1
|
Gao C, Cai X, Ma L, Xue T, Li C. Molecular characterization, expression analysis and function identification of TNFα in black rockfish (Sebastes schlegelii). Int J Biol Macromol 2023; 236:123912. [PMID: 36870626 DOI: 10.1016/j.ijbiomac.2023.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
TNFα, as a pro-inflammatory cytokine, plays an important role in inflammation and immune homeostasis maintaining. However, the knowledge about the immune functions of teleost TNFα against bacterial infections is still limited. In this study, the TNFα was characterized from black rockfish (Sebastes schlegelii). The bioinformatics analyses showed the evolutionary conservations in sequence and structure. The expression levels of Ss_TNFα mRNA were significantly up-regulated in the spleen and intestine after Aeromonas salmonicides and Edwardsiella tarda infections, and dramatically down-regulated in PBLs after LPS and poly I:C stimulations. Meanwhile, the extremely up-regulated expressions of other inflammatory cytokines (especially for IL-1β and IL17C) were observed in the intestine and spleen after bacterial infection and down-regulations were obtained in PBLs. The significant regulation with expression patterns of Ss_TNFα and other inflammatory cytokine mRNAs illustrated the variations of immunity in different tissues and cells of black rockfish. The regulated functions of Ss_TNFα in the up/downstream signaling pathways were preliminarily verified on the transcription and translation levels. Subsequently, in vitro knockdown of Ss_TNFα in the intestine cells of black rockfish confirmed the important immune roles of Ss_TNFα. Finally, the apoptotic analyses were conducted in PBLs and intestine cells of black rockfish. The rapid increases of the apoptotic rates were obtained in both PBLs and intestine cells after treatment with rSs_TNFα, but distinct apoptotic rates at the early and late stages of apoptosis were observed between these two types of cells. The results of apoptotic analyses suggested that Ss_TNFα could trigger apoptosis of different cells in different strategies in black rockfish. Overall, the findings in this study indicated the important roles of Ss_TNFα in the immune system of black rockfish during pathogenic infection, as well as the potential function on biomarker for monitoring the health status.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Molecular characterization, expression analysis and function identification of Pf_TNF-α and its two receptors Pf_TNFR1 and Pf_TNFR2 in yellow catfish (Pelteobagrus fulvidraco). Int J Biol Macromol 2021; 185:176-193. [PMID: 34144067 DOI: 10.1016/j.ijbiomac.2021.06.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 06/12/2021] [Indexed: 01/24/2023]
Abstract
Inflammation is a common manifestation of body immunity and mediates a cascade of cytokines. Tumor necrosis factor-α (TNF-α), as a multi-effect cytokine, plays an important role in the inflammatory response by interacting with its receptor (TNFR). In this study, Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 genes were cloned from yellow catfish (Pelteobagrus fulvidraco), and bioinformatics analyses showed that the three genes were conserved and possessed similar sequence characteristics as those of other vertebrates. The qPCR results showed that Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 mRNAs were constitutively expressed in 14 tissues and the lymphocytes of four tissues from healthy adults. The mRNA expression levels of Pf_TNF-α and Pf_TNFR1 genes were significantly up-regulated in the spleen, liver, trunk kidney, head kidney and gill after Edwardsiella ictaluri infection, while the mRNA expression of Pf_TNFR2 was significantly up-regulated in the spleen, and down-regulated in the liver and gill. In the isolated peripheral blood leukocytes (PBLs) of yellow catfish, the expression of Pf_TNF-α mRNA was notably up-regulated and the two Pf_TNFR transcripts were distinctly down-regulated after stimulation with lipopolysaccharides (LPS), peptidoglycan (PGN), polyinosinic-polycytidylic acid (Poly I:C) and phytohaemagglutinin (PHA). After stimulated by recombinant (r) Pf_sTNF protein, the mRNA expressions of various inflammatory factors genes were up-regulated in the PBLs. Meanwhile, rPf_sTNF promoted the phagocytic activity of leukocytes, whereas the activity mediated by rPf_sTNF could be inhibited by rPf_TNFR1CRD2/3 and rPf_TNFR2CRD2/3. The up-regulation of TNF-α and IL-1β mRNAs expression triggered by rPf_sTNF could be inhibited by MAPK inhibitor (VX-702) and NF-κB inhibitor (PDTC). rPf_sTNF induced the expression of FADD mRNA in PBLs and increased the apoptotic rate of PBLs, and inhibiting the NF-κB and MAPK signal pathways could enhance the apoptosis of PBLs. The results indicate that Pf_TNF-α, Pf_TNFR1 and Pf_TNFR2 play important roles in the immune response of yellow catfish to bacterial invasion.
