1
|
Tang T, Zhong W, Tang P, Dai R, Guo J, Gao Z. Linalool combats Saprolegnia parasitica infections through direct killing of microbes and modulation of host immune system. eLife 2025; 13:RP100393. [PMID: 40183210 PMCID: PMC11970904 DOI: 10.7554/elife.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.
Collapse
Affiliation(s)
- Tao Tang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Puyu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Rongsi Dai
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | - Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural UniversityChangshaChina
| |
Collapse
|
2
|
Chang C. Immunodysregulation in immunodeficiency. Allergy Asthma Proc 2024; 45:340-346. [PMID: 39294914 DOI: 10.2500/aap.2024.45.240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The primary immunodeficiency diseases are often accompanied by autoimmunity, autoinflammatory, or aberrant lymphoproliferation. The paradoxical nature of this association can be explained by the multiple cells and molecules involved in immune networks that interact with each other in synergistic, redundant, antagonistic, and parallel arrangements. Because progressively more immunodeficiencies are found to have a genetic etiology, in many cases, a monogenic pathology, an understanding of why immunodeficiency is really an immune dysfunction becomes evident. Understanding the role of specific genes allows us to better understand the complete nature of the inborn error of immunity (IEI); the latter is a term generally used when a clear genetic etiology can be discerned. Autoimmune cytopenias, inflammatory bowel disease, autoimmune thyroiditis, and autoimmune liver diseases as well as lymphomas and cancers frequently accompany primary immunodeficiencies, and it is important that the practitioner be aware of this association and to expect that this is more common than not. The treatment of autoimmune or immunodysregulation in primary immunodeficiencies often involves further immunosuppression, which places the patient at even greater risk of infection. Mitigating measures to prevent such an infection should be considered as part of the treatment regimen. Treatment of immunodysregulation should be mechanism based, as much as we understand the pathways that lead to the dysfunction. Focusing on abnormalities in specific cells or molecules, e.g., cytokines, will become increasingly used to provide a targeted approach to therapy, a prelude to the success of personalized medicine in the treatment of IEIs.
Collapse
|
3
|
Liu K, Xu X, Sun L, Li H, Jin Y, Ma X, Shen B, Martin C. Proteomics profiling reveals lipid metabolism abnormalities during oogenesis in unexplained recurrent pregnancy loss. Front Immunol 2024; 15:1397633. [PMID: 39176081 PMCID: PMC11339622 DOI: 10.3389/fimmu.2024.1397633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Background Unexplained recurrent pregnancy loss (URPL) is a clinical dilemma in reproductive fields. Its diagnosis is mainly exclusionary after extensive clinical examination, and some of the patients may still face the risk of miscarriage. Methods We analyzed follicular fluid (FF) from in vitro fertilization (IVF) in eight patients with URPL without endocrine abnormalities or verifiable causes of abortion and eight secondary infertility controls with no history of pregnancy loss who had experienced at least one normal pregnancy and delivery by direct data-independent acquisition (dDIA) quantitative proteomics to identify differentially expressed proteins (DEPs). In this study, bioinformatics analysis was performed using online software including g:profiler, String, and ToppGene. Cytoscape was used to construct the protein-protein interaction (PPI) network, and ELISA was used for validation. Results Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs are involved in the biological processes (BP) of complement and coagulation cascades. Apolipoproteins (APOs) are key proteins in the PPI network. ELISA confirmed that APOB was low-expressed in both the FF and peripheral blood of URPL patients. Conclusion Dysregulation of the immune network intersecting coagulation and inflammatory response is an essential feature of URPL, and this disequilibrium exists as early as the oogenesis stage. Therefore, earlier intervention is necessary to prevent the development of URPL. Moreover, aberrant lipoprotein regulation appears to be a key factor contributing to URPL. The mechanism by which these factors are involved in the complement and coagulation cascade pathways remains to be further investigated, which also provides new candidate targets for URPL treatment.
