1
|
Feng Y, Jiang Y, Yang L, Lu D, Li N, Zhang Q, Yang H, Qin H, Zhang J, Gou X, Jiang F. Interactions and communications in lung tumour microenvironment: chemo/radiotherapy resistance mechanisms and therapeutic targets. J Drug Target 2025; 33:817-836. [PMID: 39815747 DOI: 10.1080/1061186x.2025.2453730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The lung tumour microenvironment (TME) is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic and immunosuppressive microenvironment that can augment the resistance of lung tumours to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy. In addition, lung tumour cells can resist chemo/radiotherapy by boosting multidrug resistance mechanisms and antioxidant defence systems within cancer cells and other TME components. In this review, we discuss the interactions and communications between these different components of the lung TME and also the effects of hypoxia, immune evasion and ECM remodelling on lung cancer resistance. Finally, we review the current strategies in preclinical and clinical studies, including the inhibition of checkpoint molecules, chemoattractants, cytokines, growth factors and immunosuppressive mediators such as programmed death 1 (PD-1), insulin-like growth factor 2 (IGF-2) for targeting the lung TME to overcome resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yuan Feng
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Jiang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Danni Lu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ning Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qun Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyan Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Huiyuan Qin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyun Gou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Jiang
- Science and Technology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Saeed Issa B, Adhab AH, Salih Mahdi M, Kyada A, Ganesan S, Bhanot D, Naidu KS, Kaur S, Mansoor AS, Radi UK, Saadoun Abd N, Kariem M. Decoding the complex web: cellular and molecular interactions in the lung tumour microenvironment. J Drug Target 2025; 33:666-690. [PMID: 39707828 DOI: 10.1080/1061186x.2024.2445772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The lung tumour microenvironment (TME) or stroma is a dynamic space of numerous cells and their released molecules. This complicated web regulates tumour progression and resistance to different modalities. Lung cancer cells in conjunction with their stroma liberate a wide range of factors that dampen antitumor attacks by innate immunity cells like natural killer (NK) cells and also adaptive responses by effector T cells. These factors include numerous growth factors, exosomes and epigenetic regulators, and also anti-inflammatory cytokines. Understanding the intricate interactions between tumour cells and various elements within the lung TME, such as immune and stromal cells can help provide novel strategies for better management and treatment of lung malignancies. The current article discusses the complex network of cells and signalling molecules, which mediate communications in lung TME. By elucidating these multifaceted interactions, we aim to provide insights into potential therapeutic targets and strategies for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sharnjeet Kaur
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nasr Saadoun Abd
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 PMCID: PMC12072109 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
4
|
Liao L, Wang YX, Fan SS, Hu YY, Wang XC, Zhang X. The role and clinical significance of tumor-associated macrophages in the epithelial-mesenchymal transition of lung cancer. Front Oncol 2025; 15:1571583. [PMID: 40304000 PMCID: PMC12037373 DOI: 10.3389/fonc.2025.1571583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide. Tumor-associated macrophages (TAMs) and epithelial-mesenchymal transition (EMT) are key drivers of lung cancer metastasis and drug resistance. M2-polarized TAMs dominate the immunosuppressive tumor microenvironment (TME) and promote EMT through cytokines such as TGF-β, IL-6, and CCL2. Conversely, EMT-transformed tumor cells reinforce TAM recruitment and M2 polarization through immunomodulatory factors such as CCL2 and ZEB1, thereby establishing a bidirectional interplay that fuels tumor progression. Current evidence on this interaction remains fragmented, and a comprehensive review of the TAM-EMT regulatory network and its therapeutic implications is lacking. This review systematically integrates the bidirectional regulatory mechanisms between TAMs and EMT, highlighting their roles in lung cancer progression. It also summarizes emerging therapeutic strategies targeting TAM polarization and the EMT process, emphasizing their potential for clinical translation. This study fills the gap in systematic reviews on the interaction between TAMs and EMT, providing a comprehensive theoretical foundation for future research and the development of novel lung cancer therapies.
Collapse
Affiliation(s)
- Lei Liao
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Ying-Xia Wang
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Su-Su Fan
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Ying-Yue Hu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xue-Chang Wang
- Department of Pharmacy, Anning First People’s Hospital, Anning, China
| | - Xuan Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Yunnan College of Modern Biomedical Industry, Kunming, China
| |
Collapse
|
5
|
Hirao H, Honda M, Tomita M, Li L, Adawy A, Xue W, Hibi T. Intravital Imaging of Immune Responses in the Cancer Microenvironment. Cancer Med 2025; 14:e70899. [PMID: 40257446 PMCID: PMC12010765 DOI: 10.1002/cam4.70899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND To date, many types of immune cells have been identified, but their precise role in cancer immunity remains unclear. Understanding the immune responses involved in cancer and the cancer microenvironment is becoming increasingly important for elucidating disease mechanisms. In recent years, the application of intravital imaging in cancer research has provided new insights into the mechanisms of cancer-specific immune events, including innate and adaptive immunity. RESULTS In this review, we focus on the emerging role of intravital imaging in cancer research and describe how cancer and immune cells can be observed using intravital imaging in vivo. We also discuss new insights gained by this state-of-the-art technique. CONCLUSIONS Intravital imaging is a relatively new field of research that offers significant advantages, including the ability to directly capture cell-cell interactions, pathophysiology, and immune cell dynamics in the cancer microenvironment in vivo.
Collapse
Affiliation(s)
- Hiroki Hirao
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masaki Honda
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masahiro Tomita
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Lianbo Li
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Ahmad Adawy
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Weijie Xue
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Taizo Hibi
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| |
Collapse
|
6
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
7
|
Ding Y, Yang X, Wei Q, Bi X, Zhang Y, Ma Y, Yang M, Xu X, Li C, Wang Q, Chen Y. Macranthoidin B restrains the epithelial-mesenchymal transition through COX-2/PGE 2 pathway in endometriosis. Front Pharmacol 2024; 15:1492098. [PMID: 39726776 PMCID: PMC11669684 DOI: 10.3389/fphar.2024.1492098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Macranthoidin B is one of the primary and unique triterpenoid saponin metabolites from Lonicera macranthoides Hand. -Mazz, which is used to treat endometriosis (EMS) in traditional Chinese medicine. However, the effect of macranthoidin B remains unknown in EMS. This study aimed to elucidate the effect and mechanism of macranthoidin B in EMS. Methods Using rat autograft EMS model, the volume of ectopic endothelium, the histopathology, serum E2 and PROG were evaluated after macranthoidin B's treatment. In primary endometriotic stromal and HEC1-B cells, the invasion and metastasis were assessed by scratch wound and Transwell tests. The epithelial-mesenchymal transition and COX-2/PGE2 pathway were examined in vivo and in vitro. Macranthoidin B were combined with LPS or celecoxib. Results In a rat autograft EMS model, macranthoidin B suppressed ectopic lesion volume, improved histopathological morphology, and regulated serum estradiol (E2) and progesterone (PROG) levels. Additionally, macranthoidin B inhibited invasion and metastasis of primary endometriotic stromal cells and HEC1-B cells. Mechanistically, macranthoidin B suppressed COX-2/PGE2 pathway and epithelial-mesenchymal transition both in vivo and in vitro. LPS, the COX-2/PGE2 pathway activator, showed the promotion of epithelial-mesenchymal transition, invasion and metastasis. Macranthoidin B exhibited the antagonistic effects against LPS. Celecoxib, the COX-2/PGE2 pathway inhibitor, restrained the epithelial-mesenchymal transition, invasion and metastasis. This effect of celecoxib was enhanced by macranthoidin B. Discussion Macranthoidin B prevents epithelial-mesenchymal transition through COX-2/PGE2 pathway in EMS. It will facilitate the macranthoidin B's development and broaden its potential application.
Collapse
Affiliation(s)
- Yi Ding
- School of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, China
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xiaoqian Yang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Qinghua Wei
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xuanming Bi
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Yuxin Zhang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Yuxia Ma
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Meisen Yang
- Traditional Chinese Medicine Industry Center of Xiushan Tujia & Miao Autonomous County, Agriculture and Rural Affairs Committee of Xiushan Tujia & Miao Autonomous County, Chongqing, China
| | - Xiaoyu Xu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Cong Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Wang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yi Chen
- School of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing, China
| |
Collapse
|
8
|
Lee SW, Kim S, Kim B, Seong JB, Park YH, Lee HJ, Choi DK, Yeom E, Lee DS. IDH2 regulates macrophage polarization and tumorigenesis by modulating mitochondrial metabolism in macrophages. Mol Med 2024; 30:143. [PMID: 39256649 PMCID: PMC11385829 DOI: 10.1186/s10020-024-00911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Targeting the tumor microenvironment represents an emerging therapeutic strategy for cancer. Macrophages are an essential part of the tumor microenvironment. Macrophage polarization is modulated by mitochondrial metabolism, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and reactive oxygen species content. Isocitrate dehydrogenase 2 (IDH2), an enzyme involved in the TCA cycle, reportedly promotes cancer progression. However, the mechanisms through which IDH2 influences macrophage polarization and modulates tumor growth remain unknown. METHODS In this study, IDH2-deficient knockout (KO) mice and primary cultured bone marrow-derived macrophages (BMDMs) were used. Both in vivo subcutaneous tumor experiments and in vitro co-culture experiments were performed, and samples were collected for analysis. Western blotting, RNA quantitative analysis, immunohistochemistry, and flow cytometry were employed to confirm changes in mitochondrial function and the resulting polarization of macrophages exposed to the tumor microenvironment. To analyze the effect on tumor cells, subcutaneous tumor size was measured, and growth and metastasis markers were identified. RESULTS IDH2-deficient macrophages co-cultured with cancer cells were found to possess increased mitochondrial dysfunction and fission than wild-type BMDM. Additionally, the levels of M2-associated markers decreased, whereas M1-associated factor levels increased in IDH2-deficient macrophages. IDH2-deficient macrophages were predominantly M1. Tumor sizes in the IDH2-deficient mouse group were significantly smaller than in the wild-type mouse group. IDH2 deficiency in macrophages was associated with inhibited tumor growth and epithelial-mesenchymal transition. CONCLUSIONS Our findings suggest that IDH2 deficiency inhibits M2 macrophage polarization and suppresses tumorigenesis. This study underlines the potential contribution of IDH2 expression in macrophages and tumor microenvironment remodeling, which could be useful in clinical cancer research.