Collapse
|
3
|
Two transcription factors PU.1a and PU.1b have different functions in the immune system of teleost ayu. Mol Immunol 2021; 133:1-13. [PMID: 33610121 DOI: 10.1016/j.molimm.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
Transcription factor PU.1 is a regulator of macrophage function, however, the specific function of PU.1 in teleost monocytes/macrophages (MO/MФ) remains unknown. We determined the cDNA sequence of two PU.1 genes from ayu (Plecoglossus altivelis; PaPU.1a and PaPU.1b). Sequence comparisons showed that PaPU.1 were most closely related to the PU.1 of rainbow smelt (Osmerus mordax). The PU.1 transcripts were mainly expressed in the spleen, and their expression was altered in various tissues upon infection with Vibrio anguillarum. PaPU.1a and PaPU.1b proteins were upregulated in MO/MФ, after infection. RNA interference was employed to knockdown PaPU.1a and PaPU.1b to investigate their function in MO/MФ. The expression of inflammatory cytokines was regulated by PaPU.1a, but not PaPU.1b, in ayu MO/MФ upon V. anguillarum infection. Both PaPU.1a and PaPU.1b knockdown lowered the phagocytic activity of MO/MФ. Furthermore, PaPU.1b knockdown attenuated MO/MФ bacterial killing capability. Our results indicate that two PaPU.1 genes differentially modulate the immune response in ayu MO/MФ against bacterial infection.
Collapse
|
4
|
Li K, Qiu H, Yan J, Shen X, Wei X, Duan M, Yang J. The involvement of TNF-α and TNF-β as proinflammatory cytokines in lymphocyte-mediated adaptive immunity of Nile tilapia by initiating apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103884. [PMID: 33045273 DOI: 10.1016/j.dci.2020.103884] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Tumor necrosis factors (TNFs) are pleiotropic cytokines with important functions in homeostasis and disease pathogenesis. Recent advances have shown that TNFs are also involved in the regulation of adaptive immune responses. However, the knowledge about how TNF participates in and regulates adaptive immune response in early vertebrates is still limited. In present study, we identified two isoforms of TNF, TNF-α and TNF-β, from Nile tilapia Oreochromis niloticus (On-TNF-α and β). After analyzing the sequence characteristics, we investigated their regulatory roles in adaptive immune response of this fish species. On-TNF-α and β are evolutionarily conserved compare with their homologs from other vertebrates. Both TNFs were distributed in a wide range of tissues in O. niloticus, and with relative higher expression level in gill. After the animals were infected by Streptococcus agalactiae, mRNA levels of On-TNF-α and TNF-β in spleen lymphocytes were significantly upregulated during the primary response stage of adaptive immunity. Meanwhile, both TNF proteins in spleen lymphocytes were also dramatically elevated during the adaptive immune stage after bacterial infection. These results indicate the potential participation of On-TNF-α and TNF-β in adaptive immune response of Nile tilapia. Furthermore, On-TNF-α and β transcripts were obviously augmented, once spleen lymphocytes were activated by T cell-specific mitogen PHA. More importantly, both recombinant On-TNF-α and β could induce the apoptosis of head-kidney leukocytes of Nile tilapia. And On-TNF-β but not On-TNF-α promoted the apoptosis by activating caspase-8 in the target cells. Altogether, our study revealed that TNF-α and TNF-β participated in the lymphocyte-mediated adaptive immune response of Nile tilapia by initiating the apoptosis, and thus shed novel perspective for the regulatory mechanism of adaptive immunity in teleost.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hong Qiu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yan
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaotong Shen
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
5
|
Cui ZW, Kong LL, Zhao F, Tan AP, Deng YT, Jiang L. Two types of TNF-α and their receptors in snakehead (Channa argus): Functions in antibacterial innate immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 104:470-477. [PMID: 32585357 DOI: 10.1016/j.fsi.2020.05.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a pluripotent mediator of pro-inflammatory and antimicrobial defense mechanisms and a regulator of lymphoid organ development. Although two types of TNF-α have been identified in several teleost species, their functions in pathogen infection remain largely unexplored, especially in pathogen clearance. Herein, we cloned and characterized two types of TNF-α, termed shTNF-α1 and shTNF-α2, and their receptors, shTNFR1 and shTNFR2, from snakehead (Channa argus). These genes were constitutively expressed in all tested tissues, and were induced by Aeromonas schubertii and Nocardia seriolae in head kidney and spleen in vivo, and by lipoteichoic acid (LTA), lipopolysaccharides (LPS), and Polyinosinic-polycytidylic acid [Poly (I:C)] in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shTNF-α1 and shTNF-α2 upregulated the expression of endogenous shTNF-α1, shTNF-α2, shTNFR1, and shTNFR2, and enhanced intracellular bactericidal activity, with shTNF-α1 having a greater effect than shTNF-α2. These findings suggest important roles of fish TNFα1, TNFα2, and their receptors in bacterial infection and pathogen clearance, and provide a new insight into their function in antibacterial innate immunity.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lu-Lu Kong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| | - Ai-Ping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yu-Ting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
6
|
Fish TNF and TNF receptors. SCIENCE CHINA-LIFE SCIENCES 2020; 64:196-220. [DOI: 10.1007/s11427-020-1712-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
|
7
|