Collapse
Affiliation(s)
- Kun Liu
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Biochemistry and Molecular Biology Department of University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Xiaojuan Xu
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Sun
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongxing Li
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yi Jin
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Ma
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital Sichuan University, Chengdu, China
| | - Cesar Martin
- Biochemistry and Molecular Biology Department of University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Molecular Biophysics, Biofisika Institute (UPV/EHU, CSIC), Leioa, Spain
| |
Collapse
|
4
|
Kleer JS, Klehr J, Dubler D, Infanti L, Chizzolini C, Huynh-Do U, Ribi C, Trendelenburg M. Factor H-related protein 1 in systemic lupus erythematosus. Front Immunol 2024; 15:1447991. [PMID: 39136026 PMCID: PMC11317429 DOI: 10.3389/fimmu.2024.1447991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Factor H (FH) is a major soluble inhibitor of the complement system and part of a family comprising five related proteins (FHRs 1-5). Deficiency of FHR1 was described to be linked to an elevated risk of systemic lupus erythematosus (SLE). As FHR1 can partially antagonize the functionality of FH, an altered FHR1/FH ratio could not only enhance SLE vulnerability but also affect the disease expression. This study focuses on the analysis of FH and FHR1 at a protein level, and the occurrence of anti-FH autoantibodies (anti-FH) in a large cohort of SLE patients to explore their association with disease activity and/or expression. Methods We assessed FH and FHR1 levels in plasma from 378 SLE patients compared to 84 healthy controls (normal human plasma, NHP), and sera from another cohort of 84 healthy individuals (normal human serum, NHS), using RayBio® CFH and CFHR1 ELISA kits. Patients were recruited by the Swiss SLE Cohort Study (SSCS). Unmeasurable FHR1 levels were all confirmed by Western blot, and in a subgroup of patients by PCR. Anti-FH were measured in SLE patients with non-detectable FHR1 levels and matched control patients using Abnova's CFH IgG ELISA kit. Results Overall, FH and FHR1 levels were significantly higher in healthy controls, but there was no significant difference in FHR1/FH ratios between SLE patients and NHPs. However, SLE patients showed a significantly higher prevalence of undetectable FHR1 compared to all healthy controls (35/378 SLE patients versus 6/168 healthy controls; p= 0.0214, OR=2.751, 95% CI = 1.115 - 8.164), with a consistent trend across all ethnic subgroups. Levels of FH and FHR1, FHR1/FH ratios and absence of FHR1 were not consistently associated with disease activity and/or specific disease manifestations, but absence of FHR1 (primarily equivalent to CFHR1 deficiency) was linked to the presence of anti-FH in SLE patients (p=0.039). Conclusions Deficiency of FHR1 is associated with a markedly elevated risk of developing SLE. A small proportion of FHR1-deficient SLE patients was found to have autoantibodies against FH but did not show clinical signs of microangiopathy.
Collapse
Affiliation(s)
- Jessica S. Kleer
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| | - Juliane Klehr
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Denise Dubler
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service, Swiss Red Cross, Basel, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, University Hospital, Geneva, Switzerland
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, University Hospital, Bern, Switzerland
| | - Camillo Ribi
- Division of Immunology and Allergy, Department of Internal Medicine, University Hospital, Lausanne, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital, Basel, Switzerland
| |
Collapse
|
5
|
Philip R, Aouba A, Martin Silva N, Mariotte D, Hamidi H, Rhouni S, Darnige L, Dragon-Durey MA. Autoantibodies against complement proteins in patients with antiphospholipid syndrome: Prevalence and clinical associations. Eur J Immunol 2024; 54:e2350832. [PMID: 38700064 DOI: 10.1002/eji.202350832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
Seventy-seven patients with antiphospholipid syndrome were tested for autoantibodies against C1q, C3, FB, FH, and C4bp. Fifty-seven patients had at least one anti-complement antibody. IgM anti-FH positivity was associated with thrombosis when anti-C3 and anti-FB were, negatively or positively, associated with various noncriteria manifestations of antiphospholipid syndrome.
Collapse
Affiliation(s)
- Rémi Philip
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, Caen, France
- INSERM UMRS 1138 Team "Inflammation, Complement and Cancer", Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- UNICAEN, CHU de Caen Normandie, Normandie University, Caen, France
| | - Achille Aouba
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, Caen, France
- UNICAEN, CHU de Caen Normandie, Normandie University, Caen, France
| | - Nicolas Martin Silva
- Department of Clinical Immunology and Internal Medicine, CHU of Caen Normandie, Caen, France
| | - Delphine Mariotte
- Laboratory of Immunology and Histocompatibility, Department of Biology, CHU of Caen Normandie, Caen, France
| | - Houcine Hamidi
- INSERM UMRS 1138 Team "Inflammation, Complement and Cancer", Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Laboratory of Immunology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris (APHP), Paris, France
| | - Sanae Rhouni
- Laboratory of Immunology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris (APHP), Paris, France
| | - Luc Darnige
- Hematology Department, Hôpital Européen Georges-Pompidou, Assistance Publique Hôpitaux de Paris, Centre-Université de Paris (APHP-CUP), Université Paris Cité, Innovative Therapies in Haemostasis, INSERM UMR-S1140, Paris, France
| | - Marie-Agnès Dragon-Durey
- INSERM UMRS 1138 Team "Inflammation, Complement and Cancer", Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Laboratory of Immunology, Hôpital Européen Georges-Pompidou, Assistance Publique Hopitaux de Paris (APHP), Paris, France
| |
Collapse
|
6
|
Kang YH, Varghese PM, Aiyan AA, Pondman K, Kishore U, Sim RB. Complement-Coagulation Cross-talk: Factor H-mediated regulation of the Complement Classical Pathway activation by fibrin clots. Front Immunol 2024; 15:1368852. [PMID: 38933264 PMCID: PMC11199686 DOI: 10.3389/fimmu.2024.1368852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.