Collapse
Affiliation(s)
- Sung Woo Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soyoon Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Illimis Therapeutics Inc., Seoul, 06376, Republic of Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Research Institute, huMetaCELL Inc., 220 Bugwang-ro, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Dong Kyu Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Sezginer O, Unver N. Dissection of pro-tumoral macrophage subtypes and immunosuppressive cells participating in M2 polarization. Inflamm Res 2024; 73:1411-1423. [PMID: 38935134 PMCID: PMC11349836 DOI: 10.1007/s00011-024-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Alternatively activated macrophage (M2) polarization can result in one of four subtypes based on cytokines and signaling pathways associated with macrophage activation: M2a, M2b, M2c, and M2d macrophages. The majority of M2 subtypes are anti-inflammatory and pro-angiogenic, secreting growth factors (VEGF, PDGF) and matrix metalloproteinases (MMP2, MMP9) which boost tumor growth, metastasis, and invasion. M2-polarized macrophages are associated with immune suppressor cells harboring Myeloid derived suppressor cells, Regulatory T cells (Tregs), Regulatory B cells as well as alternatively activated (N2) neutrophils. Treg cells selectively support the metabolic stability, mitochondrial integrity, and survival rate of M2-like TAMs in an indirect environment. Also, the contribution of Breg cells influences macrophage polarization towards the M2 direction. TAM is activated when TAN levels in the tumor microenvironment are insufficient or vice versa, suggesting that macrophage and its polarization are fine-tuned. Understanding the functions of immune suppressive cells, mediators, and signaling pathways involved with M2 polarization will allow us to identify potential strategies for targeting the TAM repolarization phenotype for innovative immunotherapy approaches. In this review, we have highlighted the critical factors for M2 macrophage polarization, differential cytokine/chemokine profiles of M1 and M2 macrophage subtypes, and other immune cells' impact on the polarization within the immunosuppressive niche.
Collapse
Affiliation(s)
- Onurcan Sezginer
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
| | - Nese Unver
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye.
| |
Collapse
|
10
|
Yang J, Yang J, Luo Y, Ran D, Xia R, Zheng Q, Yao P, Wang H. Nrf1 Reduces COX-2 Expression and Maintains Cellular Homeostasis After Cerebral Ischemia/Reperfusion By Targeting IL-6/TNF-α Protein Production. J Neuroimmune Pharmacol 2024; 19:41. [PMID: 39103507 DOI: 10.1007/s11481-024-10136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2024] [Indexed: 08/07/2024]
Abstract
Neuroinflammation has been considered involved in the process of cerebral ischemia-reperfusion injury (CIRI). Transcription factors play a crucial role in regulating gene transcription and the expressions of specific proteins during the progression of various neurological diseases. Evidence showed that transcription factor nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as Nrf1) possessed strong biological activities including antioxidant, anti-inflammatory and neuroprotective properties. However, its role and potential molecular mechanisms in CIRI remain unclear. In our study, we observed a significant elevation of Nrf1 in the cerebral cortex following cerebral ischemia-reperfusion in rats. The Nrf1 downregulation markedly raised COX-2, TNF-α, IL-1β, and IL-6 protein levels during middle cerebral artery occlusion/reperfusion in rats, which led to worsened neurological deficits, higher cerebral infarct volume, and intensified cortical histopathological damage. In subsequent in vitro studies, the expression of Nrf1 protein increased following oxygen-glucose deprivation/reperfusion treatment on neurons. Subsequently, Nrf1 knockdown resulted in a significant upregulation of inflammatory factors, leading to a substantial increase in the cell death rate. Through analyzing the alterations in the expression of inflammatory factors under diverse interventions, it is indicated that Nrf1 possesses the capacity to discern variations in inflammatory factors via specific structural domains. Our findings demonstrate the translocation of the Nrf1 protein from the cytoplasm to the nucleus, thereby modulating the protein expression of IL-6/TNF-α and subsequently reducing the expression of multiple inflammatory factors. This study signifies, for the first time, that during cerebral ischemia-reperfusion, Nrf1 translocases to the nucleus to regulate the protein expression of IL-6/TNF-α, consequently suppressing COX-2 expression and governing cellular inflammation, ultimately upholding cellular homeostasis.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Dongzhi Ran
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rongsong Xia
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Qixue Zheng
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Peishuang Yao
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Hong Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
11
|
Pandey VK, Premkumar K, Kundu P, Shankar BS. PGE2 induced miR365/IL-6/STAT3 signaling mediates dendritic cell dysfunction in cancer. Life Sci 2024; 350:122751. [PMID: 38797363 DOI: 10.1016/j.lfs.2024.122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
AIM To understand the mechanism of prostaglandin E2 (PGE2)-mediated immunosuppression in dendritic cells (DCs). MAIN METHODS In vivo experiments were conducted on 4T1 tumor bearing mice (TBM). In vitro experiments were performed in bone marrow-derived DCs (BMDCs), or spleen cells. Cytokines were monitored by ELISA/ELIspot. Gene expression was monitored by RT-PCR/flow cytometry. KEY FINDINGS In silico, in vitro, and in vivo experiments in 4T1 TBM revealed that PGE2 induced IL-6/pSTAT3 signaling through EP4 receptors in DCs, resulting in their dysfunction. These effects were reversed by EP4 antibody neutralization, EP4 antagonist, and STAT3 inhibitory peptides. PGE2 induced IL-6 was regulated by miR-365, as its mimic inhibited PGE2 induced IL-6 and the inhibitor increased lL-6 levels in DC. Bio-informatic analysis in human mammary cancers also revealed a strong compared co-relation between PGE2 and IL-6 (Correlation AnalyzeR) (R = 0.94). Mice bearing PTGS-2 KD 4T1 tumors had decreased tumor burden, PGE2, EP4, IL-6, and pSTAT3 signaling, along with improved DCs and T cell functions. Treatment of mice with a cyclooxygenase-2 (COX-2) inhibitor or EP4 antagonist decreased tumor burden, and this effect of EP4 antagonist was abrogated upon in vivo depletion of CD11c cells, indicating the crucial role of PGE2 signaling in DCs in tumor progression. SIGNIFICANCE In summary, our data highlights the importance of dendritic cells in mediating PGE2-mediated immunosuppression and the use of EP4 or STAT3 inhibitors or miR365 mimics can restore immunogenicity in cancer.
Collapse
Affiliation(s)
- Vipul K Pandey
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Kavitha Premkumar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Priya Kundu
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
12
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
13
|
Paduch R, Klatka M, Pieniądz P, Wertel I, Pawłowska A, Klatka J. Reciprocal Interactions of Human Monocytes and Cancer Cells in Co-Cultures In Vitro. Curr Issues Mol Biol 2024; 46:6836-6852. [PMID: 39057050 PMCID: PMC11276568 DOI: 10.3390/cimb46070408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) includes immune and stromal cells and noncellular extracellular matrix (ECM) components. Tumor-associated macrophages (TAMs) are the most important immune cells in TME and are crucial for carcinomas' progression. The purpose was to analyze direct and indirect interactions in co-culture of tumor cells with monocytes/macrophages and, additionally, to indicate which interactions are more important for cancer development. Cytokines, reactive oxygen species, nitric oxide level, tumor cell cycle and changes in tumor cell morphology after human tumor cells (Hep-2 and RK33 cell lines) with human monocyte/macrophage (THP-1 cell line) interactions were tested. Morphology and cytoskeleton organization of tumor cells did not change after co-culture with macrophages. In co-culture of tumor cells with human monocyte, changes in the percentage of tumor cells in cell cycle phases was observed. No significant changes in reactive oxygen species (ROS) were found in the co-culture as compared to the tumor cell mono-culture. Monocytes produced about three times higher ROS than tumor cells. In co-cultures, a lower nitric oxide (NOx) level was found as compared to the sum of the production by both mono-cultures. Co-culture conditions limited the production of cytokines (IL-4, IL-10 and IL-13) as compared to the sum of their level in mono-cultures. In conclusion, macrophages influence tumor cell growth and functions. Mutual (direct and paracrine) interactions between tumor cells and macrophages changed cytokine production and tumor cell cycle profile. The data obtained may allow us to initially indicate which kind of interactions may have a greater impact on cancer development processes.
Collapse
Affiliation(s)
- Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
- Department of General and Paediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Maria Klatka
- Department of Paediatric Endocrinology and Diabetology, Medical University, Gębali 1, 20-093 Lublin, Poland;
| | - Paulina Pieniądz
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (I.W.); (A.P.)
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (I.W.); (A.P.)
| | - Janusz Klatka
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
14
|
Li Z, Duan D, Li L, Peng D, Ming Y, Ni R, Liu Y. Tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for hepatocellular carcinoma: recent research progress. Front Pharmacol 2024; 15:1382256. [PMID: 38957393 PMCID: PMC11217528 DOI: 10.3389/fphar.2024.1382256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that seriously threaten human health. Immunotherapy serves as the mainstay of treatment for HCC patients by targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. However, the effectiveness of anti-PD-1/PD-L1 treatment is limited when HCC becomes drug-resistant. Tumor-associated macrophages (TAMs) are an important factor in the negative regulation of PD-1 antibody targeted therapy in the tumor microenvironment (TME). Therefore, as an emerging direction in cancer immunotherapy research for the treatment of HCC, it is crucial to elucidate the correlations and mechanisms between TAMs and PD-1/PD-L1-mediated immune tolerance. This paper summarizes the effects of TAMs on the pathogenesis and progression of HCC and their impact on HCC anti-PD-1/PD-L1 immunotherapy, and further explores current potential therapeutic strategies that target TAMs in HCC, including eliminating TAMs in the TME, inhibiting TAMs recruitment to tumors and functionally repolarizing M2-TAMs (tumor-supportive) to M1-TAMs (antitumor type).