Miccoli A, Saraceni PR, Scapigliati G. Vaccines and immune protection of principal Mediterranean marine fish species. FISH & SHELLFISH IMMUNOLOGY 2019; 94:800-809. [PMID: 31580938 DOI: 10.1016/j.fsi.2019.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This review describes and summarizes the knowledge on established and experimental vaccines developed against viral and bacterial pathologies affecting the most important farmed marine finfish species present in the Mediterranean area, namely European seabass Dicentrarchus labrax, sea bream Sparus aurata, turbot Psetta maxima and meagre Argyrosomus regius. The diseases that have been recorded in seabass, sea bream and meagre are caused by bacteria Vibrio anguillarum, Photobacterium damselae, Tenacibaculum maritimum as well as by viruses such as Viral Encephalopathy and Retinopathy/Viral Nervous Necrosis and Lymphocystic disease. The main pathologies of turbot are instead bacteriosis provoked by Tenacibaculum maritimum, Aeromonas sp. and Vibrio anguillarum, and virosis by viral hemorrhagic septicaemia virus. Some vaccines have been optimized and are now regularly available for the majority of the above-mentioned pathogens. A measurable immune protection has been conferred principally against Vibrio anguillarum, Photobacterium damselae sub. piscicida and VER/VNN.
Collapse
Affiliation(s)
- A Miccoli
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - P R Saraceni
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy
| | - G Scapigliati
- Department for Innovative Biology, Agro-industry and Forestry, University of Tuscia. Largo Dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
8
|
Hong S, Wang TY, Secombes CJ, Wang T. Different origins of paralogues of salmonid TNR1 and TNFR2: Characterisation and expression analysis of four TNF receptor genes in rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103403. [PMID: 31150658 DOI: 10.1016/j.dci.2019.103403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Mammalian TNFR1 and TNFR2 bind TNFα and TNFβ, and provide key communication signals to a variety of cell types during development and immune responses that are crucial for cell survival, proliferation and apoptosis. In teleost fish TNFβ is absent but TNFα has been expanded by the third whole genome duplication (3R WGD) and again by a 4R WGD in some lineages, leading to the four TNFα paralogues known in salmonids. Two paralogues for each of TNFR1 and TNFR2 have been cloned in rainbow trout in this study and are present in other salmonid genomes. Whilst the TNFR2 paralogues were generated via the 4R salmonid WGD, the TNFR1 paralogues arose from a local en bloc duplication. Functional diversification of TNFR paralogues was evidenced by differential gene expression and modulation, upstream ATGs affecting translation, ATTTA motifs in the 3'-UTR regulating mRNA stability, and post-translational modification by N-glycosylation. Trout TNFR are highly expressed in immune tissues/organs, and other tissues, in a gene- and tissue-specific manner. Furthermore, their expression is differentially modulated by PAMPs and cytokines in a cell type- and stimulant-specific manner. Such findings suggest an important role of the TNF/TNFR axis in the immune response and other physiological processes in fish.
Collapse
Affiliation(s)
- Suhee Hong
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Ting-Yu Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
9
|
An insight into piscidins: The discovery, modulation and bioactivity of greater amberjack, Seriola dumerili, piscidin. Mol Immunol 2019; 114:378-388. [PMID: 31450183 DOI: 10.1016/j.molimm.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 01/19/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in the innate immune response of vertebrates by creating a hostile environment for any invading pathogens. Piscidins are potent teleost specific AMPs, which have a broad spectrum activity. We have identified a novel piscidin active peptide, in the greater amberjack, Seriola dumerili, that consists of 25 aa, which forms an amphipathic helix with distinct hydrophobic and positively charged regions. Following homology and phylogenetic analysis the greater amberjack piscidin was deemed to belong to the group 3 family of piscidins. Piscidin was expressed constitutively at immune sites, with transcript level highest in the spleen and gut, at an intermediate level in the gills and lowest in the head kidney. Following in vivo stimulation with PAMPs (poly I:C, LPS and flagellin) piscidin transcript level increased in gills in response to flagellin, in gut and spleen in response to poly I:C, and in head kidney in response to poly I:C, LPS and flagellin. Head kidney and spleen cells were then isolated from greater amberjack and incubated with each of the PAMPs for 4, 12 and 24 h. Piscidin expression was unchanged at 4 and 12 h post PAMP stimulation in head kidney cells but at 24 h transcript level was markedly upregulated compared to control (unstimulated) cells, especially with the bacterial PAMPs. In contrast, spleen cells upregulated piscidin expression by 4 h post stimulation with poly I:C and flagellin, and remained upregulated to 24 h with flagellin exposure, but had returned to baseline levels by 12 h using poly I:C. To determine if piscidin expression could be modulated by diet, greater amberjack were fed diets supplemented with MOS and cMOS for 30 days when transcript level was determined. It was found that MOS supplemented diets increased expression in the spleen, cMOS supplemented diets upregulated transcript levels in the gills and head kidney, whilst a diet containing both MOS and cMOS upregulated transcript in the gut, when compared to fish fed the control diet. Finally, a synthetic greater amberjack piscidin was produced and showed bacteriostatic activity against a number of bacterial strains, including both Gram positive and Gram negative fish pathogens.
