-O-, and 6-O-, but not N-desulfation of heparin, significantly increased the inhibitory effect on FH19-20 binding to mGEnCs. Compared with wild type FH19-20, atypical hemolytic uremic syndrome-associated mutants were less able to compete with FH in normal human serum during complement activation on mGEnCs, confirming their potential glomerular pathogenicity. In conclusion, our study shows that FH and FH19-20 binding to glomerular endothelial cells is differentially mediated by HS but not other GAGs. Furthermore, we describe a novel, patient serum-independent competition assay for pathogenicity screening of FH19-20 mutants.
Collapse
Affiliation(s)
- Markus A Loeven
- From the Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Angelique L Rops
- From the Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Markus J Lehtinen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, FIN-00290 Helsinki, Finland
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Mohamed R Daha
- Department of Nephrology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands, and
| | - Richard J Smith
- Department of Internal Medicine and Otolaryngology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Marinka Bakker
- From the Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jo H Berden
- From the Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands, and
| | - T Sakari Jokiranta
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, FIN-00290 Helsinki, Finland
| | - Johan van der Vlag
- From the Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands,
| |
Collapse
|
20
|
Review on complement analysis method and the roles of glycosaminoglycans in the complement system. Carbohydr Polym 2015; 134:590-7. [DOI: 10.1016/j.carbpol.2015.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 01/12/2023]
|
21
|
Langford-Smith A, Day AJ, Bishop PN, Clark SJ. Complementing the Sugar Code: Role of GAGs and Sialic Acid in Complement Regulation. Front Immunol 2015; 6:25. [PMID: 25699044 PMCID: PMC4313701 DOI: 10.3389/fimmu.2015.00025] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Sugar molecules play a vital role on both microbial and mammalian cells, where they are involved in cellular communication, govern microbial virulence, and modulate host immunity and inflammatory responses. The complement cascade, as part of a host's innate immune system, is a potent weapon against invading bacteria but has to be tightly regulated to prevent inappropriate attack and damage to host tissues. A number of complement regulators, such as factor H and properdin, interact with sugar molecules, such as glycosaminoglycans (GAGs) and sialic acid, on host and pathogen membranes and direct the appropriate complement response by either promoting the binding of complement activators or inhibitors. The binding of these complement regulators to sugar molecules can vary from location to location, due to their different specificities and because distinct structural and functional subpopulations of sugars are found in different human organs, such as the brain, kidney, and eye. This review will cover recent studies that have provided important new insights into the role of GAGs and sialic acid in complement regulation and how sugar recognition may be compromised in disease.
Collapse
Affiliation(s)
- Alex Langford-Smith
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Paul N Bishop
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester , Manchester , UK ; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK ; Manchester Academic Health Science Centre, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK ; Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK
| | - Simon J Clark
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester , Manchester , UK ; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK
| |
Collapse
|