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Armando F, Porcellato I, de Paolis L, Mecocci S, Passeri B, Ciurkiewicz M, Mechelli L, Grazia De Ciucis C, Pezzolato M, Fruscione F, Brachelente C, Montemurro V, Cappelli K, Puff C, Baumgärtner W, Ghelardi A, Razzuoli E. Vulvo-vaginal epithelial tumors in mares: A preliminary investigation on epithelial-mesenchymal transition and tumor-immune microenvironment. Vet Pathol 2024; 61:366-381. [PMID: 37909398 DOI: 10.1177/03009858231207025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Vulvo-vaginal epithelial tumors are uncommon in mares, and data on the epithelial-to-mesenchymal transition (EMT) and the tumor-immune microenvironment (TIME) are still lacking. This is a study investigating the equus caballus papillomavirus type 2 (EcPV2) infection state as well as the EMT process and the tumor microenvironment in vulvo-vaginal preneoplastic/ benign (8/22) or malignant (14/22) epithelial lesions in mares. To do this, histopathological, immunohistochemical, transcriptomic, in situ hybridization, and correlation analyses were carried out. Immunohistochemistry quantification showed that cytoplasmic E-cadherin and β-catenin expression as well as nuclear β-catenin expression were features of malignant lesions, while benign/preneoplastic lesions were mainly characterized by membranous E-cadherin and β-catenin expression. Despite this, there were no differences between benign and malignant equine vulvo-vaginal lesions in the expression of downstream genes involved in the canonical and noncanonical wnt/β-catenin pathways. In addition, malignant lesions were characterized by a lower number of cells with cytoplasmic cytokeratin expression as well as a slightly higher cytoplasmic vimentin immunolabeling. The TIME of malignant lesions was characterized by more numerous CD204+ M2-polarized macrophages. Altogether, our results support the hypothesis that some actors in TIME such as CD204+ M2-polarized macrophages may favor the EMT process in equine vulvo-vaginal malignant lesions providing new insights for future investigations in the field of equine EcPV2-induced genital neoplastic lesions.
Collapse
Affiliation(s)
| | | | - Livia de Paolis
- University of Perugia, Perugia, Italy
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | | | | | | | - Chiara Grazia De Ciucis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
- University of Pavia, Pavia, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | - Floriana Fruscione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Vittoria Montemurro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| | | | - Christina Puff
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Genova, Italy
| |
Collapse
|
16
|
Zhang C, Hu Z, Pan Z, Ji Z, Cao X, Yu H, Qin X, Guan M. The arachidonic acid metabolome reveals elevation of prostaglandin E2 biosynthesis in colorectal cancer. Analyst 2024; 149:1907-1920. [PMID: 38372525 DOI: 10.1039/d3an01723k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Arachidonic acid metabolites are a family of bioactive lipids derived from membrane phospholipids. They are involved in cancer progression, but arachidonic acid metabolite profiles and their related biosynthetic pathways remain uncertain in colorectal cancer (CRC). To compare the arachidonic acid metabolite profiles between CRC patients and healthy controls, quantification was performed using a liquid chromatography-mass spectrometry-based analysis of serum and tissue samples. Metabolomics analysis delineated the distinct oxidized lipids in CRC patients and healthy controls. Prostaglandin (PGE2)-derived metabolites were increased, suggesting that the PGE2 biosynthetic pathway was upregulated in CRC. The qRT-PCR and immunohistochemistry analyses showed that the expression level of PGE2 synthases, the key protein of PGE2 biosynthesis, was upregulated in CRC and positively correlated with the CD68+ macrophage density and CRC development. Our study indicates that the PGE2 biosynthetic pathway is associated with macrophage infiltration and progression of CRC tumors.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Zuojian Hu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ziyue Pan
- Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Xinyi Cao
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Hongxiu Yu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ming Guan
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
17
|
Wang J, Peng J, Chen Y, Nasser MI, Qin H. The role of stromal cells in epithelial-mesenchymal plasticity and its therapeutic potential. Discov Oncol 2024; 15:13. [PMID: 38244071 PMCID: PMC10799841 DOI: 10.1007/s12672-024-00867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical tumor invasion and metastasis process. EMT enables tumor cells to migrate, detach from their original location, enter the circulation, circulate within it, and eventually exit from blood arteries to colonize in foreign sites, leading to the development of overt metastases, ultimately resulting in death. EMT is intimately tied to stromal cells around the tumor and is controlled by a range of cytokines secreted by stromal cells. This review summarizes recent research on stromal cell-mediated EMT in tumor invasion and metastasis. We also discuss the effects of various stromal cells on EMT induction and focus on the molecular mechanisms by which several significant stromal cells convert from foes to friends of cancer cells to fuel EMT processes via their secretions in the tumor microenvironment (TME). As a result, a better knowledge of the role of stromal cells in cancer cells' EMT may pave the path to cancer eradication.
Collapse
Affiliation(s)
- Juanjing Wang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Junmei Peng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yonglin Chen
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.
| | - Hui Qin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
18
|
Zhou Y, Qian M, Li J, Ruan L, Wang Y, Cai C, Gu S, Zhao X. The role of tumor-associated macrophages in lung cancer: From mechanism to small molecule therapy. Biomed Pharmacother 2024; 170:116014. [PMID: 38134634 DOI: 10.1016/j.biopha.2023.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the main component of tumor-infiltrating immune cells in the lung tumor microenvironment. TAMs recruited to the lung cancer can create a suitable microenvironment for the growth and metastasis of lung cancer by secreting tumor promoting factors and interfering with the function of T cells. Currently, numerous studies have reported that small molecular drugs affect lung cancer progression by selectively targeting TAMs. The main ways include blocking the recruitment of monocytes or eliminating existing TAMs in tumor tissue, reprogramming TAMs into pro-inflammatory M1 macrophages or inhibiting M2 polarization of macrophages, interrupting the interaction between tumor cells and macrophages, and modulating immune function. Signaling pathways or cytokines such as CCL8, CCL2/CCR2, CSF-1/CSF-1R, STAT3, STAT6, MMPs, Caspase-8, AMPK α1, TLR3, CD47/SIRPα, have been reported to be involved in this process. Based on summarizing the role and mechanisms of TAMs in lung cancer progression, this paper particularly focuses on systematically reviewing the effects and mechanisms of small molecule drugs on lung cancer TAMs, and classified the small molecular drugs according to the way they affect TAMs. The study aims to provide new perspectives and potential therapeutic drugs for targeted macrophages treatment in lung cancer, which is of great significance and will provide more options for immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Yongnan Zhou
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Manqing Qian
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Jianlin Li
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Lanxi Ruan
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Yirong Wang
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Chenyao Cai
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Shengxian Gu
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| |
Collapse
|
19
|
Kovacs D, Flori E, Bastonini E, Mosca S, Migliano E, Cota C, Zaccarini M, Briganti S, Cardinali G. Targeting Fatty Acid Amide Hydrolase Counteracts the Epithelial-to-Mesenchymal Transition in Keratinocyte-Derived Tumors. Int J Mol Sci 2023; 24:17379. [PMID: 38139209 PMCID: PMC10743516 DOI: 10.3390/ijms242417379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The endocannabinoid system regulates physiological processes, and the modulation of endogenous endocannabinoid (eCB) levels is an attractive tool to contrast the development of pathological skin conditions including cancers. Inhibiting FAAH (fatty acid amide hydrolase), the degradation enzyme of the endocannabinoid anandamide (AEA) leads to the increase in AEA levels, thus enhancing its biological effects. Here, we evaluated the anticancer property of the FAAH inhibitor URB597, investigating its potential to counteract epithelial-to-mesenchymal transition (EMT), a process crucially involved in tumor progression. The effects of the compound were determined in primary human keratinocytes, ex vivo skin explants, and the squamous carcinoma cell line A431. Our results demonstrate that URB597 is able to hinder the EMT process by downregulating mesenchymal markers and reducing migratory potential. These effects are associated with the dampening of the AKT/STAT3 signal pathways and reduced release of pro-inflammatory cytokines and tumorigenic lipid species. The ability of URB597 to contrast the EMT process provides insight into effective approaches that may also include the use of FAAH inhibitors for the treatment of skin cancers.
Collapse
Affiliation(s)
- Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Emanuela Bastonini
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (D.K.); (E.F.); (E.B.); (S.M.); (S.B.)
| |
Collapse
|
20
|
Li H, Chen Z, Chen N, Fan Y, Xu Y, Xu X. Applications of lung cancer organoids in precision medicine: from bench to bedside. Cell Commun Signal 2023; 21:350. [PMID: 38057851 PMCID: PMC10698950 DOI: 10.1186/s12964-023-01332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
As the leading cause of cancer-related mortality, lung cancer continues to pose a menacing threat to human health worldwide. Lung cancer treatment options primarily rely on chemoradiotherapy, surgery, targeted therapy, or immunotherapy. Despite significant progress in research and treatment, the 5-year survival rate for lung cancer patients is only 10-20%. There is an urgent need to develop more reliable preclinical models and valid therapeutic approaches. Patient-derived organoids with highly reduced tumour heterogeneity have emerged as a promising model for high-throughput drug screening to guide treatment of lung cancer patients. Organoid technology offers a novel platform for disease modelling, biobanking and drug development. The expected benefit of organoids is for cancer patients as the subsequent precision medicine technology. Over the past few years, numerous basic and clinical studies have been conducted on lung cancer organoids, highlighting the significant contributions of this technique. This review comprehensively examines the current state-of-the-art technologies and applications relevant to the formation of lung cancer organoids, as well as the potential of organoids in precision medicine and drug testing. Video Abstract.