Collapse
Affiliation(s)
- Yu-Hoi Kang
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- MediMabBio Inc., Pangyo Business Growth Centre, Gyeonggi-do, Republic of Korea
| | - Praveen M. Varghese
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirsten Pondman
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, Netherlands
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Robert B. Sim
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Yasmin H, Agostinis C, Toffoli M, Roy T, Pegoraro S, Balduit A, Zito G, Di Simone N, Ricci G, Madan T, Kishore U, Bulla R. Protective role of complement factor H against the development of preeclampsia. Front Immunol 2024; 15:1351898. [PMID: 38464530 PMCID: PMC10920295 DOI: 10.3389/fimmu.2024.1351898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
Pregnancy is an immunologically regulated, complex process. A tightly controlled complement system plays a crucial role in the successful establishment of pregnancy and parturition. Complement inhibitors at the feto-maternal interface are likely to prevent inappropriate complement activation to protect the fetus. In the present study, we aimed to understand the role of Factor H (FH), a negative regulator of complement activation, in normal pregnancy and in a model of pathological pregnancy, i.e. preeclampsia (PE). The distribution and expression of FH was investigated in placental tissues, various placental cells, and in the sera of healthy (CTRL) or PE pregnant women via immunohistochemistry, RT-qPCR, ELISA, and Western blot. Our results showed a differential expression of FH among the placental cell types, decidual stromal cells (DSCs), decidual endothelial cells (DECs), and extravillous trophoblasts (EVTs). Interestingly, FH was found to be considerably less expressed in the placental tissues of PE patients compared to normal placental tissue both at mRNA and protein levels. Similar results were obtained by measuring circulating FH levels in the sera of third trimester CTRL and PE mothers. Syncytiotrophoblast microvesicles, isolated from the placental tissues of PE and CTRL women, downregulated FH expression by DECs. The present study appears to suggest that FH is ubiquitously present in the normal placenta and plays a homeostatic role during pregnancy.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Miriam Toffoli
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Tamali Roy
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Silvia Pegoraro
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Andrea Balduit
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive and Child Health (NIRRCH), Mumbai, India
| | - Uday Kishore
- Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Jia Y, Feng B, Ji X, Tian X, Zhao L, Zhou J, Zhang W, Li M, Fei Y, Wu X. Complement factor H attenuates TNF-α-induced inflammation by upregulating EIF3C in rheumatoid arthritis. J Transl Med 2023; 21:846. [PMID: 37996918 PMCID: PMC10668393 DOI: 10.1186/s12967-023-04730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE To explore the role and underlying mechanism of Complement Factor H (CFH) in the peripheral and joint inflammation of RA patients. METHODS The levels of CFH in the serum and synovial fluid were determined by ELISA. The pyroptosis of monocytes was determined by western blotting and flow cytometry. The inflammation cytokine release was tested by ELISA. The cell migration and invasion ability of fibroblast-like synoviocytes (FLS) were tested by Wound healing Assay and transwell assay, respectively. The potential target of CFH was identified by RNA sequencing. RESULTS CFH levels were significantly elevated in the serum and synovial fluid from RA and associated with high sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), and disease activity score 28 (DAS28). TNF-α could inhibit CFH expression, and CFH combined with TNF-α significantly decreased cell death, cleaved-caspase 3, gasdermin E N-terminal (GSDME-N), and inflammatory cytokines release (IL-1β and IL-6) of RA-derived monocytes. Stimulated with TNF-α increased CFH levels in RA FLS and CFH inhibits the migration, invasion, and TNF-α-induced production of inflammatory mediators, including proinflammatory cytokines (IL-6, IL-8) as well as matrix metalloproteinases (MMPs, MMP1 and MMP3) of RA FLSs. The RNA-seq results showed that CFH treatment induced upregulation of eukaryotic translation initiation factor 3 (EIF3C) in both RA monocytes and FLS. The migration of RA FLSs was promoted and the expressions of IL-6, IL-8, and MMP-3 were enhanced upon EIF3C knockdown under the stimulation of CFH combined with TNF-α. CONCLUSION In conclusion, we have unfolded the anti-inflammatory roles of CFH in the peripheral and joints of RA, which might provide a potential therapeutic target for RA patients.
Collapse
Affiliation(s)
- Yimeng Jia
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Bin Feng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xin Ji
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
- The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.
