1
|
Raja Xavier JP, Okumura T, Apweiler M, Chacko NA, Singh Y, Brucker SY, Takeda S, Lang F, Salker MS. Placental growth factor mediates pathological uterine angiogenesis by activating the NFAT5-SGK1 signaling axis in the endometrium: implications for preeclampsia development. Biol Res 2024; 57:55. [PMID: 39152497 PMCID: PMC11330076 DOI: 10.1186/s40659-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024] Open
Abstract
After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.
Collapse
Affiliation(s)
- Janet P Raja Xavier
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Melina Apweiler
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Nirzari A Chacko
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany.
| |
Collapse
|
2
|
Okumura T, Raja Xavier JP, Pasternak J, Yang Z, Hang C, Nosirov B, Singh Y, Admard J, Brucker SY, Kommoss S, Takeda S, Staebler A, Lang F, Salker MS. Rel Family Transcription Factor NFAT5 Upregulates COX2 via HIF-1α Activity in Ishikawa and HEC1a Cells. Int J Mol Sci 2024; 25:3666. [PMID: 38612478 PMCID: PMC11012216 DOI: 10.3390/ijms25073666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) and cyclooxygenase 2 (COX2; PTGS2) both participate in diverse pathologies including cancer progression. However, the biological role of the NFAT5-COX2 signaling pathway in human endometrial cancer has remained elusive. The present study explored whether NFAT5 is expressed in endometrial tumors and if NFAT5 participates in cancer progression. To gain insights into the underlying mechanisms, NFAT5 protein abundance in endometrial cancer tissue was visualized by immunohistochemistry and endometrial cancer cells (Ishikawa and HEC1a) were transfected with NFAT5 or with an empty plasmid. As a result, NFAT5 expression is more abundant in high-grade than in low-grade endometrial cancer tissue. RNA sequencing analysis of NFAT5 overexpression in Ishikawa cells upregulated 37 genes and downregulated 20 genes. Genes affected included cyclooxygenase 2 and hypoxia inducible factor 1α (HIF1A). NFAT5 transfection and/or treatment with HIF-1α stabilizer exerted a strong stimulating effect on HIF-1α promoter activity as well as COX2 expression level and prostaglandin E2 receptor (PGE2) levels. Our findings suggest that activation of NFAT5-HIF-1α-COX2 axis could promote endometrial cancer progression.
Collapse
Affiliation(s)
- Toshiyuki Okumura
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Janet P. Raja Xavier
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Jana Pasternak
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Zhiqi Yang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Cao Hang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Bakhtiyor Nosirov
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Yogesh Singh
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Sara Y. Brucker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Stefan Kommoss
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Annette Staebler
- Institute of Pathology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Florian Lang
- Institute of Physiology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Madhuri S. Salker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| |
Collapse
|
3
|
Chou YH, Pan SY, Lin SL. Pleotropic effects of hypoxia-inducible factor-prolyl hydroxylase domain inhibitors: are they clinically relevant? Kidney Res Clin Pract 2023; 42:27-38. [PMID: 36634968 PMCID: PMC9902737 DOI: 10.23876/j.krcp.22.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Anemia is common in patients with chronic kidney disease (CKD) and is mainly caused by insufficient production of erythropoietin from fibrotic kidney. Because anemia impairs quality of life and overall prognosis, recombinant human erythropoietin-related products (erythropoiesis-stimulating agents, ESAs) have been developed to increase hemoglobin level for decades. However, many safety concerns have been announced regarding the use of ESAs, including an increased occurrence of cardiovascular events, vascular access thrombosis, cancer progression, and recurrence. Hypoxia-inducible factor (HIF) is crucial to erythropoietin production, as a result, prolyl hydroxylase domain (PHD) enzyme inhibitors have been new therapeutic agents for the treatment of anemia in CKD. They can be administered orally, which is a preferred route for patients not undergoing hemodialysis. In clinical trials, PHD inhibitor could induce noninferior effect on erythropoiesis and improve functional iron deficiency compared with ESAs. Although no serious adverse events were reported, safety is still a concern because HIF stabilization induced by PHD inhibitor has pleotropic effects, such as angiogenesis, metabolic change, and cell survival, which might lead to unwanted deleterious effects, including fibrosis, inflammation, cardiovascular risk, and tumor growth. More molecular mechanisms of PHD inhibition and long-term clinical trials are needed to observe these pleotropic effects for the confirmation of safety and efficacy of PHD inhibitors.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan,Graduate Institute of Physiology, National Taiwan University School of Medicine, Taipei, Taiwan,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan,Correspondence: Shuei-Liong Lin Graduate Institute of Physiology, National Taiwan University School of Medicine, No. 1, Jen-Ai Road Section 1, Taipei, 100, Taiwan. E-mail:
