1
|
Bi Z, Wang W, Gu S, Zhou Y, Wu Z, Bao W, Wang H. TRIM8 inhibits porcine epidemic diarrhoea virus replication by targeting and ubiquitinately degrading the nucleocapsid protein. Vet Res 2025; 56:14. [PMID: 39819815 PMCID: PMC11740423 DOI: 10.1186/s13567-024-01443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) is an enteric pathogen that causes acute diarrhoea, dehydration and high mortality rates in suckling pigs. Tripartite motif 8 (TRIM8) has been shown to play multiple roles in the host's defence against viral infections. However, the functions of TRIM8 in regulating PEDV infection are still not well understood. In our study, we found a significant upregulation of TRIM8 following PEDV infection. We created TRIM8 knockout and overexpression cell lines and discovered that TRIM8 can inhibit PEDV replication within host cells. Co-immunoprecipitation assays revealed that TRIM8 directly interacts with the nucleocapsid protein (N) of PEDV, specifically within the coiled-coil structural domain of TRIM8. Furthermore, TRIM8 was shown to reduce the expression of the PEDV N protein in a dose-dependent manner. Mechanistically, TRIM8 inhibits the expression of PEDV N through K48-linked ubiquitin proteasome degradation. Transcriptomics analysis revealed that TRIM8 facilitates the expression of genes associated with several pathways, including the IL-17 signalling pathway, chemokine signalling pathway, and cytokine-cytokine receptor interaction. This suggests that TRIM8 plays a crucial role in boosting antiviral immune responses against PEDV infection. Our findings provide new insights into the functions and mechanisms of TRIM8 in regulating PEDV infection and highlight its potential as a molecular target for the prevention and control of this virus.
Collapse
Affiliation(s)
- Zhenbin Bi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shanshen Gu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
2
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Li Y, Li X, Han Z, Yang R, Zhou W, Peng Y, He J, Liu S. Population structure and selective signature analysis of local sheep breeds in Xinjiang, China based on high-density SNP chip. Sci Rep 2024; 14:28133. [PMID: 39548146 PMCID: PMC11568293 DOI: 10.1038/s41598-024-76573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The frigid and droughty climate of Xinjiang in China has given rise to unique indigenous sheep breeds with robust adaptability and resistance. To investigate the genetic mechanism of adaptability of Xinjiang sheep to the local extreme environment, we conducted population genetic structure analyses for three native Xinjiang sheep breeds: Altay sheep (ALT), Bashbay Sheep (BSBC), and Duolang sheep (DLC), as well as two foreign sheep breeds: Suffolk and Dorset, using the Ovine Infinium HD SNP BeadChip(680 K). Our findings revealed distinct genetic and evolutionary histories between Xinjiang and foreign sheep breeds. Principal Component Analysis (PCA) and phylogenetic tree effectively differentiate these five sheep breeds based on their geographical origins, and the domestication level of Xinjiang sheep is comparatively lower than that of foreign sheep breeds. Furthermore, by utilizing three selective signature methods, namely Fixation Index (Fst), Cross Population Extended Haplotype Homozygosity Test (XP-EHH), and Nucleotide Diversity (π), we have successfully identified 22 potential candidate genes. Among these genes, there are TBXT, PDGFD, and VEGFA, which are closely related to tail type and lipid metabolism; VIL1, SLC11A1, and ZBTB46, which are associated with immune function; and candidate genes such as BNC1, HDAC1, and BMP5, which impact sheep reproductive traits. This study establishes a foundation for conserving and utilizing local sheep germplasm resources in Xinjiang and provides molecular insights into the genetic mechanisms governing sheep adaptation to extreme cold and arid environments.
Collapse
Affiliation(s)
- Yanhao Li
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Ruizhi Yang
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
- College of Life Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Yuwei Peng
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China
| | - Jianzhong He
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China.
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, 843300, Xinjiang, China.
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, xinjiang, China.