- Department of Health and Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Xunyao Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
- The Ministry of Education Key Laboratory, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Heurich M, McCluskey G. Complement and coagulation crosstalk - Factor H in the spotlight. Immunobiology 2023; 228:152707. [PMID: 37633063 DOI: 10.1016/j.imbio.2023.152707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/28/2023]
Abstract
The immune complement and the coagulation systems are blood-based proteolytic cascades that are activated by pathway-specific triggers, based on protein-protein interactions and enzymatic cleavage reactions. Activation of these systems is finely balanced and controlled through specific regulatory mechanisms. The complement and coagulation systems are generally viewed as distinct, but have common evolutionary origins, and several interactions between these homologous systems have been reported. This complement and coagulation crosstalk can affect activation, amplification and regulatory functions in both systems. In this review, we summarize the literature on coagulation factors contributing to complement alternative pathway activation and regulation and highlight molecular interactions of the complement alternative pathway regulator factor H with several coagulation factors. We propose a mechanism where factor H interactions with coagulation factors may contribute to both complement and coagulation activation and regulation within the haemostatic system and fibrin clot microenvironment and introduce the emerging role of factor H as a modulator of coagulation. Finally, we discuss the potential impact of these protein interactions in diseases associated with factor H dysregulation or deficiency as well as evidence of coagulation dysfunction.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, United Kingdom.
| | - Geneviève McCluskey
- Université Paris-Saclay, INSERM, Hémostase, Inflammation, Thrombose HITH U1176, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Ning J, Cao X, Yue X, Yang M. Quantitative phosphoproteome analysis reveals differential whey phosphoproteins of bovine milk during lactation. Int J Biol Macromol 2023; 234:123681. [PMID: 36801229 DOI: 10.1016/j.ijbiomac.2023.123681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Whey proteins in bovine milk, as the most widely used nutritional components for infant formulae, have been paid more attention. However, the phosphorylation of proteins in bovine whey during lactation has not been thoroughly researched. In this study, a total of 185 phosphorylation sites on 72 phosphoproteins were identified in bovine whey during lactation. 45 differentially expressed whey phosphoproteins (DEWPPs) in colostrum and mature milk were focused on by bioinformatics approaches. Gene Ontology annotation indicated that blood coagulation, extractive space, and protein binding played a key role in bovine milk. The critical pathway of DEWPPs was related to the immune system according to KEGG analysis. Our study investigated the biological functions of whey proteins from a phosphorylation perspective for the first time. The results elucidate and increase our knowledge of differentially phosphorylation sites and phosphoproteins in bovine whey during lactation. Additionally, the data might offer fresh insight into the development of whey protein nutrition.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
12
|
Kumar V, Pouw RB, Autio MI, Sagmeister MG, Phua ZY, Borghini L, Wright VJ, Hoggart C, Pan B, Tan AKY, Binder A, Brouwer MC, Pinnock E, De Groot R, Hazelzet J, Emonts M, Van Der Flier M, Reiter K, Nöthen MM, Hoffmann P, Schlapbach LJ, Bellos E, Anderson S, Secka F, Martinón-Torres F, Salas A, Fink C, Carrol ED, Pollard AJ, Coin LJ, Zenz W, Wouters D, Ang LT, Hibberd ML, Levin M, Kuijpers TW, Davila S. Variation in CFHR3 determines susceptibility to meningococcal disease by controlling factor H concentrations. Am J Hum Genet 2022; 109:1680-1691. [PMID: 36007525 PMCID: PMC9502058 DOI: 10.1016/j.ajhg.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis protects itself from complement-mediated killing by binding complement factor H (FH). Previous studies associated susceptibility to meningococcal disease (MD) with variation in CFH, but the causal variants and underlying mechanism remained unknown. Here we attempted to define the association more accurately by sequencing the CFH-CFHR locus and imputing missing genotypes in previously obtained GWAS datasets of MD-affected individuals of European ancestry and matched controls. We identified a CFHR3 SNP that provides protection from MD (rs75703017, p value = 1.1 × 10-16) by decreasing the concentration of FH in the blood (p value = 1.4 × 10-11). We subsequently used dual-luciferase studies and CRISPR gene editing to establish that deletion of rs75703017 increased FH expression in hepatocyte by preventing promotor inhibition. Our data suggest that reduced concentrations of FH in the blood confer protection from MD; with reduced access to FH, N. meningitidis is less able to shield itself from complement-mediated killing.