Collapse
Affiliation(s)
- Huihui Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, Guangdong, China
| | - Ning Chen
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Oncology, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yun Fan
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Xiaoling Xu
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
21
|
Zhang W, Dong J. Suppressing epithelial-mesenchymal-transition blue light therapy for reducing macrophage-mediated cancerous pulmonary fibrosis: An in-vitro study. JOURNAL OF BIOPHOTONICS 2023; 16:e202300253. [PMID: 37589213 DOI: 10.1002/jbio.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Lung cancer is the leading killer among all types of cancer globally. As a key factor, epithelial-mesenchymal transition (EMT) plays a crucial role in pathological fibrosis and lung cancer metastasis. This study endeavors to investigate the effect of blue light at specific wavelengths of 405 nm and 415 nm (54 J/cm2 ) on EMT induced by TGF-β1 in A549 cells. The results revealed that the blue light irradiation reduced the morphological characteristics of EMT in the A549 cells, and cell-to-cell connections were weakened significantly. Molecular analysis showed upregulation of epithelial marker E-cadherin and downregulation of EMT marker vimentin. Additionally, exposure to blue light irradiation at 405 nm and 415 nm significantly decelerated the ability of invasion and migration. Moreover, cell viability was also investigated. Based on these findings, blue light can serve as a useful therapeutic option for inhibiting EMT in cases of lung cancer and fibrotic lung disease.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Future Science and Engineering, Soochow University, Suzhou, China
| |
Collapse
|
22
|
Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J, Du H. Cucurbitacin I Reverses Tumor-Associated Macrophage Polarization to Affect Cancer Cell Metastasis. Int J Mol Sci 2023; 24:15920. [PMID: 37958903 PMCID: PMC10650020 DOI: 10.3390/ijms242115920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The tumor microenvironment plays a critical role in tumor progression and immune regulation. As one of the most important components of the tumor microenvironment, macrophages have become a new therapeutic target for inhibiting tumor progression. Despite the well-documented anticancer activity of cucurbitacin I, its effect on macrophages remains unclear. In this study, we established a coculture system of macrophages and cancer cells under hypoxic conditions to simulate the tumor-promoting environment mediated by M2-like macrophages. We determined whether cucurbitacin I modulates M2-like polarization in macrophages in vitro and conducted RNA sequencing to identify gene expression changes induced by cucurbitacin I in macrophages. The results indicated a remarkable inhibition of the M2-like polarization phenotype in macrophages following treatment with cucurbitacin I, which was accompanied by the significant downregulation of heme oxygenase-1. Moreover, we found that cucurbitacin I-treated macrophages reduced the migration of cancer cells by inhibiting the M2 polarization in vitro. These findings highlight the potential of cucurbitacin I as a therapeutic agent that targets M2-like macrophages to inhibit cancer cell metastasis. Our study provides novel insights into the intricate interplay among macrophage polarization, cucurbitacin I, and heme oxygenase-1, thereby opening new avenues for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, University Town Campus, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.G.); (Y.L.); (K.L.); (Z.C.); (K.D.); (L.Q.)
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, University Town Campus, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (X.G.); (Y.L.); (K.L.); (Z.C.); (K.D.); (L.Q.)
| |
Collapse
|
23
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
24
|
Cao Y, Wu Y, Tu H, Gu Z, Yu F, Huang W, Shen L, Wang L, Li Y. (-)-Guaiol inhibit epithelial-mesenchymal transition in lung cancer via suppressing M2 macrophages mediated STAT3 signaling pathway. Heliyon 2023; 9:e19817. [PMID: 37809930 PMCID: PMC10559221 DOI: 10.1016/j.heliyon.2023.e19817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
In the context of cancer expansion, epithelial-mesenchymal transition (EMT) plays an essential role in driving invasion and metastasis potential of cancer cells. Tumor-associated macrophages (TAMs)-derived factors involved in the initiation and progression of EMT. We assess the role of M2 macrophage in suppressing lung tumors of a natural compound (-)-Guaiol by using macrophage depleted model. Bone marrow-derived monocytes (BMDMs) were extracted and induced to M2-like phenotype in vitro. The co-culture of M2 macrophage and lung cancer cells was established to observe that inhibition of lung tumor growth by (-)-Guaiol requires presence of macrophages. This suppressed effect of (-)-Guaiol was alleviated when mice macrophage was depleted. The expression of M2-like macrophages was strongly reduced by (-)-Guaiol treated mice, but not the changes of M1-like macrophages. In vitro studies, we demonstrated that (-)-Guaiol suppressed M2 polarization of BMDMs, as well as migration, invasion, and EMT of lung cancer cells in co-culture. M2 macrophage-derived interleukin 10 (IL-10) was investigated as a critical signaling molecule between M2 macrophage and lung cancer cells. We have also verified that the mechanism of (-)-Guaiol inhibiting the EMT process of lung cancer is related to the activation of IL-10-mediated signal transducer and activator of transcription 3 (STAT3). These results suggested that the suppressive effect role of (-)-Guaiol in M2 macrophage promoting EMT of lung cancer, which was associated with inhibition of IL-10 mediated STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Yonghui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongbin Tu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Zhan Gu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Fengzhi Yu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Weiling Huang
- Shanghai Jing 'an District Hospital of Traditional Chinese Medicine, Shanghai 200072, China
| | - Liping Shen
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lixin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Yan Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|
25
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
26
|
Korbecki J, Bosiacki M, Chlubek D, Baranowska-Bosiacka I. Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes. Int J Mol Sci 2023; 24:13287. [PMID: 37686093 PMCID: PMC10487711 DOI: 10.3390/ijms241713287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Human CXCR2 has seven ligands, i.e., CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8/IL-8-chemokines with nearly identical properties. However, no available study has compared the contribution of all CXCR2 ligands to cancer progression. That is why, in this study, we conducted a bioinformatic analysis using the GEPIA, UALCAN, and TIMER2.0 databases to investigate the role of CXCR2 ligands in 31 different types of cancer, including glioblastoma, melanoma, and colon, esophageal, gastric, kidney, liver, lung, ovarian, pancreatic, and prostate cancer. We focused on the differences in the regulation of expression (using the Tfsitescan and miRDB databases) and analyzed mutation types in CXCR2 ligand genes in cancers (using the cBioPortal). The data showed that the effect of CXCR2 ligands on prognosis depends on the type of cancer. CXCR2 ligands were associated with EMT, angiogenesis, recruiting neutrophils to the tumor microenvironment, and the count of M1 macrophages. The regulation of the expression of each CXCR2 ligand was different and, thus, each analyzed chemokine may have a different function in cancer processes. Our findings suggest that each type of cancer has a unique pattern of CXCR2 ligand involvement in cancer progression, with each ligand having a unique regulation of expression.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska Str. 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
27
|
Flori E, Mosca S, Cardinali G, Briganti S, Ottaviani M, Kovacs D, Manni I, Truglio M, Mastrofrancesco A, Zaccarini M, Cota C, Piaggio G, Picardo M. The Activation of PPARγ by (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic Acid Counteracts the Epithelial–Mesenchymal Transition Process in Skin Carcinogenesis. Cells 2023; 12:cells12071007. [PMID: 37048080 PMCID: PMC10093137 DOI: 10.3390/cells12071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common UV-induced keratinocyte-derived cancer, and its progression is characterized by the epithelial–mesenchymal transition (EMT) process. We previously demonstrated that PPARγ activation by 2,4,6-octatrienoic acid (Octa) prevents cutaneous UV damage. We investigated the possible role of the PPARγ activators Octa and the new compound (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic acid (A02) in targeting keratinocyte-derived skin cancer. Like Octa, A02 exerted a protective effect against UVB-induced oxidative stress and DNA damage in NHKs. In the squamous cell carcinoma A431 cells, A02 inhibited cell proliferation and increased differentiation markers’ expression. Moreover, Octa and even more A02 counteracted the TGF-β1-dependent increase in mesenchymal markers, intracellular ROS, the activation of EMT-related signal transduction pathways, and cells’ migratory capacity. Both compounds, especially A02, counterbalanced the TGF-β1-induced cell membrane lipid remodeling and the release of bioactive lipids involved in EMT. In vivo experiments on a murine model useful to study cell proliferation in adult animals showed the reduction of areas characterized by active cell proliferation in response to A02 topical treatment. In conclusion, targeting PPARγ may be useful for the prevention and treatment of keratinocyte-derived skin cancer.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
- Correspondence: (E.F.); (M.P.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Isabella Manni
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Mauro Picardo
- Faculty of Medicine, Unicamillus International Medical University, 00131 Rome, Italy
- Correspondence: (E.F.); (M.P.)
| |
Collapse
|
28
|
Interleukin-6 and Hypoxia Synergistically Promote EMT-Mediated Invasion in Epithelial Ovarian Cancer via the IL-6/STAT3/HIF-1 α Feedback Loop. Anal Cell Pathol (Amst) 2023; 2023:8334881. [PMID: 36814597 PMCID: PMC9940980 DOI: 10.1155/2023/8334881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 02/15/2023] Open
Abstract
Extensive peritoneal spread and capacity for distant metastasis account for the majority of mortality from epithelial ovarian cancer (EOC). Accumulating evidence shows that interleukin-6 (IL-6) promotes tumor invasion and migration in EOC, although the molecular mechanisms remain to be fully elucidated. Meanwhile, the hypoxic microenvironment has been recognized to cause metastasis by triggering epithelial-mesenchymal transition (EMT) in several types of cancers. Here, we studied the synergy between IL-6 and hypoxia in inducing EMT in two EOC cell lines, A2780 cells and SKOV3 cells. Exogenous recombination of IL-6 and autocrine production of IL-6 regulated by plasmids both induced EMT phenotype in EOC cells characterized by downregulated E-cadherin as well as upregulated expression of vimentin and EMT-related transcription factors. The combined effects of IL-6 and hypoxia were more significant than those of either one treatment on EMT. Suppression of hypoxia-inducible factor-1α (HIF-1α) before IL-6 treatment inhibited the EMT phenotype and invasion ability of EOC cells, indicating that HIF-1α occupies a key position in the regulatory pathway of EMT associated with IL-6. EMT score was found positively correlated with mRNA levels of IL-6, signal transducer and activator of transcription 3 (STAT3), and HIF-1α, respectively, in 489 ovarian samples from The Cancer Genome Atlas dataset. Next, blockade of the abovementioned molecules by chemical inhibitors reversed the alteration in the protein levels of EMT markers induced by either exogenous or endogenous IL-6. These findings indicate a positive feedback loop between IL-6 and HIF-1α, and induce and maintain EMT phenotype through STAT3 signaling, which might provide a novel rationale for prognostic prediction and therapeutic targets in EOC.