| |
Collapse
|
4
|
Theotoki EI, Kakoulidis P, Velentzas AD, Nikolakopoulos KS, Angelis NV, Tsitsilonis OE, Anastasiadou E, Stravopodis DJ. TRBP2, a Major Component of the RNAi Machinery, Is Subjected to Cell Cycle-Dependent Regulation in Human Cancer Cells of Diverse Tissue Origin. Cancers (Basel) 2024; 16:3701. [PMID: 39518139 PMCID: PMC11545598 DOI: 10.3390/cancers16213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transactivation Response Element RNA-binding Protein (TRBP2) is a double-stranded RNA-binding protein widely known for its critical contribution to RNA interference (RNAi), a conserved mechanism of gene-expression regulation mediated through small non-coding RNA moieties (ncRNAs). Nevertheless, TRBP2 has also proved to be involved in other molecular pathways and biological processes, such as cell growth, organism development, spermatogenesis, and stress response. Mutations or aberrant expression of TRBP2 have been previously associated with diverse human pathologies, including Alzheimer's disease, cardiomyopathy, and cancer, with TRBP2 playing an essential role(s) in proliferation, invasion, and metastasis of tumor cells. METHODS Hence, the present study aims to investigate, via employment of advanced flow cytometry, immunofluorescence, cell transgenesis and bioinformatics technologies, new, still elusive, functions and properties of TRBP2, particularly regarding its cell cycle-specific control during cancer cell division. RESULTS We have identified a novel, mitosis-dependent regulation of TRBP2 protein expression, as clearly evidenced by the lack of its immunofluorescence-facilitated detection during mitotic phases, in several human cancer cell lines of different tissue origin. Notably, the obtained TRBP2-downregulation patterns seem to derive from molecular mechanisms that act independently of oncogenic activities (e.g., malignancy grade), metastatic capacities (e.g., low versus high), and mutational signatures (e.g., p53-/- or p53ΔΥ126) of cancer cells. CONCLUSIONS Taken together, we herein propose that TRBP2 serves as a novel cell cycle-dependent regulator, likely exerting mitosis-suppression functions, and, thus, its mitosis-specific downregulation can hold strong promise to be exploited for the efficient and successful prognosis, diagnosis, and (radio-/chemo-)therapy of diverse human malignancies, in the clinic.
Collapse
Affiliation(s)
- Eleni I. Theotoki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
| | - Panos Kakoulidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Informatics and Telecommunications, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Konstantinos-Stylianos Nikolakopoulos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Nikolaos V. Angelis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ourania E. Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Health Science, Higher Colleges of Technology (HCT), Academic City Campus, Dubai 17155, United Arab Emirates
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| |
Collapse
|
5
|
Zhong N, Wang C, Weng G, Ling T, Xu L. ZNF205 positively regulates RLR antiviral signaling by targeting RIG-I. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1582-1591. [PMID: 37580950 PMCID: PMC10577479 DOI: 10.3724/abbs.2023136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/19/2023] [Indexed: 08/16/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a cytosolic viral RNA receptor. Upon viral infection, the protein recognizes and then recruits adapter protein mitochondrial antiviral signaling (MAVS) protein, initiating the production of interferons and proinflammatory cytokines to establish an antiviral state. In the present study, we identify zinc finger protein 205 (ZNF205) which associates with RIG-I and promotes the Sendai virus (SeV)-induced antiviral innate immune response. Overexpression of ZNF205 facilitates interferon-beta (IFN-β) introduction, whereas ZNF205 deficiency restricts its introduction. Mechanistically, the C-terminal zinc finger domain of ZNF205 interacts with the N-terminal tandem caspase recruitment domains (CARDs) of RIG-I; this interaction markedly promotes K63 ubiquitin-linked polyubiquitination of RIG-I, which is crucial for RIG-I activation. Thus, our results demonstrate that ZNF205 is a positive regulator of the RIG-I-mediated innate antiviral immune signaling pathway.
Collapse
Affiliation(s)
- Ni Zhong
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| | - Chen Wang
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| | - Guangxiu Weng
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| | - Ting Ling
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| | - Liangguo Xu
- />College of Life ScienceJiangxi Normal UniversityNanchang330022China
| |
Collapse
|
6
|
Huang JP, Yang YX, Chen T, Wang DD, Li J, Xu LG. TRAF7 negatively regulates the RLR signaling pathway by facilitating the K48-linked ubiquitination of TBK1. Virol Sin 2023; 38:419-428. [PMID: 37086853 PMCID: PMC10311266 DOI: 10.1016/j.virs.2023.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/17/2023] [Indexed: 04/24/2023] Open
Abstract
TANK-binding kinase 1 (TBK1) is a nodal protein involved in multiple signal transduction pathways. In RNA virus-mediated innate immunity, TBK1 is recruited to the prion-like platform formed by MAVS and subsequently activates the transcription factors IRF3/7 and NF-κB to produce type I interferon (IFN) and proinflammatory cytokines for the signaling cascade. In this study, TRAF7 was identified as a negative regulator of innate immune signaling. TRAF7 interacts with TBK1 and promotes K48-linked polyubiquitination and degradation of TBK1 through its RING domain, impairing the activation of IRF3 and the production of IFN-β. In addition, we found that the conserved cysteine residues at position 131 of TRAF7 are necessary for its function toward TBK1. Knockout of TRAF7 could facilitate the activation of IRF3 and increase the transcript levels of downstream antiviral genes. These data suggest that TRAF7 negatively regulates innate antiviral immunity by promoting the K48-linked ubiquitination of TBK1.