Collapse
Affiliation(s)
- Vikrant Kumar
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Richard B Pouw
- Division of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands; Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Matias I Autio
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Cardiovascular Research Institute, Centre for Translational Medicine, National University Health System, Singapore
| | | | - Zai Yang Phua
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Lisa Borghini
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Victoria J Wright
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Clive Hoggart
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Bangfen Pan
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Cardiovascular Research Institute, Centre for Translational Medicine, National University Health System, Singapore
| | - Antson Kiat Yee Tan
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Alexander Binder
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | | - Ronald De Groot
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Hazelzet
- Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center, Rotterdam, the Netherlands
| | - Marieke Emonts
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK; National Institute for Health and Care Research Newcastle Biomedical Research Centre Based at Newcastle Upon Tyne Hospitals National Health Service Trust and Newcastle University, Newcastle Upon Tyne, UK; Paediatric Infectious Diseases and Immunology Department, Newcastle Upon Tyne Hospitals Foundation Trust, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Michiel Van Der Flier
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Karl Reiter
- Department of Paediatrics, Division of Paediatric Intensive Care Medicine, Ludwig Maximilian University of Munich and Dr. von Hauner's Children's Hospital, Munich, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Luregn J Schlapbach
- Child Health Research Centre, The University of Queensland, Brisbane, Australia; Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia; Department of Intensive Care and Neonatology and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Evangelos Bellos
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | | | - Fatou Secka
- Medical Research Council Unit Gambia, Banjul, The Gambia
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain; Genetics, Vaccines, Infectious Diseases, and Pediatrics Research Group, Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Colin Fink
- Micropathology, University of Warwick, Coventry, UK
| | - Enitan D Carrol
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lachlan J Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Werner Zenz
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Lay Teng Ang
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore; Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Taco W Kuijpers
- Division of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands.
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore, Singapore; SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.
| |
Collapse
|
13
|
Daily ZH, Rizvi SS, Baez-Bonilla R. Atypical Hemolytic Uremic Syndrome in a Patient With Metastatic Peritoneal Serous Carcinoma: A Case Report. Cureus 2022; 14:e22624. [PMID: 35371768 PMCID: PMC8958130 DOI: 10.7759/cureus.22624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 11/15/2022] Open
Abstract
Atypical hemolytic uremic syndrome (HUS) is a part of a large category of diseases known as thrombotic microangiopathies that present with hemolytic anemia, thrombocytopenia, and target organ damage mostly characterized by acute kidney injury. It is a rare and challenging diagnosis due to the complex pathophysiology underlying the disease and its overlap with other conditions. We report the case of atypical hemolytic uremic syndrome in a 61-year-old female with a history of metastatic peritoneal serous carcinoma of the ovary presenting with anemia and acute renal failure.
Collapse
|
14
|
Puy C, Pang J, Reitsma SE, Lorentz CU, Tucker EI, Gailani D, Gruber A, Lupu F, McCarty OJT. Cross-Talk between the Complement Pathway and the Contact Activation System of Coagulation: Activated Factor XI Neutralizes Complement Factor H. THE JOURNAL OF IMMUNOLOGY 2021; 206:1784-1792. [PMID: 33811105 DOI: 10.4049/jimmunol.2000398] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Complement factor H (CFH) is the major inhibitor of the alternative pathway of the complement system and is structurally related to beta2-glycoprotein I, which itself is known to bind to ligands, including coagulation factor XI (FXI). We observed reduced complement activation when FXI activation was inhibited in a baboon model of lethal systemic inflammation, suggesting cross-talk between FXI and the complement cascade. It is unknown whether FXI or its activated form, activated FXI (FXIa), directly interacts with the complement system. We explored whether FXI could interact with and inhibit the activity of CFH. We found that FXIa neutralized CFH by cleavage of the R341/R342 bonds. FXIa reduced the capacity of CFH to enhance the cleavage of C3b by factor I and the decay of C3bBb. The binding of CFH to human endothelial cells was also reduced after incubating CFH with FXIa. The addition of either short- or long-chain polyphosphate enhanced the capacity of FXIa to cleave CFH. FXIa also cleaved CFH that was present on endothelial cells and in the secretome from blood platelets. The generation of FXIa in plasma induced the cleavage of CFH. Moreover, FXIa reduced the cleavage of C3b by factor I in serum. Conversely, we observed that CFH inhibited FXI activation by either thrombin or FXIIa. Our study provides, to our knowledge, a novel molecular link between the contact pathway of coagulation and the complement system. These results suggest that FXIa generation enhances the activity of the complement system and thus may potentiate the immune response.