Collapse
|
29
|
Saliakoura M, Konstantinidou G. Lipid Metabolic Alterations in KRAS Mutant Tumors: Unmasking New Vulnerabilities for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021793. [PMID: 36675307 PMCID: PMC9864058 DOI: 10.3390/ijms24021793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
KRAS is one of the most commonly mutated genes, an event that leads to development of highly aggressive and resistant to any type of available therapy tumors. Mutated KRAS drives a complex network of lipid metabolic rearrangements to support the adaptation of cancer cells to harsh environmental conditions and ensure their survival. Because there has been only a little success in the continuous efforts of effectively targeting KRAS-driven tumors, it is of outmost importance to delineate the exact mechanisms of how they get rewired, leading to this distinctive phenotype. Therefore, the aim of this review is to summarize the available data acquired over the last years with regard to the lipid metabolic regulation of KRAS-driven tumors and elucidate their specific characteristics in an attempt to unravel novel therapeutic targets.
Collapse
|
30
|
Zhang J, Hu Z, Horta CA, Yang J. Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Semin Cancer Biol 2023; 88:46-66. [PMID: 36521737 DOI: 10.1016/j.semcancer.2022.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in various aspects of tumor development, including tumor invasion and metastasis, cancer stemness, and therapy resistance. Diverse stroma cell types along with biochemical and biophysical factors in the tumor microenvironment impinge on the EMT program to impact tumor progression. Here we provide an in-depth review of various tumor microenvironmental signals that regulate EMT in cancer. We discuss the molecular mechanisms underlying the role of EMT in therapy resistance and highlight new therapeutic approaches targeting the tumor microenvironment to impact EMT and tumor progression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Calista A Horta
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Mishra AK, Banday S, Bharadwaj R, Ali A, Rashid R, Kulshreshtha A, Malonia SK. Macrophages as a Potential Immunotherapeutic Target in Solid Cancers. Vaccines (Basel) 2022; 11:55. [PMID: 36679900 PMCID: PMC9863216 DOI: 10.3390/vaccines11010055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The revolution in cancer immunotherapy over the last few decades has resulted in a paradigm shift in the clinical care of cancer. Most of the cancer immunotherapeutic regimens approved so far have relied on modulating the adaptive immune system. In recent years, strategies and approaches targeting the components of innate immunity have become widely recognized for their efficacy in targeting solid cancers. Macrophages are effector cells of the innate immune system, which can play a crucial role in the generation of anti-tumor immunity through their ability to phagocytose cancer cells and present tumor antigens to the cells of adaptive immunity. However, the macrophages that are recruited to the tumor microenvironment predominantly play pro-tumorigenic roles. Several strategies targeting pro-tumorigenic functions and harnessing the anti-tumorigenic properties of macrophages have shown promising results in preclinical studies, and a few of them have also advanced to clinical trials. In this review, we present a comprehensive overview of the pathobiology of TAMs and their role in the progression of solid malignancies. We discuss various mechanisms through which TAMs promote tumor progression, such as inflammation, genomic instability, tumor growth, cancer stem cell formation, angiogenesis, EMT and metastasis, tissue remodeling, and immunosuppression, etc. In addition, we also discuss potential therapeutic strategies for targeting TAMs and explore how macrophages can be used as a tool for next-generation immunotherapy for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ravi Bharadwaj
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Romana Rashid
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ankur Kulshreshtha
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
32
|
Yang C, Wang T, Zhu S, Zong Z, Luo C, Zhao Y, Liu J, Li T, Liu X, Liu C, Deng H. Nicotinamide N-Methyltransferase Remodeled Cell Metabolism and Aggravated Proinflammatory Responses by Activating STAT3/IL1β/PGE 2 Pathway. ACS OMEGA 2022; 7:37509-37519. [PMID: 36312432 PMCID: PMC9607676 DOI: 10.1021/acsomega.2c04286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) is a cytosolic methyltransferase, catalyzing N-methylation of nicotinamide (NAM) to form 1-methylnicotinamide (1-MNAM), in which S-adenosyl-l-methionine (SAM) is the methyl donor. It has been well documented that NNMT is elevated in multiple cancers and promotes tumor aggressiveness. In the present study, we investigated the effects of NNMT overexpression on cellular metabolism and proinflammatory responses. We found that NNMT overexpression reduced NAD+ and SAM levels, and activated the STAT3 signaling pathway. Consequently, STAT3 activation upregulated interleukin 1β (IL1β) and cyclooxygenase-2 (COX2), leading to prostaglandin E2 (PGE2) accumulation. On the other hand, NNMT downregulated 15-hydroxyprostaglandin dehydrogenase (15-PGDH) which catalyzes PGE2 into inactive molecules. Moreover, secretomic data indicated that NNMT promoted secretion of collagens, pro-inflammatory cytokines, and extracellular matrix proteins, confirming NNMT aggravated inflammatory responses to promote cell growth, migration, epithelial-mesenchymal transition (EMT), and chemoresistance. Taken together, we showed that NNMT played a pro-inflammatory role in cancer cells by activating the STAT3/IL1β/PGE2 axis and proposed that NNMT was a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Changmei Yang
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Tianxiang Wang
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Songbiao Zhu
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Zhaoyun Zong
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Chengting Luo
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Yujiao Zhao
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Jing Liu
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Ting Li
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Xiaohui Liu
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| | - Chongdong Liu
- Chao
Yang Hospital of Capital Medical University, Beijing 100020, P. R. China
| | - Haiteng Deng
- MOE
Key Laboratory of Bioinformatics, Center for Synthetic and Systematic
Biology, School of Life Sciences, Tsinghua
University, Beijing 100084, P. R. China
| |
Collapse
|
33
|
Li X, Chen L, Peng X, Zhan X. Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Front Oncol 2022; 12:911410. [PMID: 35965509 PMCID: PMC9366252 DOI: 10.3389/fonc.2022.911410] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
As a significant public health problem with high morbidity and mortality worldwide, tumor is one of the major diseases endangering human life. Moreover, metastasis is the most important contributor to the death of tumor patients. Epithelial-mesenchymal transition (EMT) is an essential biological process in developing primary tumors to metastasis. It underlies tumor progression and metastasis by inducing a series of alterations in tumor cells that confer the ability to move and migrate. Tumor-associated macrophages (TAMs) are one of the primary infiltrating immune cells in the tumor microenvironment, and they play an indispensable role in the EMT process of tumor cells by interacting with tumor cells. With the increasing clarity of the relationship between TAMs and EMT and tumor metastasis, targeting TAMs and EMT processes is emerging as a promising target for developing new cancer therapies. Therefore, this paper reviews the recent research progress of tumor-associated macrophages in tumor epithelial-mesenchymal transition and briefly discusses the current anti-tumor therapies targeting TAMs and EMT processes.
Collapse
Affiliation(s)
| | | | - Xiaobo Peng
- *Correspondence: Xiaobo Peng, ; Xianbao Zhan,
| | | |
Collapse
|
34
|
Zhou X, Wang X, Sun Q, Zhang W, Liu C, Ma W, Sun C. Natural compounds: A new perspective on targeting polarization and infiltration of tumor-associated macrophages in lung cancer. Biomed Pharmacother 2022; 151:113096. [PMID: 35567987 DOI: 10.1016/j.biopha.2022.113096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
With the development in tumor immunology, people are gradually understanding the complexity and diversity of the tumor microenvironment immune status and its important effect on tumors. Tumor-associated macrophages (TAMs), an important part of the tumor immune microenvironment, have a double effect on tumor growth and metastasis. Many studies have focused on lung cancer, especially non-small cell lung cancer and other "hot tumors" with typical inflammatory characteristics. The polarization and infiltration of TAMs is an important mechanism in the occurrence and development of malignant tumors, such as lung cancer, and in the tumor immune microenvironment. Therapeutic drugs designed for these reasons are key to targeting TAMs in the treatment of lung cancer. A large number of reports have suggested that natural compounds have a strong potential of affecting immunity by targeting the polarization and infiltration of TAMs to improve the immune microenvironment of lung cancer and exert a natural antitumor effect. This paper discusses the infiltration and polarization effects of natural compounds on lung cancer TAMs, provides a detailed classification and systematic review of natural compounds, and summarizes the bias of different kinds of natural compounds by affecting their antitumor mechanism of TAMs, with the aim of providing new perspectives and potential therapeutic drugs for targeted macrophages in the treatment of lung cancer.
Collapse
Affiliation(s)
- Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Sun
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China; College of Chinese Medicine, Weifang Medical University, Weifang, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.
| |
Collapse
|
35
|
Impact of the Tumor Microenvironment for Esophageal Tumor Development—An Opportunity for Prevention? Cancers (Basel) 2022; 14:cancers14092246. [PMID: 35565378 PMCID: PMC9100503 DOI: 10.3390/cancers14092246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Researchers increasingly appreciate the tumor microenvironment (TME) for its role in the development and therapy resistance of cancers like esophageal adenocarcinoma. A better understanding of the TME fueling carcinogenesis is necessary for tailored prevention and therapies. Here, we highlight recent insights into tumor initiation, interactions with the immune system and possible novel preventative measures. Abstract Despite therapeutical advancements, and in contrast to other malignancies, esophageal adenocarcinoma (EAC) prognosis remains dismal while the incidence has markedly increased worldwide over the past decades. EAC is a malignancy of the distal esophageal squamous epithelium at the squamocolumnar junction with gastric cells expanding into the esophagus. Most EAC patients have a history of Barret’s esophagus (BE), a metaplastic adaption to chronic reflux, initially causing an inflammatory microenvironment. Thus, the immune system is highly involved early on in disease development and progression. Normally, anti-tumor immunity could prevent carcinogenesis but in rare cases BE still progresses over a dysplastic intermediate state to EAC. The inflammatory milieu during the initial esophagitis phase changes to a tolerogenic immune environment in BE, and back to pro-inflammatory conditions in dysplasia and finally to an immune-suppressive tumor microenvironment in EAC. Consequently, there is a huge interest in understanding the underpinnings that lead to the inflammation driven stepwise progression of the disease. Since knowledge about the constellations of the various involved cells and signaling molecules is currently fragmentary, a comprehensive description of these changes is needed, allowing better preventative measures, diagnosis, and novel therapeutic targets.
