1
|
Downregulation of miR-671-5p promotes IL-10 mRNA increase in porcine moDCs stimulated with the probiotic BB12. Mol Biol Rep 2023; 50:919-925. [PMID: 36334231 DOI: 10.1007/s11033-022-08040-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Previous work showed that the microRNA (miRNA) miR-671-5p was upregulated in monocyte-derived dendritic cells (moDCs) stimulated with Bifidobacterium animalis subsp. lactis BB12 (BB12) with no increase in IL-10 after six hours of stimulation. In this work, we performed an in silico prediction of genes targeted by miR-671-5p and which are the terms and pathways involved with it. Also, miR-671-5p was transiently downregulated to assess its effect on IL-10 regulation. METHODS AND RESULTS First, we performed a Gene Ontology enrichment analysis to predict immune response terms and pathways involved with miR-671-5p. Some of the terms and pathways found were related to the immune response promoted by the probiotic, as the terms "negative regulation of the inflammatory response to an antigenic stimulus" and "cancer" were highlighted. Then, to assess the role of miR-671-5p in IL-10 regulation, moDCs were derived from porcine peripheral blood and later transfected with miR-671-5p antisense oligonucleotide (ASO). Flow cytometry was employed to evaluate the transfection efficiency. Then, the moDCs were stimulated with BB12, and the expression of IL-10 was assessed by RT-qPCR and ELISA. An increase in IL-10 transcript in miR-671-5p-ASO-transfected moDCs stimulated with BB12 was observed compared with moDCs stimulated with BB12 but not transfected. These results suggest the participation of miR-671-5p as a negative regulator of IL-10. CONCLUSION These findings suggest that miR-671-5p participates in the downregulation of IL-10, as previously predicted in silico by our work group. miR-671-5p could play an essential role in the immunomodulation promoted by the probiotic BB12.
Collapse
|
2
|
Lu Z, Yu S, Wang W, Chen W, Wang X, Wu K, Li X, Fan S, Ding H, Yi L, Chen J. Development of Foot-and-Mouth Disease Vaccines in Recent Years. Vaccines (Basel) 2022; 10:1817. [PMID: 36366327 PMCID: PMC9693445 DOI: 10.3390/vaccines10111817] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/20/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a serious disease affecting the global graziery industry. Once an epidemic occurs, it can lead to economic and trade stagnation. In recent decades, FMD has been effectively controlled and even successfully eradicated in some countries or regions through mandatory vaccination with inactivated foot-and-mouth disease vaccines. Nevertheless, FMD still occurs in some parts of Africa and Asia. The transmission efficiency of foot-and-mouth disease is high. Both disease countries and disease-free countries should always be prepared to deal with outbreaks of FMD. The development of vaccines has played a key role in this regard. This paper summarizes the development of several promising vaccines including progress and design ideas. It also provides ways to develop a new generation of vaccines for FMDV and other major diseases.
Collapse
Affiliation(s)
- Zhimin Lu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shu Yu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Wang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jingding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
3
|
Bulte JWM, Shakeri-Zadeh A. In Vivo MRI Tracking of Tumor Vaccination and Antigen Presentation by Dendritic Cells. Mol Imaging Biol 2022; 24:198-207. [PMID: 34581954 PMCID: PMC8477715 DOI: 10.1007/s11307-021-01647-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023]
Abstract
Cancer vaccination using tumor antigen-primed dendritic cells (DCs) was introduced in the clinic some 25 years ago, but the overall outcome has not lived up to initial expectations. In addition to the complexity of the immune response, there are many factors that determine the efficacy of DC therapy. These include accurate administration of DCs in the target tissue site without unwanted cell dispersion/backflow, sufficient numbers of tumor antigen-primed DCs homing to lymph nodes (LNs), and proper timing of immunoadjuvant administration. To address these uncertainties, proton (1H) and fluorine (19F) magnetic resonance imaging (MRI) tracking of ex vivo pre-labeled DCs can now be used to non-invasively determine the accuracy of therapeutic DC injection, initial DC dispersion, systemic DC distribution, and DC migration to and within LNs. Magnetovaccination is an alternative approach that tracks in vivo labeled DCs that simultaneously capture tumor antigen and MR contrast agent in situ, enabling an accurate quantification of antigen presentation to T cells in LNs. The ultimate clinical premise of MRI DC tracking would be to use changes in LN MRI signal as an early imaging biomarker to predict the efficacy of tumor vaccination and anti-tumor response long before treatment outcome becomes apparent, which may aid clinicians with interim treatment management.