Collapse
Affiliation(s)
- Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239; .,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239
| | - Christina U Lorentz
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239.,Aronora, Inc., Portland, OR 97239
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239.,Aronora, Inc., Portland, OR 97239
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - András Gruber
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR 97239.,Aronora, Inc., Portland, OR 97239
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
15
|
Kerr H, Herbert AP, Makou E, Abramczyk D, Malik TH, Lomax-Browne H, Yang Y, Pappworth IY, Denton H, Richards A, Marchbank KJ, Pickering MC, Barlow PN. Murine Factor H Co-Produced in Yeast With Protein Disulfide Isomerase Ameliorated C3 Dysregulation in Factor H-Deficient Mice. Front Immunol 2021; 12:681098. [PMID: 34054871 PMCID: PMC8149785 DOI: 10.3389/fimmu.2021.681098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
Recombinant human factor H (hFH) has potential for treating diseases linked to aberrant complement regulation including C3 glomerulopathy (C3G) and dry age-related macular degeneration. Murine FH (mFH), produced in the same host, is useful for pre-clinical investigations in mouse models of disease. An abundance of FH in plasma suggests high doses, and hence microbial production, will be needed. Previously, Pichia pastoris produced useful but modest quantities of hFH. Herein, a similar strategy yielded miniscule quantities of mFH. Since FH has 40 disulfide bonds, we created a P. pastoris strain containing a methanol-inducible codon-modified gene for protein-disulfide isomerase (PDI) and transformed this with codon-modified DNA encoding mFH under the same promoter. What had been barely detectable yields of mFH became multiple 10s of mg/L. Our PDI-overexpressing strain also boosted hFH overproduction, by about tenfold. These enhancements exceeded PDI-related production gains reported for other proteins, all of which contain fewer disulfide-stabilized domains. We optimized fermentation conditions, purified recombinant mFH, enzymatically trimmed down its (non-human) N-glycans, characterised its functions in vitro and administered it to mice. In FH-knockout mice, our de-glycosylated recombinant mFH had a shorter half-life and induced more anti-mFH antibodies than mouse serum-derived, natively glycosylated, mFH. Even sequential daily injections of recombinant mFH failed to restore wild-type levels of FH and C3 in mouse plasma beyond 24 hours after the first injection. Nevertheless, mFH functionality appeared to persist in the glomerular basement membrane because C3-fragment deposition here, a hallmark of C3G, remained significantly reduced throughout and beyond the ten-day dosing regimen.
Collapse
Affiliation(s)
- Heather Kerr
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Herbert
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisavet Makou
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Dariusz Abramczyk
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Talat H. Malik
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Hannah Lomax-Browne
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Yi Yang
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Isabel Y. Pappworth
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Harriet Denton
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Anna Richards
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin J. Marchbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- National Renal Complement Therapeutics Center, Royal Victoria Infirmary, Newcastle, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Paul N. Barlow
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Galindo-Izquierdo M, Pablos Alvarez JL. Complement as a Therapeutic Target in Systemic Autoimmune Diseases. Cells 2021; 10:cells10010148. [PMID: 33451011 PMCID: PMC7828564 DOI: 10.3390/cells10010148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
The complement system (CS) includes more than 50 proteins and its main function is to recognize and protect against foreign or damaged molecular components. Other homeostatic functions of CS are the elimination of apoptotic debris, neurological development, and the control of adaptive immune responses. Pathological activation plays prominent roles in the pathogenesis of most autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, dermatomyositis, and ANCA-associated vasculitis. In this review, we will review the main rheumatologic autoimmune processes in which complement plays a pathogenic role and its potential relevance as a therapeutic target.
Collapse
|
17
|
Murugaiah V, Varghese PM, Saleh SM, Tsolaki AG, Alrokayan SH, Khan HA, Collison KS, Sim RB, Nal B, Al-Mohanna FA, Kishore U. Complement-Independent Modulation of Influenza A Virus Infection by Factor H. Front Immunol 2020; 11:355. [PMID: 32269562 PMCID: PMC7109256 DOI: 10.3389/fimmu.2020.00355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/13/2020] [Indexed: 02/05/2023] Open
Abstract
