1
|
Wang J, Lou Y, Wang S, Zhang Z, You J, Zhu Y, Yao Y, Hao Y, Liu P, Xu LX. IFNγ at the early stage induced after cryo-thermal therapy maintains CD4 + Th1-prone differentiation, leading to long-term antitumor immunity. Front Immunol 2024; 15:1345046. [PMID: 38827732 PMCID: PMC11140566 DOI: 10.3389/fimmu.2024.1345046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Recently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase. Methods To understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated. Results IFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1β generation, and thereby further amplifying Th1 response. Discussion Our finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X. Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Zhang MN, Yuan YL, Ao SH. Advances in the study of myeloid-derived suppressor cells in infectious lung diseases. Front Immunol 2023; 14:1125737. [PMID: 37063919 PMCID: PMC10090681 DOI: 10.3389/fimmu.2023.1125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells capable of inhibiting T-cell responses. MDSCs have a crucial role in the regulation of the immune response of the body to pathogens, especially in inflammatory response and pathogenesis during anti-infection. Pathogens such as bacteria and viruses use MDSCs as their infectious targets, and even some pathogens may exploit the inhibitory activity of MDSCs to enhance pathogen persistence and chronic infection of the host. Recent researches have revealed the pathogenic significance of MDSCs in pathogens such as bacteria and viruses, despite the fact that the majority of studies on MDSCs have focused on tumor immune evasion. With the increased prevalence of viral respiratory infections, the resurgence of classical tuberculosis, and the advent of medication resistance in common bacterial pneumonia, research on MDSCs in these illnesses is intensifying. The purpose of this work is to provide new avenues for treatment approaches to pulmonary infectious disorders by outlining the mechanism of action of MDSCs as a biomarker and therapeutic target in pulmonary infectious diseases.
Collapse
Affiliation(s)
- Meng-Nan Zhang
- College of Integrated Chinese and Western Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-Lai Yuan
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Su-Hua Ao
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Su-Hua Ao,
| |
Collapse
|
3
|
Tateosian NL, Morelli MP, Pellegrini JM, García VE. Beyond the Clinic: The Activation of Diverse Cellular and Humoral Factors Shapes the Immunological Status of Patients with Active Tuberculosis. Int J Mol Sci 2023; 24:5033. [PMID: 36902461 PMCID: PMC10002939 DOI: 10.3390/ijms24055033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), has killed nearly one billion people in the last two centuries. Nowadays, TB remains a major global health problem, ranking among the thirteen leading causes of death worldwide. Human TB infection spans different levels of stages: incipient, subclinical, latent and active TB, all of them with varying symptoms, microbiological characteristics, immune responses and pathologies profiles. After infection, Mtb interacts with diverse cells of both innate and adaptive immune compartments, playing a crucial role in the modulation and development of the pathology. Underlying TB clinical manifestations, individual immunological profiles can be identified in patients with active TB according to the strength of their immune responses to Mtb infection, defining diverse endotypes. Those different endotypes are regulated by a complex interaction of the patient's cellular metabolism, genetic background, epigenetics, and gene transcriptional regulation. Here, we review immunological categorizations of TB patients based on the activation of different cellular populations (both myeloid and lymphocytic subsets) and humoral mediators (such as cytokines and lipid mediators). The analysis of the participating factors that operate during active Mtb infection shaping the immunological status or immune endotypes of TB patients could contribute to the development of Host Directed Therapy.
Collapse
Affiliation(s)
- Nancy Liliana Tateosian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - María Paula Morelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Joaquín Miguel Pellegrini
- Centre d’Immunologie de Marseille Luminy, INSERM, CNRS, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, Case 906, CEDEX 09, 13288 Marseille, France
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
4
|
Hu H, Xiang Y, Li T, Yu QY, Gu LX, Liao XH, Zhang TC. Induction of M‑MDSCs with IL6/GM‑CSF from adherence monocytes and inhibition by WP1066. Exp Ther Med 2022; 24:487. [PMID: 35761803 PMCID: PMC9214597 DOI: 10.3892/etm.2022.11414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
Peripheral blood monocytes acquire the phenotype of myeloid-derived suppressor cells (MDSCs) by induction of cytokine or co-culture with cancer cells and are widely used to model MDSCs for in vitro studies. However, the simplest method of plastic adhesive sorting is poorly described as the purity of monocyte resulting from this method is the lowest compared with flow cytometry cell-sorting and magnetic beads sorting. Therefore, the present study aimed at investigating the effect of the plastic adhesive monocyte isolation techniques on the resulting MDSCs phenotype. Monocytes were allowed to adhere for 1 h and cultured with IL6 and granulocyte-macrophage colony-stimulating factors (GM-CSF) for 7 days. Plastic adhesion sorting resulted in early low monocyte yield and purity, but high purity of MDSCs was obtained by refreshing the induction medium. The resulting MDSCs were the major subpopulation of CD33+CD11b+CD14+CD15-human leukocyte antigen (HLA)-/low cells and provided the potent capacity to suppress T cell proliferation and cytokine IFN-γ production. Moreover, the induced MDSCs were inhibited by STAT3 inhibitor WP1066, resulting in downregulation of phosphorylated-STAT3 and PD-L1 expression and upregulation of apoptosis respectively. In conclusion, the present study described the generation of monocytic MDSCs from adherence monocytes and the inhibition of STAT3 inhibitor WP1066 on the induced MDSCs. The present study contributed to the development of a new clinical drug, WP1066 targeting MDSC.