Collapse
|
10
|
Milne DJ, Campoverde C, Andree KB, Chen X, Zou J, Secombes CJ. The discovery and comparative expression analysis of three distinct type I interferons in the perciform fish, meagre (Argyrosomus regius). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:123-132. [PMID: 29425805 DOI: 10.1016/j.dci.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Type I interferons (IFN) play an important role in anti-viral responses. In teleost fish multiple genes exist, that are classified by group/subgroup. That multiple subgroups are present in Acanthopterygian fish has only become apparent recently, and 3 subgroups are now known to be expressed, including a new subgroup termed IFNh. However, the potential to express multiple IFN subgroups and their interplay is not well defined. Hence this study aims to clarify the situation and undertook the first in-depth analysis into the nature and expression of IFNc, IFNd and IFNh in the perciform fish, meagre. Constitutive expression was analysed initially during larval development and in adult tissues (gills, mid-gut, head kidney, spleen). During early ontogeny IFNc was the highest expressed IFN, and this was also the case in adult tissues with the exception of gills where IFNd was highest. However, comparison between tissues for individual isoforms showed that spleen had high transcript levels of all three IFNs, IFNd/IFNh were also highly expressed in gills. The expression of each sub-group was increased significantly in the four tissues following injection of poly I:C, however, this increase was only seen in the mid-gut for IFNh. Following in vitro stimulation with poly I:C again all three isoforms were upregulated, although with differences in kinetics and the cell source used. For example, early induction was seen for IFNc/IFNh in gill cells, IFNd/IFNh in splenocytes and all three isoforms in head kidney cells. Induction was sustained in splenocytes and head kidney cells, but in gut cells only a late induction was seen. These results demonstrate a complex pattern of regulation between the different IFN isoforms present in meagre and highlights potential sub-functionalisation of these IFN subgroups during perciform anti-viral responses.
Collapse
Affiliation(s)
- D J Milne
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - C Campoverde
- IRTA, Centro de San Carlos de la Rápita, San Carlos de la Rápita, 43540 Tarragona, Spain
| | - K B Andree
- IRTA, Centro de San Carlos de la Rápita, San Carlos de la Rápita, 43540 Tarragona, Spain
| | - X Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - J Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - C J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
11
|
Veenstra KA, Wangkahart E, Wang T, Tubbs L, Ben Arous J, Secombes CJ. Rainbow trout (Oncorhynchus mykiss) adipose tissue undergoes major changes in immune gene expression following bacterial infection or stimulation with pro-inflammatory molecules. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:83-94. [PMID: 29126991 DOI: 10.1016/j.dci.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
In mammals, visceral adipose is increasingly seen as playing an important role in immune function with numerous pro-inflammatory, anti-inflammatory and immune-modulating proteins and peptides being identified in adipocytes. Adipose is also now known as a tissue that has an important role in the regulation of peritoneal immune responses. Despite this, only lately has consideration been given to visceral adipose as an important immune tissue in fish, especially in the context of intraperitoneal vaccination. The present study demonstrates that fish visceral adipose is capable of expressing a large range of immune molecules in response to stimulation with a live bacterium (A. salmonicida), a bacterial PAMP (Y. ruckeri flagellin), and the pro-inflammatory cytokines IL-1β, TNF-α3 and IFN-γ. Following infection and stimulation with flagellin and IL-1β a large upregulation of pro-inflammatory and antimicrobial molecules was seen, with a high degree of overlap. TNF-α treatment affected relatively few genes and the effects were more modest. IFN-γ had the smallest impact on adipose but IFN-γ inducible genes showed some of the largest effects. Overall, it is clear that adipose tissue should be considered an active immune site in fish, capable of participating in and influencing immune responses.
Collapse
Affiliation(s)
- Kimberly A Veenstra
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK; Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - Lincoln Tubbs
- Elanco Canada Ltd., Aquaculture Research and Development, P.O. Box 17, Victoria, P.E., C0A 2G0, Canada.
| | | | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|