The complement system is an ancient innate immune defense mechanism that can recognize molecular patterns on the invading pathogens. Factor H, as an inhibitor of the alternative pathway, down-regulates complement activation on the host cell surface. Locally synthesized factor H at the site of infection/injury, including lungs, can act as a pattern recognition molecule without involving complement activation. Here, we report that factor H, a sialic acid binder, interacts with influenza A virus (IAV) and modulates IAV entry, as evident from down-regulation of matrix protein 1 (M1) in H1N1 subtype-infected cells and up-regulation of M1 expression in H3N2-infected A549 cells. Far-western blot revealed that factor H binds hemagglutinin (HA, ~70 kDa), neuraminidase (NA, ~60 kDa), and M1 (~25 kDa). IAV-induced transcriptional levels of IFN-α, TNF-α, IL-12, IL-6, IFN-α, and RANTES were reduced following factor H treatment for the H1N1 subtype at 6 h post-infection. However, for the H3N2 subtype, mRNA levels of these pro-inflammatory cytokines were enhanced. A recombinant form of vaccinia virus complement control protein (VCP), which like factor H, contains CCP modules and has complement-regulatory activity, mirrored the results obtained with factor H. Both factor H (25%), and VCP (45%) were found to reduce luciferase reporter activity in MDCK cells transduced with H1N1 pseudotyped lentiviral particles. Factor H (50%) and VCP (30%) enhanced the luciferase reporter activity for H3N2, suggesting an entry inhibitory role of factor H and VCP against H1N1, but not H3N2. Thus, factor H can modulate IAV infection and inflammatory responses, independent of its complement-related functions.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Praveen M. Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Soad M. Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anthony G. Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kate S. Collison
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Béatrice Nal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Futwan A. Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
18
|
Sepe V, Gregorini M, Rampino T, Esposito P, Coppo R, Galli F, Libetta C. Vitamin e-loaded membrane dialyzers reduce hemodialysis inflammaging. BMC Nephrol 2019; 20:412. [PMID: 31729973 PMCID: PMC6858730 DOI: 10.1186/s12882-019-1585-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammaging is a persistent, low-grade, sterile, nonresolving inflammatory state, associated with the senescence of the immune system. Such condition downregulates both innate and adaptive immune responses during chronic disorders as type II diabetes, cancer and hemodialysis, accounting for their susceptibility to infections, malignancy and resistance to vaccination. Aim of this study was to investigate hemodialysis inflammaging, by evaluating changes of several hemodialysis treatments on indoleamine 2,3-dioxygenase-1 activity and nitric oxide formation. METHODS We conducted a randomized controlled observational crossover trial. Eighteen hemodialysis patients were treated with 3 different hemodialysis procedures respectively: 1) Low-flux bicarbonate hemodialysis, 2) Low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers, and 3) Hemodialfitration. The control group consisted of 14 hospital staff healthy volunteers. Blood samples were collected from all 18 hemodialysis patients just after the long interdialytic interval, at the end of each hemodialysis treatment period. RESULTS Hemodialysis kynurenine and kynurenine/L - tryptophan blood ratio levels were significantly higher, when compared to the control group, indicating an increased indoleamine 2,3-dioxygenase-1 activity in hemodialysis patients. At the end of the low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers period, L - tryptophan serum levels remained unchanged vs both low-flux bicarbonate hemodialysis and hemodialfitration. Kynurenine levels instead decreased, resulting in a significant reduction of kynurenine/L - tryptophan blood ratio and indoleamine 2,3-dioxygenase-1 activity, when matched to both low-flux bicarbonate hemodialysis and HDF respectively. Serum nitric oxide control group levels, were significantly lower when compared to all hemodialysis patient groups. Interestingly, low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers nitric oxide serum levels from venous line blood samples taken 60 min after starting the hemodialysis session were significantly lower vs serum taken simultaneously from the arterial blood line. CONCLUSIONS The treatment with more biocompatible hemodialysis procedure as low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers, reduced indoleamine 2,3-dioxygenase-1 activity and nitric oxide formation when compared to both low-flux bicarbonate hemodialysis and hemodialfitration. These data suggest that low-flux bicarbonate hemodialysis with vitamin E - loaded dialyzers lowering hemodialysis inflammaging, could be associated to changes of proinflammatory signalling a regulated molecular level. TRIAL REGISTRATION NCT Number: NCT02981992; Other Study ID Numbers: 20100014090. First submitted: November 26, 2016. First posted: December 5, 2016. Last Update Posted: December 5, 2016.