Collapse
|
36
|
Jiang J, Liu J, Gao P, Liu J. Effect of taking aspirin before diagnosis on the prognosis of esophageal squamous cell carcinoma and analysis of prognostic factors. J Int Med Res 2022; 50:3000605221089799. [PMID: 35400214 PMCID: PMC9006383 DOI: 10.1177/03000605221089799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective The 5-year survival rate of patients with esophageal squamous cell cancer (ESCC) is very low. However, long-term aspirin use has been suggested to have an adjuvant therapeutic effect. We therefore investigated the effect of long-term aspirin use before ESCC diagnosis on postoperative patient survival. Methods We carried out a retrospective cohort study of patients who underwent esophageal cancer resection in our hospital from 2008 to 2018. Patients were divided into an aspirin group (n = 79) and control group (n = 79), and were followed up until December 2019. We analyzed the clinicopathological and follow-up data of the patients during hospitalization, and the cyclooxygenase-2 (COX-2) protein expression levels by immunohistochemistry, and related these to postoperative survival. Results Patients who took aspirin had significantly lower survival rates than those who did not. COX-2-negative patients had better survival than patients with either low or high COX-2 expression levels. T stage was the only independent predictor of survival in patients who took aspirin. Conclusions Long-term regular use of aspirin before diagnosis had an adverse effect on postoperative survival in patients with ESCC. Different COX-2 protein expression levels were associated with significantly different postoperative survival rates, with COX-2-positive patients having the poorest survival.
Collapse
Affiliation(s)
- Jiang Jiang
- Hebei Medical University Third Affiliated Hospital, 139 Ziqiang Road, Shijiazhuang 050000, Hebei Province, China
| | - Junfeng Liu
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, 12 Jiankang Road, Shijiazhuang 050000, Hebei Province, China
| | - Ping Gao
- Hebei Medical University, 361 East Zhongshan Road 050011, Hebei Province, China
| | - Junying Liu
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, 12 Jiankang Road, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
37
|
Desind SZ, Iacona JR, Yu CY, Mitrofanova A, Lutz CS. PACER lncRNA regulates COX-2 expression in lung cancer cells. Oncotarget 2022; 13:291-306. [PMID: 35136486 PMCID: PMC8815784 DOI: 10.18632/oncotarget.28190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are known to regulate gene expression; however, in many cases, the mechanism of this regulation is unknown. One novel lncRNA relevant to inflammation and arachidonic acid (AA) metabolism is the p50-associated COX-2 extragenic RNA (PACER). We focused our research on the regulation of PACER in lung cancer. While the function of PACER is not entirely understood, PACER is known to play a role in inflammation-associated conditions. Our data suggest that PACER is critically involved in COX-2 transcription and dysregulation in lung cancer cells. Our analysis of The Cancer Genome Atlas (TCGA) expression data revealed that PACER expression is significantly higher in lung adenocarcinomas than normal lung tissues. Additionally, we discovered that elevated PACER expression strongly correlates with COX-2 expression in lung adenocarcinoma patients. Specific siRNA-mediated knockdown of PACER decreases COX-2 expression indicating a direct relationship. Additionally, we show that PACER expression is induced upon treatment with proinflammatory cytokines to mimic inflammation. Treatment with prostaglandin E2 (PGE2) induces both PACER and COX-2 expression, suggesting a PGE2-mediated feedback loop. Inhibition of COX-2 with celecoxib decreased PACER expression, confirming this self-regulatory process. Significant overlap between the COX-2 promotor and the PACER promotor led us to investigate their transcriptional regulatory mechanisms. Treatment with pharmacologic inhibitors of NF-κB or AP-1 showed a modest effect on both PACER and COX-2 expression but did not eliminate expression. These data suggest that the regulation of expression of both PACER and COX-2 is complex and intricately linked.
Collapse
Affiliation(s)
- Samuel Z. Desind
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
- These authors contributed equally to this work
| | - Joseph R. Iacona
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
- These authors contributed equally to this work
| | - Christina Y. Yu
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07107, USA
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07107, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| |
Collapse
|
38
|
Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, Verheij J, Li RJE, Schetters STT, Meijer LL, Le Large TYS, Driehuis E, Clevers H, Bruijns SCM, O'Toole T, van Vliet SJ, Bijlsma MF, Wuhrer M, Kazemier G, Giovannetti E, Garcia-Vallejo JJ, van Kooyk Y. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol 2022; 5:41. [PMID: 35017635 PMCID: PMC8752754 DOI: 10.1038/s42003-021-02934-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies with a 5-year survival rate of only 9%. Despite the fact that changes in glycosylation patterns during tumour progression have been reported, no systematic approach has been conducted to evaluate its potential for patient stratification. By analysing publicly available transcriptomic data of patient samples and cell lines, we identified here two specific glycan profiles in PDAC that correlated with progression, clinical outcome and epithelial to mesenchymal transition (EMT) status. These different glycan profiles, confirmed by glycomics, can be distinguished by the expression of O-glycan fucosylated structures, present only in epithelial cells and regulated by the expression of GALNT3. Moreover, these fucosylated glycans can serve as ligands for DC-SIGN positive tumour-associated macrophages, modulating their activation and inducing the production of IL-10. Our results show mechanisms by which the glyco-code contributes to the tolerogenic microenvironment in PDAC.
Collapse
Affiliation(s)
- Ernesto Rodriguez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Kelly Boelaars
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Kari Brown
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Thomas van Ee
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Frederike Dijk
- Amsterdam UMC, Academic Medical Center Amsterdam, University of Amsterdam, Department of Pathology, Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Joanne Verheij
- Amsterdam UMC, Academic Medical Center Amsterdam, University of Amsterdam, Department of Pathology, Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - R J Eveline Li
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Sjoerd T T Schetters
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura L Meijer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Tessa Y S Le Large
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Else Driehuis
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and UMC Utrecht, Utrecht, The Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and UMC Utrecht, Utrecht, The Netherlands
| | - Sven C M Bruijns
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Tom O'Toole
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Geert Kazemier
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Juan J Garcia-Vallejo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Ye Y, Ge O, Zang C, Yu L, Eucker J, Chen Y. LINC01094 Predicts Poor Prognosis in Patients With Gastric Cancer and is Correlated With EMT and Macrophage Infiltration. Technol Cancer Res Treat 2022; 21:15330338221080977. [PMID: 35254147 PMCID: PMC8905065 DOI: 10.1177/15330338221080977] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objectives: The novel long non-coding RNA (lncRNA) LINC01094 is often upregulated in renal cell carcinoma and glioma; however, its role in gastric cancer remains unclear. Here, we aim to demonstrate the relationship between LINC01094 and gastric cancer. Method: The gene expression (RNASeq) data of 375 patients with localized, locally advanced, and metastatic gastric cancer were extracted from The Cancer Genome Atlas. The Kruskal–Wallis test, Wilcoxon signed-rank test, and logistic regression were used to analyze the relationship between the clinicopathological characteristics and LINC01094 expression. Cox regression analysis and the Kaplan–Meier method were used to assess prognostic factors of gastric cancer. A nomogram based on Cox multivariate analysis was used to predict the impact of LINC01094 on gastric cancer prognosis. Gene set enrichment analysis (GSEA) was used to identify key LINC01094-associated signaling pathways. Fluorescence in situ hybridization (FISH) was performed to detect the location of LINC01094 in the tissue, and a competing endogenous (ce)RNA network was constructed to identify LINC01094-related genes. Spearman's rank correlation was used to elucidate the association between LINC01094 expression level and immune cell infiltration level. Result: LINC01094 expression was upregulated in gastric cancer tissues and strongly associated with overall survival using univariate Cox regression (hazard ratio [HR] = 1.476, 95% CI = 1.060-2.054, P = .021) and multivariate Cox regression analysis (HR = 1.535, 95% CI = 1.021-2.308, P = .039). The area under the receiver operating characteristic curve of LINC01094 was 0.910. GSEA showed a strong relationship between LINC01094 and the epithelial-mesenchymal transition pathway. RNA-FISH demonstrated that LINC01094 localized in the cytoplasm. It was closely related to the epithelial-mesenchymal transition (EMT) marker SNAI2, according to ceRNA (R = 0.61, P < .001), and macrophage-related gene FCGR2A. Macrophages were also significantly positively correlated with LINC01094 expression (R = 0.747, P < .001). Conclusion: High LINC01094 expression predicts poor prognosis in gastric cancer and is correlated with the epithelial-mesenchymal transition pathway and macrophage infiltration.