Collapse
Affiliation(s)
- Hao Hu
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ting Li
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qi-Ying Yu
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Li-Xing Gu
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xing-Hua Liao
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Tong-Cun Zhang
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
5
|
Karasarides M, Cogdill AP, Robbins PB, Bowden M, Burton EM, Butterfield LH, Cesano A, Hammer C, Haymaker CL, Horak CE, McGee HM, Monette A, Rudqvist NP, Spencer CN, Sweis RF, Vincent BG, Wennerberg E, Yuan J, Zappasodi R, Lucey VMH, Wells DK, LaVallee T. Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunol Res 2022; 10:372-383. [PMID: 35362046 PMCID: PMC9381103 DOI: 10.1158/2326-6066.cir-20-0586] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 01/29/2023]
Abstract
Immune-checkpoint inhibitors (ICI), although revolutionary in improving long-term survival outcomes, are mostly effective in patients with immune-responsive tumors. Most patients with cancer either do not respond to ICIs at all or experience disease progression after an initial period of response. Treatment resistance to ICIs remains a major challenge and defines the biggest unmet medical need in oncology worldwide. In a collaborative workshop, thought leaders from academic, biopharma, and nonprofit sectors convened to outline a resistance framework to support and guide future immune-resistance research. Here, we explore the initial part of our effort by collating seminal discoveries through the lens of known biological processes. We highlight eight biological processes and refer to them as immune resistance nodes. We examine the seminal discoveries that define each immune resistance node and pose critical questions, which, if answered, would greatly expand our notion of immune resistance. Ultimately, the expansion and application of this work calls for the integration of multiomic high-dimensional analyses from patient-level data to produce a map of resistance phenotypes that can be utilized to guide effective drug development and improved patient outcomes.
Collapse
Affiliation(s)
- Maria Karasarides
- Worldwide Medical Oncology, Bristol Myers Squibb, Princeton, New Jersey.,Corresponding Authors: Maria Karasarides, Worldwide Medical Oncology, Bristol-Myers Squibb, Boston, MA 021273401. E-mail: ; and Theresa LaVallee, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129. Phone: 628-899-7593; E-mail:
| | - Alexandria P. Cogdill
- Immunai, New York, New York.,Department of Immunology, The University of Texas MD Anderson, Houston, Texas
| | | | - Michaela Bowden
- Translational Medicine, Bristol Myers Squibb, Cambridge, Massachusetts
| | - Elizabeth M. Burton
- Department of Surgical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Lisa H. Butterfield
- Parker Institute for Cancer Immunotherapy, San Francisco, California.,Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California
| | | | - Christian Hammer
- Department of Cancer Immunology, Genentech, South San Francisco, California.,Department of Human Genetics, Genentech, South San Francisco, California
| | - Cara L. Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine E. Horak
- Global Drug Development, Bristol Myers Squibb, Lawrenceville, New Jersey
| | - Heather M. McGee
- Department of Radiation Oncology, City of Hope National Medical Center and Department of Immuno-Oncology, Beckmann Research Institute, City of Hope, Duarte, California
| | - Anne Monette
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | | | - Christine N. Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Randy F. Sweis
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois.,Committee on Immunology, University of Chicago, Chicago, Illinois.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | | | - Jianda Yuan
- Translational Oncology, Early Oncology Development Department, Merck Research Laboratories, Rahway, New Jersey
| | - Roberta Zappasodi
- Weill Cornell Medicine, New York, New York.,Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Daniel K. Wells
- Immunai, New York, New York.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Theresa LaVallee
- Parker Institute for Cancer Immunotherapy, San Francisco, California.,Corresponding Authors: Maria Karasarides, Worldwide Medical Oncology, Bristol-Myers Squibb, Boston, MA 021273401. E-mail: ; and Theresa LaVallee, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129. Phone: 628-899-7593; E-mail:
| |
Collapse
|
6
|
Amiano NO, Pellegrini JM, Morelli MP, Martinena C, Rolandelli A, Castello FA, Casco N, Ciallella LM, de Casado GC, Armitano R, Stupka J, Gallego C, Palmero DJ, García VE, Tateosian NL. Circulating Monocyte-Like Myeloid Derived Suppressor Cells and CD16 Positive Monocytes Correlate With Immunological Responsiveness of Tuberculosis Patients. Front Cell Infect Microbiol 2022; 12:841741. [PMID: 35360105 PMCID: PMC8964076 DOI: 10.3389/fcimb.2022.841741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