| |
Collapse
|
4
|
Ou G, Jiang X, Deng Y, Dong J, Xu W, Zhang X, Zhang J. Inhibition or Deletion of Hydroxylases-Prolyl-4-Hydroxyases 3 Alleviates Lipopolysaccharide-induced Neuroinflammation and Neurobehavioral Deficiency. Neuroscience 2022; 481:47-59. [PMID: 34801658 DOI: 10.1016/j.neuroscience.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022]
Abstract
It is well known that neuroinflammation plays a key role in neurodegenerative diseases. Hypoxia-inducible factor (HIF) and its hydroxylases-Prolyl-4-hydroxyases (PHDs) have been found to modulate the inflammatory processes. Here, the effects of PHDs enzyme onlipopolysaccharide-induced neuroinflammation and neurocognitive deficits were investigated. BV2 microglia cells were stimulated by LPS (1 μg/ml) as neuroinflammation model in vitro. Dimethyloxalylglycine (DMOG, 100 μM) and PHD3-siRNA were used to suppress the expression of PHD3. In vivo, mice received consecutive intraperitoneal injection of LPS (500 μg/kg) for 7 days, and intraperitoneal injection of DMOG (100 mg/kg) was applied 1 h before LPS at the same days. Several neurobehavioral tests (Open field, Novel object recognition and Morris water maze) were used to measure cognitive function. RT-qPCR and Western blotting were used to investigate the expression of inflammatory cytokines, HIF-PHDs protein. Metabolic reprogramming was measured by seahorse method. The results revealed that LPS induced neuroinflammation and PHD3 expression in vivo and vitro. DMOG and PHD3knockout decreased expression of inflammatory cytokines and improved the metabolic reprogramming caused by LPS treatment. Furthermore, pretreatment of DMOG reversed learning and memory deficits in systemic LPS-exposed mice through anti-neuroinflammation, which is independent of DMOG angiogenesis. These findings suggested that PHD3 may mediate LPS-induced microglial activation and neuroinflammation-associated neurobehavioral deficits.
Collapse
Affiliation(s)
- Guoyao Ou
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xuliang Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jing Dong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Weilong Xu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiang Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China; Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
5
|
HIF-1α modulates sex-specific Th17/Treg responses during hepatic amoebiasis. J Hepatol 2022; 76:160-173. [PMID: 34599999 DOI: 10.1016/j.jhep.2021.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS An invasive form of intestinal Entamoeba (E.) histolytica infection, which causes amoebic liver abscess, is more common in men than in women. Immunopathological mechanisms are responsible for the more severe outcome in males. Here, we used a mouse model of hepatic amoebiasis to investigate the contribution of hepatic hypoxia-inducible factor (HIF)-1α to T helper 17 (Th17)/regulatory T cell (Treg) responses in the context of the sex-specific outcome of liver damage. METHODS C57BL/6J mice were infected intrahepatically with E. histolytica trophozoites. HIF-1α expression was determined by qPCR, flow cytometry and immunohistochemistry. Tregs and Th17 cells were analysed by immunohistochemistry and flow cytometry. Finally, male and female hepatocyte-specific Hif1α knockout mice were generated, and the effect of HIF-1α on abscess development, the cytokine milieu, and Th17/Treg differentiation was examined. RESULTS E. histolytica infection increased hepatic HIF-1α levels, along with the elevated frequencies of hepatic Th17 and Treg cells. While the Th17 cell population was larger in male mice, Tregs characterised by increased expression of Foxp3 in female mice. Male mice displayed increased IL-6 expression, contributing to immunopathology; this increase in IL-6 expression declined upon deletion of hepatic HIF-1α. In both sexes, hepatic deletion of HIF-1α reduced the Th17 cell frequency; however, the percentage of Tregs was reduced in female mice only. CONCLUSIONS Hepatic HIF-1α modulates the sex-specific outcome of murine E. histolytica infection. Our results suggest that in male mice, Th17 cells can be modulated by hepatic HIF-1α via IL-6, indicating marked involvement in the immunopathology underlying abscess development. Strong expression of Foxp3 by hepatic Tregs from female mice suggests a potent immunosuppressive function, leading to initiation of liver regeneration. LAY SUMMARY Infection with the parasite Entamoeba histolytica activates immunopathological mechanisms in male mice, which lead to liver abscesses that are larger than those in female mice. In the absence of the protein HIF-1α in hepatocytes, abscess formation is reduced; moreover, the sex difference in abscess size is abolished. These results suggest that HIF-1α modulates the immune response involved in the induction of immunopathology, resulting in differential disease susceptibility in males and females.