Collapse
Affiliation(s)
- Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, MRB 659, 733 N. Broadway, MD, 21205, Baltimore, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, MRB 659, 733 N. Broadway, MD, 21205, Baltimore, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ali Shakeri-Zadeh
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, MRB 659, 733 N. Broadway, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, MRB 659, 733 N. Broadway, MD, 21205, Baltimore, USA
| |
Collapse
|
4
|
Rangel G, Bárcena J, Moreno N, Mata CP, Castón JR, Alejo A, Blanco E. Chimeric RHDV Virus-Like Particles Displaying Foot-and-Mouth Disease Virus Epitopes Elicit Neutralizing Antibodies and Confer Partial Protection in Pigs. Vaccines (Basel) 2021; 9:vaccines9050470. [PMID: 34066934 PMCID: PMC8148555 DOI: 10.3390/vaccines9050470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Currently there is a clear trend towards the establishment of virus-like particles (VLPs) as a powerful tool for vaccine development. VLPs are tunable nanoparticles that can be engineered to be used as platforms for multimeric display of foreign antigens. We have previously reported that VLPs derived from rabbit hemorrhagic disease virus (RHDV) constitute an excellent vaccine vector, capable of inducing specific protective immune responses against inserted heterologous T-cytotoxic and B-cell epitopes. Here, we evaluate the ability of chimeric RHDV VLPs to elicit immune response and protection against Foot-and-Mouth disease virus (FMDV), one of the most devastating livestock diseases. For this purpose, we generated a set of chimeric VLPs containing two FMDV-derived epitopes: a neutralizing B-cell epitope (VP1 (140-158)) and a T-cell epitope [3A (21-35)]. The epitopes were inserted joined or individually at two different locations within the RHDV capsid protein. The immunogenicity and protection potential of the chimeric VLPs were analyzed in the mouse and pig models. Herein we show that the RHDV engineered VLPs displaying FMDV-derived epitopes elicit a robust neutralizing immune response in mice and pigs, affording partial clinical protection against an FMDV challenge in pigs.
Collapse
Affiliation(s)
- Giselle Rangel
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Noelia Moreno
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Carlos P. Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (C.P.M.); (J.R.C.)
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (C.P.M.); (J.R.C.)
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
- Correspondence: ; Tel.: +34-916-202-300
| |
Collapse
|
5
|
Cancer Immunoimaging with Smart Nanoparticles. Trends Biotechnol 2020; 38:388-403. [DOI: 10.1016/j.tibtech.2019.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022]
|
6
|
Du Y, Qi Y, Jin Z, Tian J. Noninvasive imaging in cancer immunotherapy: The way to precision medicine. Cancer Lett 2019; 466:13-22. [DOI: 10.1016/j.canlet.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/13/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
|
7
|
Alirezaie Alavijeh A, Barati M, Barati M, Abbasi Dehkordi H. The Potential of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer Based on Body Magnetic Field and Organ-on-the-Chip. Adv Pharm Bull 2019; 9:360-373. [PMID: 31592054 PMCID: PMC6773933 DOI: 10.15171/apb.2019.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is an abnormal cell growth which tends to proliferate in an uncontrolled way and, in some cases, leads to metastasis. If cancer is left untreated, it can immediately cause death. The use of magnetic nanoparticles (MNPs) as a drug delivery system will enable drugs to target tissues and cell types precisely. This study describes usual strategies and consideration for the synthesis of MNPs and incorporates payload drug on MNPs. They have advantages such as visual targeting and delivering which will be discussed in this review. In addition, we considered body magnetic field to make drug delivery process more effective and safer by the application of MNPs and tumor-on-chip.
Collapse
Affiliation(s)
- Ali Alirezaie Alavijeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad Barati
- Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hussein Abbasi Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
8
|
Guzman E, Montoya M. Contributions of Farm Animals to Immunology. Front Vet Sci 2018; 5:307. [PMID: 30574508 PMCID: PMC6292178 DOI: 10.3389/fvets.2018.00307] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
By their very nature, great advances in immunology are usually underpinned by experiments carried out in animal models and inbred lines of mice. Also, their corresponding knock-out or knock-in derivatives have been the most commonly used animal systems in immunological studies. With much credit to their usefulness, laboratory mice will never provide all the answers to fully understand immunological processes. Large animal models offer unique biological and experimental advantages that have been and continue to be of great value to the understanding of biological and immunological processes. From the identification of B cells to the realization that γδ T cells can function as professional antigen presenting cells, farm animals have contributed significantly to a better understanding of immunity.
Collapse
Affiliation(s)
| | - Maria Montoya
- The Pirbright Institute, Woking, United Kingdom
- Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| |
Collapse
|
9
|
Abstract
The development of novel nanoparticles consisting of both diagnostic and therapeutic components has increased over the past decade. These "theranostic" nanoparticles have been tailored toward one or more types of imaging modalities and have been developed for optical imaging, magnetic resonance imaging, ultrasound, computed tomography, and nuclear imaging comprising both single-photon computed tomography and positron emission tomography. In this review, we focus on state-of-the-art theranostic nanoparticles that are capable of both delivering therapy and self-reporting/tracking disease through imaging. We discuss challenges and the opportunity to rapidly adjust treatment for individualized medicine.