Alterations of myeloid cell populations have been reported in patients with tuberculosis (TB). In this work, we studied the relationship between myeloid-derived suppressor cells (MDSC) and monocytes subsets with the immunological responsiveness of TB patients. Individuals with active TB were classified as low responders (LR-TB) or high responders (HR-TB) according to their T cell responses against a cell lysate of Mycobacterium tuberculosis (Mtb-Ag). Thus, LR-TB, individuals with severe disease, display a weaker immune response to Mtb compare to HR-TB, subjects with strong immunity against the bacteria. We observed that LR-TB presented higher percentages of CD16 positive monocytes as compared to HR-TB and healthy donors. Moreover, monocyte-like (M-MDSC) and polymorphonuclear-like (PMN-MDSC) MDSC were increased in patients and the proportion of M-MDSC inversely correlated with IFN-γ levels released after Mtb-Ag stimulation in HR-TB. We also found that LR-TB displayed the highest percentages of circulating M-MDSC. These results demonstrate that CD16 positive monocytes and M-MDSC frequencies could be used as another immunological classification parameter. Interestingly, in LR-TB, frequencies of CD16 positive monocytes and M-MDSC were restored after only three weeks of anti-TB treatment. Together, our findings show a link between the immunological status of TB patients and the levels of different circulating myeloid cell populations.
Collapse
Affiliation(s)
- Nicolás O. Amiano
- Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Joaquín M. Pellegrini
- Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María P. Morelli
- Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Camila Martinena
- Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Agustín Rolandelli
- Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Florencia A. Castello
- Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás Casco
- División Tisioneumonología, Hospital F.J. Muñiz, Buenos Aires, Argentina
| | | | | | - Rita Armitano
- Hospital General de Agudos Parmenio Piñero, Buenos Aires, Argentina
| | - Juan Stupka
- Hospital General de Agudos Parmenio Piñero, Buenos Aires, Argentina
| | - Claudio Gallego
- Hospital General de Agudos Parmenio Piñero, Buenos Aires, Argentina
| | - Domingo J. Palmero
- División Tisioneumonología, Hospital F.J. Muñiz, Buenos Aires, Argentina
| | - Verónica E. García
- Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nancy L. Tateosian
- Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- *Correspondence: Nancy L. Tateosian,
| |
Collapse
|
7
|
Zhang S, Li X, Zhu L, Ming S, Wang H, Xie J, Ren L, Huang J, Liang D, Xiong L, Wang Y, Zhang D, Gong S, Wu Y, Geng L. CD163 + macrophages suppress T cell response by producing TGF-β in pediatric colorectal polyps. Int Immunopharmacol 2021; 96:107644. [PMID: 33878617 DOI: 10.1016/j.intimp.2021.107644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
The local immune response plays an important role in the pathogenesis of colorectal carcinoma. Patients with colorectal polyps are at increased risk of colorectal cancer. However, the immunoregulation of early-stage colorectal polyps remain unknown. In the study, 202 biopsy samples from 80 pediatric patients with colorectal polyps and from 42 normal controls were collected. We found that the number of CD4+, CD8+T cells and CD19+B cells were reduced, whereas CD68+macrophages (Mϕ) were increased in colorectal polyps compared to the distal normal tissue from the same patients and the tissue from healthy donors. The frequency of Mϕwas negatively correlated with the number of CD4+ and CD8+T cells but not CD19+B cells in colorectal polyps. We further identified that CD163 was highly expressed on Mϕϕ from colorectal polyps compared to those from normal controls. Furthermore, real-time PCR revealed that TGF-β, but not IL-10 and IL-4, was increased in colorectal polyps. Immunofluorescence and flow cytometry showed that TGF-β was predominantly produced by CD163+Mϕ. In vitro experiments demonstrated that the supernatant from cultured polyps induced CD163 expression and TGF-β production in blood-derived Mϕ. A co-culture experiment revealed that purified Mϕ from colorectal polyps suppressed T cell proliferation. Based on these results, we hypothesized that abundant CD163+Mϕ may promote the progression of colorectal polyps by inhibiting the local T cell response through TGF-β production.
Collapse
Affiliation(s)
- Shunxian Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaoqin Li
- Department of Gastroenterology, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Li Zhu
- Department of Gastroenterology, Children's Hospital of Guiyang, Guiyang 550003, China
| | - Siqi Ming
- Center for Infection and Immunity, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jing Huang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Defeng Liang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuesheng Wang
- Department of Gastroenterology, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Dan Zhang
- Department of Gastroenterology, Children's Hospital of Guiyang, Guiyang 550003, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Yongjian Wu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China; Center for Infection and Immunity, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China.