Collapse
Affiliation(s)
- Yuanchun Ye
- 117894Department of Gastroenterology, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Department of Hematology Oncology and Tumor Immunity, Benjamin Franklin Campus, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ouyang Ge
- Institute for Experimental Endocrinology, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chuanbing Zang
- Department of Hematology Oncology and Tumor Immunity, Benjamin Franklin Campus, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leina Yu
- Department of Hematology Oncology and Tumor Immunity, Benjamin Franklin Campus, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Eucker
- Department of Hematology Oncology and Tumor Immunity, Benjamin Franklin Campus, 14903Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yuling Chen
- 543160Department of Rheumatology and Immunology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
40
|
Wang X, Wu Y, Gu J, Xu J. Tumor-associated macrophages in lung carcinoma: From mechanism to therapy. Pathol Res Pract 2021; 229:153747. [PMID: 34952424 DOI: 10.1016/j.prp.2021.153747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/09/2022]
Abstract
Tumor-associated macrophages (TAMs), which could be classified into the classical (M1-like) and alternatively activated (M2-like) phenotype, were considered to be important tumor-promoting components in lung cancer microenvironment. Several studies reported that TAMs in lung tumor islet or stroma are usually correlated with poor prognosis. Further studies showed that TAMs could promote the initiation of tumor cells, inhibit antitumor immune responses, and stimulate tumor angiogenesis and subsequently tumor metastasis of lung carcinoma. Currently, TAMs have been considered as penitential targets of lung cancer. This review summarizes from the fundamental information of TAMs to the its role in metastasis and present evidence for TAMs as a potential target of cancer therapy.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yining Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiahui Gu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China.
| |
Collapse
|
41
|
Zhou Y, Zhang Y, Li Y, Liu L, Li Z, Liu Y, Xiao Y. MicroRNA-106a-5p promotes the proliferation, autophagy and migration of lung adenocarcinoma cells by targeting LKB1/AMPK. Exp Ther Med 2021; 22:1422. [PMID: 34707704 PMCID: PMC8543179 DOI: 10.3892/etm.2021.10857] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
It has previously been reported that lung cancer has the highest morbidity and mortality rate worldwide; however, the pathogenesis underlying lung cancer has not been fully elucidated. The aim of the present was primarily to assess the influence of microRNA (miR)-106a-5p on the biological behaviors of lung cancer cells. In the present study, bioinformatics analysis was used to analyze the expression characteristics of miR-106a-5p and its relationship with the prognosis of patients with lung adenocarcinoma (LUAD) in The Cancer Genome Atlas. A dual luciferase reporter assay was performed to verify the binding of miR-106a-5p and liver kinase B1 (LKB1). The Cell Counting Kit-8, colony formation and Transwell assays were utilized to detect cell viability, proliferation and migration, respectively. Protein and RNA expression levels were examined by western blotting and reverse transcription-quantitative PCR analysis, respectively. It was observed that miR-106a-5p was highly expressed in LUAD and associated with poor prognosis. miR-106a-5p promoted the proliferation and migration of LUAD cells, and inhibited autophagy. By contrast, LKB1 inhibited cell proliferation and migration, promoted autophagy and blocked the cancer-promoting effects of miR-106a-5p. Overexpression of miR-106a-5p inhibited the phosphorylation of AMP-activated protein kinase (AMPK) and tuberin (TSC2), and promoted the phosphorylation of mTOR. By contrast, overexpression of LKB1 blocked the promotion of mTOR phosphorylation, and the inhibition of AMPK and TSC2 phosphorylation caused by miR-106a-5p. In summary, the results of the present study indicated that miR-106a-5p regulated the phosphorylation of the AMPK pathway by targeting LKB1, and was involved in the proliferation, migration and autophagy of LUAD cells.
Collapse
Affiliation(s)
- Yushan Zhou
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Yuxuan Zhang
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Yanli Li
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Liqiong Liu
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Zhidong Li
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Yanhong Liu
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Yi Xiao
- Department of Respiratory and Critical Care Medicine, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
42
|
Sen’kova AV, Savin IA, Brenner EV, Zenkova MA, Markov AV. Core genes involved in the regulation of acute lung injury and their association with COVID-19 and tumor progression: A bioinformatics and experimental study. PLoS One 2021; 16:e0260450. [PMID: 34807957 PMCID: PMC8608348 DOI: 10.1371/journal.pone.0260450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a specific form of lung damage caused by different infectious and non-infectious agents, including SARS-CoV-2, leading to severe respiratory and systemic inflammation. To gain deeper insight into the molecular mechanisms behind ALI and to identify core elements of the regulatory network associated with this pathology, key genes involved in the regulation of the acute lung inflammatory response (Il6, Ccl2, Cat, Serpine1, Eln, Timp1, Ptx3, Socs3) were revealed using comprehensive bioinformatics analysis of whole-genome microarray datasets, functional annotation of differentially expressed genes (DEGs), reconstruction of protein-protein interaction networks and text mining. The bioinformatics data were validated using a murine model of LPS-induced ALI; changes in the gene expression patterns were assessed during ALI progression and prevention by anti-inflammatory therapy with dexamethasone and the semisynthetic triterpenoid soloxolone methyl (SM), two agents with different mechanisms of action. Analysis showed that 7 of 8 revealed ALI-related genes were susceptible to LPS challenge (up-regulation: Il6, Ccl2, Cat, Serpine1, Eln, Timp1, Socs3; down-regulation: Cat) and their expression was reversed by the pre-treatment of mice with both anti-inflammatory agents. Furthermore, ALI-associated nodal genes were analysed with respect to SARS-CoV-2 infection and lung cancers. The overlap with DEGs identified in postmortem lung tissues from COVID-19 patients revealed genes (Saa1, Rsad2, Ifi44, Rtp4, Mmp8) that (a) showed a high degree centrality in the COVID-19-related regulatory network, (b) were up-regulated in murine lungs after LPS administration, and (c) were susceptible to anti-inflammatory therapy. Analysis of ALI-associated key genes using The Cancer Genome Atlas showed their correlation with poor survival in patients with lung neoplasias (Ptx3, Timp1, Serpine1, Plaur). Taken together, a number of key genes playing a core function in the regulation of lung inflammation were found, which can serve both as promising therapeutic targets and molecular markers to control lung ailments, including COVID-19-associated ALI.
Collapse
Affiliation(s)
- Aleksandra V. Sen’kova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Innokenty A. Savin
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenyi V. Brenner
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina A. Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey V. Markov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
43
|
Tumour microenvironment: a non-negligible driver for epithelial-mesenchymal transition in colorectal cancer. Expert Rev Mol Med 2021; 23:e16. [PMID: 34758892 DOI: 10.1017/erm.2021.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer remains the leading cause of death worldwide, and metastasis is still the major cause of treatment failure for cancer patients. Epithelial-mesenchymal transition (EMT) has been shown to play a critical role in the metastasis cascade of epithelium-derived carcinoma. Tumour microenvironment (TME) refers to the local tissue environment in which tumour cells produce and live, including not only tumour cells themselves, but also fibroblasts, immune and inflammatory cells, glial cells and other cells around them, as well as intercellular stroma, micro vessels and infiltrated biomolecules from the nearby areas, which has been proved to widely participate in the occurrence and progress of cancer. Emerging and accumulating studies indicate that, on one hand, mesenchymal cells in TME can establish 'crosstalk' with tumour cells to regulate their EMT programme; on the other, EMT-tumour cells can create a favourable environment for their own growth via educating stromal cells. Recently, our group has conducted a series of studies on the interaction between tumour-associated macrophages (TAMs) and colorectal cancer (CRC) cells in TME, confirming that the interaction between TAMs and CRC cells mediated by cytokines or exosomes can jointly promote the metastasis of CRC by regulating the EMT process of tumour cells and the M2-type polarisation process of TAMs. Herein, we present an overview to describe the current knowledge about EMT in cancer, summarise the important role of TME in EMT, and provide an update on the mechanisms of TME-induced EMT in CRC, aiming to provide new ideas for understanding and resisting tumour metastasis.
Collapse
|
44
|
Xin SL, Yang X, Zhang YP, Xu KS. Zhikang Capsule Ameliorates Inflammation, Drives Polarization to M2 Macrophages, and Inhibits Apoptosis in Lipopolysaccharide-induced RAW264.7 Cells. Curr Med Sci 2021; 41:1214-1224. [PMID: 34705217 DOI: 10.1007/s11596-021-2441-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/15/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To explore the anti-inflammatory effect of the traditional Chinese medicine Zhikang capsule (ZKC) on lipopolysaccharide (LPS)-induced RAW264.7 cells. METHODS Safe concentrations of ZKC (0.175, 0.35, and 0.7 mg/mL) were used after the half-maximal inhibitory concentration (IC50) of RAW264.7 cells was calculated through the CCK-8 assay. In addition, the optimal intervention duration of ZKC (0.7 mg/mL) on RAW264.7 cells was determined to be 6 h, since all proinflammatory mediators [tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), inteleukin-6 (IL-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and monocyte chemotactic protein-1 (MCP-1)] had a decreasing tendency and relatively down-regulated mRNA expression levels as compared with other durations (4, 8, and 12 h). RAW264.7 cells were pretreated with ZKC at various concentrations (0.175, 0.35 and 0.7 mg/mL) for 6 h and then stimulated with LPS (1 µg/mL) for an additional 12 h. RESULTS In terms of inflammation, ZKC could reverse LPS-induced upregulation of TNF-α, IL-1β, IL-6, COX-2, iNOS, and MCP-1 at both the mRNA and protein levels in RAW264.7 cells in a dose-dependent manner. In terms of the NF-κB signaling pathway, ZKC could reduce phosphorylated p65 and promote M2 polarization of RAW264.7 cells under LPS stimulation in a dose-dependent manner. Moreover, ZKC exhibited a protective effect on macrophages from apoptosis. CONCLUSION ZKC exhibited obvious antiinflammatory and anti-apoptotic effects on LPS-induced RAW264.7 cells at the cellular level, and a weakened NF-κB signaling pathway may be a potential significant target.
Collapse
Affiliation(s)
- Sheng-Liang Xin
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Xia Yang
- Department of Gastroenterology, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Yu-Ping Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke-Shu Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
45
|
Nam HH, Nan L, Choo BK. Anti-Inflammation and Protective Effects of Anethum graveolens L. (Dill Seeds) on Esophageal Mucosa Damages in Reflux Esophagitis-Induced Rats. Foods 2021; 10:foods10102500. [PMID: 34681549 PMCID: PMC8535990 DOI: 10.3390/foods10102500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
Anethum graveolens L. (dill seeds) are important medicinal and functional foods in Europe and central and south Asia, often used as a seasoning in daily diets. Anethum graveolens L. seeds (AGS) are used to treat indigestion and have shown physiological activities such as those against hypoglycemia and gastroesophageal disease. This study explored the protective effects of AGS extract on mucosal damages and inflammation in reflux esophagitis rats. AGS inhibited cellular inflammation including NO production and the expression of inflammatory proteins (iNOS and COX2 etc.), cytokines (IL-1β and TNF-α) and nuclear transfer factor related to NF-κB signaling caused by LPS stimulation in vitro. Furthermore, reflux esophagitis-induced rats were used to observe the anti-inflammatory effect of AGS. Tissue staining and inflammation-related protein expression of rats with acute reflux esophagitis indicated that AGS improved this inflammatory response, such as COX-2 and TNF-α in mucosa. In conclusion, AGS have good physiological activity and the possibility of being used as a medicinal food and a functional resource for the prevention and therapy of gastroesophageal diseases.