Collapse
Affiliation(s)
- Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Dean Ho
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses. Sci Rep 2016; 6:31844. [PMID: 27549017 PMCID: PMC4994115 DOI: 10.1038/srep31844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Virus-like particles (VLPs), comprised of viral structural proteins devoid of genetic material, are tunable nanoparticles that can be chemically or genetically engineered, to be used as platforms for multimeric display of foreign antigens. Here, we report the engineering of chimeric VLPs, derived from rabbit hemorrhagic disease virus (RHDV) for presentation of foreign B-cell antigens to the immune system. The RHDV capsid comprises 180 copies of a single capsid subunit (VP60). To evaluate the ability of chimeric RHDV VLPs to elicit protective humoral responses against foreign antigens, we tested two B-cell epitopes: a novel neutralizing B-cell epitope, derived from feline calicivirus capsid protein, and a well characterized B-cell epitope from the extracellular domain of influenza A virus M2 protein (M2e). We generated sets of chimeric RHDV VLPs by insertion of the foreign B-cell epitopes at three different locations within VP60 protein (which involved different levels of surface accessibility) and in different copy numbers per site. The immunogenic potential of the chimeric VLPs was analyzed in the mouse model. The results presented here indicated that chimeric RHDV VLPs elicit potent protective humoral responses against displayed foreign B-cell epitopes, demonstrated by both, in vitro neutralization and in vivo protection against a lethal challenge.
Collapse
|
11
|
Kim EJ, Bhuniya S, Lee H, Kim HM, Shin WS, Kim JS, Hong KS. In Vivo Tracking of Phagocytic Immune Cells Using a Dual Imaging Probe with Gadolinium-Enhanced MRI and Near-Infrared Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10266-10273. [PMID: 27058603 DOI: 10.1021/acsami.6b03344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel dual imaging probe for in vivo magnetic resonance imaging (MRI) and optical imaging was developed by combining gadolinium (Gd)-chelating MR probe and a near-infrared (NIR) fluorophore, aza-BODIPY (AB; BODIPY = boron-dipyrromethene). This aza-BODIPY-based bimodal contrast agent (AB-BCA) showed a significant fluorescence emission around the NIR range and an enhanced longitudinal relaxivity in MR modality. The probe was easily delivered to phagocytic cells of the innate immune system, together with macrophages and dendritic cells (DCs), and presented high-performance fluorescence and MR imaging without obvious cytotoxicity. For in vivo visualization of AB-BCA using MRI and optical imaging, bone marrow-derived DCs were labeled and injected into the footpad of mice, and labeled DCs were tracked in vivo. We observed the migration of AB-BCA-labeled DCs into the lymph nodes via lymphatic vessels using NIR fluorescence and T1-weighted MR images. This dual-modality imaging probe was used for noninvasive monitoring of DC migration into lymph nodes and could be useful for investigating advanced cellular immunotherapy.
Collapse
Affiliation(s)
- Eun-Joong Kim
- Bioimaging Research Team, Korea Basic Science Institute , Cheongju 28119, Korea
| | | | - Hyunseung Lee
- Bioimaging Research Team, Korea Basic Science Institute , Cheongju 28119, Korea
| | - Hyun Min Kim
- Bioimaging Research Team, Korea Basic Science Institute , Cheongju 28119, Korea
| | - Weon Sup Shin
- Department of Chemistry, Korea University , Seoul 02841, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University , Seoul 02841, Korea
| | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute , Cheongju 28119, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University , Daejeon 34134, Korea
| |
Collapse
|
12
|
Kanner-Acerbo E, Lowe J. Review of immunological responses to porcine coronaviruses and implications on population based control strategies in epidemic and endemic infections. World J Immunol 2016; 6:60-66. [DOI: 10.5411/wji.v6.i1.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/06/2015] [Accepted: 03/16/2016] [Indexed: 02/05/2023] Open
Abstract
Five major porcine coronaviruses (COVs) have been identified which cause severe gastrointestinal (GI) and respiratory disease in pigs. They include transmissible gastroenteritis (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus, porcine respiratory coronavirus, and porcine hemagglutinating encephalomyelitis. These diseases, especially TGEV and PEDV, have caused epidemics in Europe, Asia, and the Americas over the past 50 years, causing significant economic losses to swine producers. As pigs are a major protein source worldwide there is great interest in understanding, controlling, and preventing these diseases. These diseases have no cure, and current vaccines are not fully protective. On-farm prevention and biosecurity are difficult to enforce and have not stopped the spread of these diseases between herds. Recent advances in the immunology of porcine COVs has revealed that the immune response to porcine COVs shares many similarities with the response to human COVs, leading to increased interest in pigs as models for human disease. Highlights of these advances include the key role of local antigen presenting cells in the gastrointestinal tract in stimulating a protective immune response. This understanding has lead to new proposed vaccines. Advances in the understanding of the ways the viruses evade and degrade the host immune system have also lead to novel proposed therapies. Many of these therapies are in the early development stages, as researchers attempt to create efficacious, cost-effective, and practical therapies for these diseases.
Collapse
|