Collapse
|
6
|
Gaete D, Rodriguez D, Watts D, Sormendi S, Chavakis T, Wielockx B. HIF-Prolyl Hydroxylase Domain Proteins (PHDs) in Cancer-Potential Targets for Anti-Tumor Therapy? Cancers (Basel) 2021; 13:988. [PMID: 33673417 PMCID: PMC7956578 DOI: 10.3390/cancers13050988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Solid tumors are typically associated with unbridled proliferation of malignant cells, accompanied by an immature and dysfunctional tumor-associated vascular network. Consequent impairment in transport of nutrients and oxygen eventually leads to a hypoxic environment wherein cells must adapt to survive and overcome these stresses. Hypoxia inducible factors (HIFs) are central transcription factors in the hypoxia response and drive the expression of a vast number of survival genes in cancer cells and in cells in the tumor microenvironment. HIFs are tightly controlled by a class of oxygen sensors, the HIF-prolyl hydroxylase domain proteins (PHDs), which hydroxylate HIFs, thereby marking them for proteasomal degradation. Remarkable and intense research during the past decade has revealed that, contrary to expectations, PHDs are often overexpressed in many tumor types, and that inhibition of PHDs can lead to decreased tumor growth, impaired metastasis, and diminished tumor-associated immune-tolerance. Therefore, PHDs represent an attractive therapeutic target in cancer research. Multiple PHD inhibitors have been developed that were either recently accepted in China as erythropoiesis stimulating agents (ESA) or are currently in phase III trials. We review here the function of HIFs and PHDs in cancer and related therapeutic opportunities.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (D.G.); (D.R.); (D.W.); (S.S.); (T.C.)
| |
Collapse
|
7
|
Yu G, Li X, Zhou Z, Tang J, Wang J, Liu X, Fan S, Ouyang G, Xiao W. Zebrafish phd3 Negatively Regulates Antiviral Responses via Suppression of Irf7 Transactivity Independent of Its Prolyl Hydroxylase Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:1135-1146. [PMID: 32669312 DOI: 10.4049/jimmunol.1900902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/14/2020] [Indexed: 12/30/2022]
Abstract
Prolyl hydroxylase domain (PHD)-containing enzyme 3 belongs to the Caenorhabditis elegans gene egl-9 family of prolyl hydroxylases, which has initially been revealed to hydroxylate hypoxia-inducible factor α (HIF-α) and mediate HIF-α degradation. In addition to modulating its target function by hydroxylation, PHD3 has been also shown to influence its binding partners' function independent of its prolyl hydroxylase activity. In this study, we report that overexpression of zebrafish phd3 suppresses cellular antiviral response. Moreover, disruption of phd3 in zebrafish increases the survival rate upon spring viremia of carp virus exposure. Further assays indicate that phd3 interacts with irf7 through the C-terminal IRF association domain of irf7 and diminishes K63-linked ubiquitination of irf7. However, the enzymatic activity of phd3 is not required for phd3 to inhibit irf7 transactivity. This study provides novel insights into phd3 function and sheds new light on the regulation of irf7 in retinoic acid-inducible gene I-like receptor signaling.
Collapse
Affiliation(s)
- Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Watts ER, Walmsley SR. Inflammation and Hypoxia: HIF and PHD Isoform Selectivity. Trends Mol Med 2018; 25:33-46. [PMID: 30442494 DOI: 10.1016/j.molmed.2018.10.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
Abstract
Cells sense and respond to hypoxia through the activity of the transcription factor HIF (hypoxia-inducible factor) and its regulatory hydroxylases, the prolyl hydroxylase domain enzymes (PHDs). Multiple isoforms of HIFs and PHDs exist, and isoform-selective roles have been identified in the context of the inflammatory environment, which is itself frequently hypoxic. Recent advances in the field have highlighted the complexity of this system, particularly with regards to the cell and context-specific activity of HIFs and PHDs. Because novel therapeutic agents which regulate this pathway are nearing the clinic, understanding the role of HIFs and PHDs in inflammation outcomes is an essential step in avoiding off-target effects and, crucially, in developing new anti-inflammatory strategies.
Collapse
Affiliation(s)
- Emily R Watts
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sarah R Walmsley
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
9
|
Hsu TS, Lai MZ. Hypoxia-inducible factor 1α plays a predominantly negative role in regulatory T cell functions. J Leukoc Biol 2018; 104:911-918. [PMID: 29901858 DOI: 10.1002/jlb.mr1217-481r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) regulates cellular responses to hypoxia. However, conflicting roles for HIF-1α in the functions of regulatory T cells (Tregs) have been reported. In this review, we summarize observations on the requirement for HIF-1α for FOXP3 expression and Tregs development, as well as for HIF-1α-mediated downregulation of FOXP3 and Tregs destabilization. We also examine the association of HIF-1α with Tregs under pathogenic conditions. Based on these findings, we suggest that HIF-1α mainly plays a detrimental role in the function and stability of Tregs and that HIF-1α is disposable for the development and suppressive function of Tregs.