Collapse
Affiliation(s)
- Hyeon-Hwa Nam
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Korea;
| | - Li Nan
- Agricultural College, Yanbian University, Yanji 133002, China;
| | - Byung-Kil Choo
- Department of Crop Science & Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-2526
| |
Collapse
|
46
|
Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi-tool for tumor progression. EMBO J 2021; 40:e108647. [PMID: 34459003 PMCID: PMC8441439 DOI: 10.15252/embj.2021108647] [Citation(s) in RCA: 426] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
The process of epithelial-mesenchymal transition (EMT) is fundamental for embryonic morphogenesis. Cells undergoing it lose epithelial characteristics and integrity, acquire mesenchymal features, and become motile. In cancer, this program is hijacked to confer essential changes in morphology and motility that fuel invasion. In addition, EMT is increasingly understood to orchestrate a large variety of complementary cancer features, such as tumor cell stemness, tumorigenicity, resistance to therapy and adaptation to changes in the microenvironment. In this review, we summarize recent findings related to these various classical and non-classical functions, and introduce EMT as a true tumorigenic multi-tool, involved in many aspects of cancer. We suggest that therapeutic targeting of the EMT process will-if acknowledging these complexities-be a possibility to concurrently interfere with tumor progression on many levels.
Collapse
Affiliation(s)
- Simone Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Thomas Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Marc P. Stemmler
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
47
|
Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol 2021; 907:174365. [PMID: 34302814 DOI: 10.1016/j.ejphar.2021.174365] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment (TME) includes a number of non-cancerous cells that affect cancer cell survival. Although CD8+ T lymphocytes and natural killer (NK) cells suppress tumor growth through induction of cell death in cancer cells, there are various immunosuppressive cells such as regulatory T cells (Tregs), tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), etc., which drive cancer cell proliferation. These cells may also support tumor growth and metastasis by stimulating angiogenesis, epithelial-mesenchymal transition (EMT), and resistance to apoptosis. Interactions between cancer cells and other cells, as well as molecules released into EMT, play a key role in tumor growth and suppression of antitumoral immunity. Melatonin is a natural hormone that may be found in certain foods and is also available as a drug. Melatonin has been demonstrated to modulate cell activity and the release of cytokines and growth factors in TME. The purpose of this review is to explain the cellular and molecular mechanisms of cancer cell resistance as a result of interactions with TME. Next, we explain how melatonin affects cells and interactions within the TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
48
|
7S,15R-Dihydroxy-16S,17S-Epoxy-Docosapentaenoic Acid, a Novel DHA Epoxy Derivative, Inhibits Colorectal Cancer Stemness through Repolarization of Tumor-Associated Macrophage Functions and the ROS/STAT3 Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10091459. [PMID: 34573091 PMCID: PMC8470250 DOI: 10.3390/antiox10091459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer is a highly malignant cancer that is inherently resistant to many chemotherapeutic drugs owing to the complicated tumor-supportive microenvironment (TME). Tumor-associated macrophages (TAM) are known to mediate colorectal cancer metastasis and relapse and are therefore a promising therapeutic target. In the current study, we first confirmed the anti-inflammatory effect of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), a novel DHA dihydroxy derivative synthesized in our previous work. We found that diHEP-DPA significantly reduced lipopolysaccharide (LPS)-induced inflammatory cytokines secretion of THP1 macrophages, IL-6, and TNF-α. As expected, diHEP-DPA also modulated TAM polarization, as evidenced by decreased gene and protein expression of the TAM markers, CD206, CD163, VEGF, and TGF-β1. During the polarization process, diHEP-DPA treatment decreased the concentration of TGF-β1, IL-1β, IL-6, and TNF-α in culture supernatants via inhibiting the NF-κB pathway. Moreover, diHEP-DPA blocked immunosuppression by reducing the expression of SIRPα in TAMs and CD47 in colorectal cancer cells. Knowing that an inflammatory TME largely serves to support epithelial-mesenchymal transition (EMT) and cancer stemness, we tested whether diHEP-DPA acted through polarization of TAMs to regulate these processes. The intraperitoneally injected diHEP-DPA inhibited tumor growth when administered alone or in combination with 5-fluorouracil (5-FU) chemotherapy in vivo. We further found that diHEP-DPA effectively reversed TAM-conditioned medium (TCCM)-induced EMT and enhanced colorectal cancer stemness, as evidenced by its inhibition of colorectal cancer cell migration, invasion and expression of EMT markers, as well as cancer cell tumorspheres formation, without damaging colorectal cancer cells. DiHEP-DPA reduced the population of aldehyde dehydrogenase (ALDH)-positive cells and expression of colorectal stemness marker proteins (CD133, CD44, and Sox2) by modulating TAM polarization. Additionally, diHEP-DPA directly inhibited cancer stemness by inducing the production of reactive oxygen species (ROS), which, in turn, reduced the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3). These data collectively suggest that diHEP-DPA has the potential for development as an anticancer agent against colorectal cancer.
Collapse
|
49
|
He X, Smith SE, Chen S, Li H, Wu D, Meneses-Giles PI, Wang Y, Hembree M, Yi K, Zhao X, Guo F, Unruh JR, Maddera LE, Yu Z, Scott A, Perera A, Wang Y, Zhao C, Bae K, Box A, Haug JS, Tao F, Hu D, Hansen DM, Qian P, Saha S, Dixon D, Anant S, Zhang D, Lin EH, Sun W, Wiedemann LM, Li L. Tumor-initiating stem cell shapes its microenvironment into an immunosuppressive barrier and pro-tumorigenic niche. Cell Rep 2021; 36:109674. [PMID: 34496236 PMCID: PMC8451448 DOI: 10.1016/j.celrep.2021.109674] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/30/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
Tumor-initiating stem cells (TSCs) are critical for drug resistance and immune escape. However, the mutual regulations between TSC and tumor microenvironment (TME) remain unclear. Using DNA-label retaining, single-cell RNA sequencing (scRNA-seq), and other approaches, we investigated intestinal adenoma in response to chemoradiotherapy (CRT), thus identifying therapy-resistant TSCs (TrTSCs). We find bidirectional crosstalk between TSCs and TME using CellPhoneDB analysis. An intriguing finding is that TSCs shape TME into a landscape that favors TSCs for immunosuppression and propagation. Using adenoma-organoid co-cultures, niche-cell depletion, and lineaging tracing, we characterize a functional role of cyclooxygenase-2 (Cox-2)-dependent signaling, predominantly occurring between tumor-associated monocytes and macrophages (TAMMs) and TrTSCs. We show that TAMMs promote TrTSC proliferation through prostaglandin E2 (PGE2)-PTGER4(EP4) signaling, which enhances β-catenin activity via AKT phosphorylation. Thus, our study shows that the bidirectional crosstalk between TrTSC and TME results in a pro-tumorigenic and immunosuppressive contexture.
Collapse
Affiliation(s)
- Xi He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Di Wu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mark Hembree
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Xia Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Allison Scott
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - KyeongMin Bae
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrew Box
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fang Tao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Deqing Hu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Darrick M Hansen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Pengxu Qian
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Subhrajit Saha
- Department of Cancer Biology/Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dan Dixon
- Department of Molecular Biosciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology/Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Da Zhang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661607, USA
| | - Edward H Lin
- Seattle Cancer Care Alliance, University of Washington, Seattle, WA 98109, USA
| | - Weijing Sun
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66205, USA
| | - Leanne M Wiedemann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661607, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661607, USA.
| |
Collapse
|
50
|
Pang L, Shah H, Xu Y, Qian S. Delta-5-desaturase: A novel therapeutic target for cancer management. Transl Oncol 2021; 14:101207. [PMID: 34438249 PMCID: PMC8390547 DOI: 10.1016/j.tranon.2021.101207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
D5D is an independent prognostic factor in cancer. D5D aggravates cancer progression via mediating AA/PGE2 production from DGLA. AA/PGE2 promotes cancer progression via regulating the tumor microenvironment. Inhibition of D5D redirects COX-2 catalyzed DGLA peroxidation, producing 8-HOA. 8-HOA suppress cancer by regulating proliferation, apoptosis, and metastasis.
Delta-5 desaturase (D5D) is a rate-limiting enzyme that introduces double-bonds to the delta-5 position of the n-3 and n-6 polyunsaturated fatty acid chain. Since fatty acid metabolism is a vital factor in cancer development, several recent studies have revealed that D5D activity and expression could be an independent prognostic factor in cancers. However, the mechanistic basis of D5D in cancer progression is still controversial. The classical concept believes that D5D could aggravate cancer progression via mediating arachidonic acid (AA)/prostaglandin E2 production from dihomo-γ-linolenic acid (DGLA), resulting in activation of EP receptors, inflammatory pathways, and immunosuppression. On the contrary, D5D may prevent cancer progression through activating ferroptosis, which is iron-dependent cell death. Suppression of D5D by RNA interference and small-molecule inhibitor has been identified as a promising anti-cancer strategy. Inhibition of D5D could shift DGLA peroxidation pattern from generating AA to a distinct anti-cancer free radical byproduct, 8-hydroxyoctanoic acid, resulting in activation of apoptosis pathway and simultaneously suppression of cancer cell survival, proliferation, migration, and invasion. Hence, understanding the molecular mechanisms of D5D on cancer may therefore facilitate the development of novel therapeutical applications. Given that D5D may serve as a promising target in cancer, in this review, we provide an updated summary of current knowledge on the role of D5D in cancer development and potentially useful therapeutic strategies.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA.
| | - Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| | - Yi Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| |
Collapse
|