Collapse
Affiliation(s)
- Vincenzo Sepe
- Unit of Nephrology and Dialysis, Transplantation; Fondazione IRCCS Policlinico «San Matteo», Viale Camillo Golgi 19, 27100 Pavia, Italy
- UOC di Nefrologia e Dialisi, Trapianto, Fondazione IRCCS Policlinico «San Matteo», Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Marilena Gregorini
- Unit of Nephrology and Dialysis, Transplantation; Fondazione IRCCS Policlinico «San Matteo», Viale Camillo Golgi 19, 27100 Pavia, Italy
- Chair of Nephrology, University of Pavia, Corso Strada Nuova 65, 27100 Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology and Dialysis, Transplantation; Fondazione IRCCS Policlinico «San Matteo», Viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Pasquale Esposito
- Unit of Nephrology and Dialysis, Transplantation; Fondazione IRCCS Policlinico «San Matteo», Viale Camillo Golgi 19, 27100 Pavia, Italy
| | - Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital 94, Piazza Polonia, 10126 Torino, Italy
| | - Francesco Galli
- Università degli Studi di Perugia, Pharmaceutical Sciences, Branch of Via del Giochetto, building B, 2nd floor, 06123 Perugia, Italy
| | - Carmelo Libetta
- Unit of Nephrology and Dialysis, Transplantation; Fondazione IRCCS Policlinico «San Matteo», Viale Camillo Golgi 19, 27100 Pavia, Italy
- Chair of Nephrology, University of Pavia, Corso Strada Nuova 65, 27100 Pavia, Italy
| |
Collapse
|
19
|
Complement activation and regulation in rheumatic disease. Semin Immunol 2019; 45:101339. [DOI: 10.1016/j.smim.2019.101339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023]
|
20
|
Barrachina MN, Calderón-Cruz B, Fernandez-Rocca L, García Á. Application of Extracellular Vesicles Proteomics to Cardiovascular Disease: Guidelines, Data Analysis, and Future Perspectives. Proteomics 2019; 19:e1800247. [PMID: 30467982 DOI: 10.1002/pmic.201800247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of vesicles composed of a lipid bilayer that carry a large repertoire of molecules including proteins, lipids, and nucleic acids. In this review, some guidelines for plasma-derived EVs isolation, characterization, and proteomic analysis, and the application of the above to cardiovascular disease (CVD) studies are provided. For EVs analysis, blood samples should be collected using a 21-gauge needle, preferably in citrate tubes, and plasma stored for up to 1 year at -80°, using a single freeze-thaw cycle. For proteomic applications, differential centrifugation (including ultracentrifugation steps) is a good option for EVs isolation. EVs characterization is done by transmission electron microscopy, particle enumeration techniques (nanoparticle-tracking analysis, dynamic light scattering), and flow cytometry. Regarding the proteomics strategy, a label-free and gel-free quantitative method is a good choice due to its accuracy and because it minimizes the amount of sample required for clinical applications. Besides the above, main EVs proteomic findings in cardiovascular-related diseases are presented and analyzed in this review, paying especial attention to overlapping results between studies. The latter might offer new insights into the clinical relevance and potential of novel EVs biomarkers identified to date in the context of CVD.
Collapse
Affiliation(s)
- Maria N Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, Santiago de Compostela, 15782, Spain.,Instituto de Investigación, Sanitaria de Santiago (IDIS), Santiago de Compostela, 15706, Spain
| | - Beatriz Calderón-Cruz
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, Santiago de Compostela, 15782, Spain.,Instituto de Investigación, Sanitaria de Santiago (IDIS), Santiago de Compostela, 15706, Spain
| | - Lucía Fernandez-Rocca
- Clinical Analysis Laboratory, Maciel Hospital, Faculty of Chemistry, University of the Republic, Montevideo, 11000, Uruguay
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, Santiago de Compostela, 15782, Spain.,Instituto de Investigación, Sanitaria de Santiago (IDIS), Santiago de Compostela, 15706, Spain
| |
Collapse
|
21
|
Selective permeability of mouse blood-aqueous barrier as determined by 15N-heavy isotope tracing and mass spectrometry. Proc Natl Acad Sci U S A 2018; 115:9032-9037. [PMID: 30127000 DOI: 10.1073/pnas.1807982115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The blood-aqueous barrier plays a key role in regulating aqueous humor homeostasis by selectively restricting passage of proteins into the eye. The kinetics of aqueous flow are traditionally measured using artificial markers; however, these marker molecules do not address the barrier's selective permeability to plasma proteins. Here we applied stable isotope labeling of all serum proteins with nitrogen-15 (15N) atoms. Following systemic injection of this "heavy" serum in mice, the 15N-to-endogenous nitrogen-14 (14N) ratio of each protein in aqueous was measured by mass spectrometry. By monitoring the kinetic changes in these ratios, we determined the permeability profiles of hundreds of serum proteins. Meanwhile, we subjected one of the eyes to neoangiogenic wound healing by inflicting injury to the corneal limbus and compared the 15N proteomes between the normal eyes and the recovering eyes at 2 weeks after injury. In the injured eye, we detected markedly enhanced permeability to inhibitory complement regulator proteins, such as Cfh, Cfhr, Cfb, Cfi, Cfd, and Vtn. Many of the proteins in this group are implicated in age-related macular degeneration associated with leakage of the blood-retinal barrier due to inflammation. To rule out the possibility that the observed leakage was due simply to physical damage of the blood vessels, we separately created a neovascularization model using an alkali burn of the avascular cornea. In this latter model, elevated levels of Cfh and Cfb were evident. These findings suggest that ocular neovascularization is associated with enhanced permeability to serum complement regulators.
Collapse
|
22
|
Complement links platelets to innate immunity. Semin Immunol 2018; 37:43-52. [DOI: 10.1016/j.smim.2018.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
|