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
8
|
Liu L, Gong Y, Zhang Q, Cai P, Feng L. Prognostic Roles of Blood Inflammatory Markers in Hepatocellular Carcinoma Patients Taking Sorafenib. A Systematic Review and Meta-Analysis. Front Oncol 2020; 9:1557. [PMID: 32064238 PMCID: PMC7000550 DOI: 10.3389/fonc.2019.01557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: The purpose of this meta-analysis is to investigate the effectiveness of the prognostic roles of blood inflammatory markers in hepatocellular carcinoma (HCC) patients receiving sorafenib. Methods: We carried out a comprehensive literature search in four databases. Study endpoints, hazard ratios (HRs) and the associated 95% confidence intervals (CI) for clinical outcomes, which were to assess therapeutic efficacy, were extracted. This meta-analysis was conducted by Review Manager 5.3. Results: We summarized the available evidence from 18 studies with a total of 2,745 cases. The pooled results showed that the synthesized HR favored patients with low pretreatment NLR (neutrophil-to-lymphocyte ratio), which also indicated that HCC patients with a lower baseline NLR may have a better response to sorafenib than those with higher NLR (HR = 1.76, 95% CI [1.44, 2.15], P < 0.00001, I2 = 68%). Significance was also observed for the prognostic function of the PLR (platelet-to-lymphocyte ratio) of HCC patients treated with sorafenib (HR = 1.49, 95% CI [1.16, 1.93], P = 0.002, I2 = 0%, P = 0.65). The subgroup analysis revealed that different gene backgrounds play a prominent role in the source of heterogeneity. Interestingly, the predictive effect on OS (overall survival) was more pronounced as the NLR cutoff value increased. Notably, a significant predictive effect of NLR on the clinical outcome was detected in HCC patients treated with sorafenib compared to those treated with tivantinib. Conclusion: In conclusion, the present study reported promising predictive biomarkers for HCC patients and notably indicated that HCC patients with a lower baseline NLR and PLR may have a better response to sorafenib than those with higher ones. Further large-scale prospective studies are required to determine the optimal NLR and PLR cutoff values, which are important for identifying the dominant populations for sorafenib treatment.
Collapse
Affiliation(s)
- Lixing Liu
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Gong
- The General Hospital of Shenyang Military Region, Shenyang, China
| | - Qinglin Zhang
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Panpan Cai
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Feng
- Department of Chinese Medicine, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Agrawal N, Streata I, Pei G, Weiner J, Kotze L, Bandermann S, Lozza L, Walzl G, du Plessis N, Ioana M, Kaufmann SHE, Dorhoi A. Human Monocytic Suppressive Cells Promote Replication of Mycobacterium tuberculosis and Alter Stability of in vitro Generated Granulomas. Front Immunol 2018; 9:2417. [PMID: 30405617 PMCID: PMC6205994 DOI: 10.3389/fimmu.2018.02417] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) has tremendous public health relevance. It most frequently affects the lung and is characterized by the development of unique tissue lesions, termed granulomas. These lesions encompass various immune populations, with macrophages being most extensively investigated. Myeloid derived suppressor cells (MDSCs) have been recently identified in TB patients, both in the circulation and at the site of infection, however their interactions with Mycobacterium tuberculosis (Mtb) and their impact on granulomas remain undefined. We generated human monocytic MDSCs and observed that their suppressive capacities are retained upon Mtb infection. We employed an in vitro granuloma model, which mimics human TB lesions to some extent, with the aim of analyzing the roles of MDSCs within granulomas. MDSCs altered the structure of and affected bacterial containment within granuloma-like structures. These effects were partly controlled through highly abundant secreted IL-10. Compared to macrophages, MDSCs activated primarily the NF-κB and MAPK pathways and the latter largely contributed to the release of IL-10 and replication of bacteria within in vitro generated granulomas. Moreover, MDSCs upregulated PD-L1 and suppressed proliferation of lymphocytes, albeit with negligible effects on Mtb replication. Further comprehensive characterization of MDSCs in TB will contribute to a better understanding of disease pathogenesis and facilitate the design of novel immune-based interventions for this deadly infection.
Collapse
Affiliation(s)
- Neha Agrawal
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Ioana Streata
- University of Medicine and Pharmacy Craiova, Human Genomics Laboratory, Craiova, Romania
| | - Gang Pei
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - January Weiner
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Leigh Kotze
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| | - Silke Bandermann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Laura Lozza
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| | - Nelita du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| | - Mihai Ioana
- University of Medicine and Pharmacy Craiova, Human Genomics Laboratory, Craiova, Romania
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Anca Dorhoi
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany.,Institute of Immunology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|