Collapse
Affiliation(s)
- Tzu-Sheng Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Cai X, Yuan Y, Liao Z, Xing K, Zhu C, Xu Y, Yu L, Wang L, Wang S, Zhu X, Gao P, Zhang Y, Jiang Q, Xu P, Shu G. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway. FASEB J 2018; 32:488-499. [PMID: 28939592 PMCID: PMC6266637 DOI: 10.1096/fj.201700670r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
Skeletal muscle atrophy due to excessive protein degradation is the main cause for muscle dysfunction, fatigue, and weakening of athletic ability. Endurance exercise is effective to attenuate muscle atrophy, but the underlying mechanism has not been fully investigated. α-Ketoglutarate (AKG) is a key intermediate of tricarboxylic acid cycle, which is generated during endurance exercise. Here, we demonstrated that AKG effectively attenuated corticosterone-induced protein degradation and rescued the muscle atrophy and dysfunction in a Duchenne muscular dystrophy mouse model. Interestingly, AKG also inhibited the expression of proline hydroxylase 3 (PHD3), one of the important oxidoreductases expressed under hypoxic conditions. Subsequently, we identified the β2 adrenergic receptor (ADRB2) as a downstream target for PHD3. We found AKG inhibited PHD3/ADRB2 interaction and therefore increased the stability of ADRB2. In addition, combining pharmacologic and genetic approaches, we showed that AKG rescues skeletal muscle atrophy and protein degradation through a PHD3/ADRB2 mediated mechanism. Taken together, these data reveal a mechanism for inhibitory effects of AKG on muscle atrophy and protein degradation. These findings not only provide a molecular basis for the potential use of exercise-generated metabolite AKG in muscle atrophy treatment, but also identify PHD3 as a potential target for the development of therapies for muscle wasting.-Cai, X., Yuan, Y., Liao, Z., Xing, K., Zhu, C., Xu, Y., Yu, L., Wang, L., Wang, S., Zhu, X., Gao, P., Zhang, Y., Jiang, Q., Xu, P., Shu, G. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway.
Collapse
MESH Headings
- Animals
- Corticosterone/pharmacology
- Disease Models, Animal
- Ketoglutaric Acids/therapeutic use
- Male
- Metabolic Networks and Pathways/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Procollagen-Proline Dioxygenase/metabolism
- Protein Stability/drug effects
- Proteolysis/drug effects
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- Xingcai Cai
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Yexian Yuan
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Zhengrui Liao
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Kongping Xing
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Yaqiong Xu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Lulu Yu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pingwen Xu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China;
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Van Welden S, Selfridge AC, Hindryckx P. Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol 2017; 14:596-611. [PMID: 28853446 DOI: 10.1038/nrgastro.2017.101] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue hypoxia occurs when local oxygen demand exceeds oxygen supply. In chronic inflammatory conditions such as IBD, the increased oxygen demand by resident and gut-infiltrating immune cells coupled with vascular dysfunction brings about a marked reduction in mucosal oxygen concentrations. To counter the hypoxic challenge and ensure their survival, mucosal cells induce adaptive responses, including the activation of hypoxia-inducible factors (HIFs) and modulation of nuclear factor-κB (NF-κB). Both pathways are tightly regulated by oxygen-sensitive prolyl hydroxylases (PHDs), which therefore represent promising therapeutic targets for IBD. In this Review, we discuss the involvement of mucosal hypoxia and hypoxia-induced signalling in the pathogenesis of IBD and elaborate in detail on the role of HIFs, NF-κB and PHDs in different cell types during intestinal inflammation. We also provide an update on the development of PHD inhibitors and discuss their therapeutic potential in IBD.
Collapse
Affiliation(s)
- Sophie Van Welden
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| | - Andrew C Selfridge
- Robarts Clinical Trials West, 4350 Executive Drive 210, San Diego, California 92121, USA
| | - Pieter Hindryckx
- Department of Gastroenterology, Ghent University, De Pintelaan 185, 1K12-E, 9000 Ghent, Belgium
| |
Collapse
|
12
|
Hypoxia and inflammatory bowel disease. Microbes Infect 2017; 19:210-221. [DOI: 10.1016/j.micinf.2016.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022]
|