Collapse
Affiliation(s)
- Jing-Ping Huang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Ya-Xian Yang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Tian Chen
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Dan-Dan Wang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Jing Li
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Liang-Guo Xu
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
7
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
8
|
Huang JP, Li J, Xiao YP, Xu LG. BAG6 negatively regulates the RLR signaling pathway by targeting VISA/MAVS. Front Immunol 2022; 13:972184. [PMID: 36045679 PMCID: PMC9420869 DOI: 10.3389/fimmu.2022.972184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
The virus-induced signaling adaptor protein VISA (also known as MAVS, ISP-1, Cardif) is a critical adaptor protein in the innate immune response to RNA virus infection. Upon viral infection, VISA self-aggregates to form a sizeable prion-like complex and recruits downstream signal components for signal transduction. Here, we discover that BAG6 (BCL2-associated athanogene 6, formerly BAT3 or Scythe) is an essential negative regulator in the RIG-I-like receptor signaling pathway. BAG6 inhibits the aggregation of VISA by promoting the K48-linked ubiquitination and specifically attenuates the recruitment of TRAF2 by VISA to inhibit RLR signaling. The aggregation of VISA and the interaction of VISA and TRAF2 are enhanced in BAG6-deficient cell lines after viral infection, resulting in the enhanced transcription level of downstream antiviral genes. Our research shows that BAG6 is a critical regulating factor in RIG-I/VISA-mediated innate immune response by targeting VISA.
Collapse
|
9
|
Cheng X, Jiang Z, Feng Z, Sun Z, Lu S, Xu X, Mao H, Hu C. Grass carp (Ctenopharyngodon idella) Trans-Activation-Responsive RNA-binding protein 2 (TARBP2) inhibits apoptosis by decreasing PKR phosphorylation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104425. [PMID: 35452690 DOI: 10.1016/j.dci.2022.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
PKR plays a significant role in IFN antiviral responses and in mediating apoptosis. Its activity is crucial for cellular antiviral and subsequent recovery. In mammalian cells, Protein Activator of the Interferon-induced Protein Kinase (PACT) and Trans-Activation-Responsive RNA-Binding Protein 2 (TARBP2) have the opposite effect on PKR activity in a dsRNA independent manner. There are some corresponding regulators of PKR in fish, too. In previous studies, we found that grass carp PACT can activate PKR in dsRNA independent manner. In this study, we tried to find out the effect of grass carp TARBP2 on PKR regulation. Grass carp TARBP2 expression is significantly increased at 6h post-poly I:C stimulation in CIK cells and grass carp tissues, indicating that it may play a role in poly I:C-mediated immune response. Then, we found that CiTARBP2 interacts with CiPKR and CiPACT, suggesting that it may regulate PKR activity by direct interaction with PKR or its regulators. Further, poly I:C promotes the phosphorylation of CiTARBP2 and enhances the interaction of CiTARBP2 and CiPKR. Finally, over-expression of CiTARBP2 decreases CiPKR phosphorylation and inhibits PKR-induced apoptosis. Therefore, our study reveals that CiTARBP2 can bind to CiPKR, CiPACT and CiTARBP2. The phosphorylated TARBP2 has stronger affinity to PKR, which results in the decrease of PKR phosphorylation and inhibition of cell apoptosis.
Collapse
Affiliation(s)
- Xining Cheng
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Zeyin Jiang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Zhiqing Feng
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Zhichao Sun
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Shina Lu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Vannamahaxay S, Sornpet B, Pringproa K, Patchanee P, Chuammitri P. Transcriptome analysis of infected Crandell Rees Feline Kidney (CRFK) cells by canine parvovirus type 2c Laotian isolates. Gene X 2022; 822:146324. [PMID: 35182681 DOI: 10.1016/j.gene.2022.146324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/22/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
The advent of RNA sequencing technology provides insight into the dynamic nature of tremendous transcripts within Crandell-Reese feline kidney (CRFK) cells in response to canine parvovirus (CPV-2c) infection. A total of 1,603 genes displayed differentially expressed genes (DEGs), including 789 up-regulated genes and 814 downregulated genes in the infected cells. Gene expression profiles have shown a subtle pattern of defense mechanism and immune response to CPV through significant DEGs when extensively examined via Gene Ontology (GO) and pathway analysis. Prospective GO analysis was performed and identified several enriched GO biological process terms with significant participating roles in the immune system process and defense response to virus pathway. A Gene network was constructed using the 22 most significantly enriched genes of particular interests in defense response to virus pathways to illustrate the key pathways. Eleven genes (C1QBP, CD40, HYAL2, IFNB1, IFNG, IL12B, IL6, IRF3, LSM14A, MAVS, NLRC5) were identified, which are directly related to the defense response to the virus. Results of transcriptome profiling permit us to understand the heterogeneity of DEGs during in vitro experimental study of CPV infection, reflecting a unique transcriptome signature for the CPV virus. Our findings also demonstrate a distinct scenario of enhanced CPV responses in CRFK cells for viral clearance that involved multistep and perplexity of biological processes. Collectively, our data have given a fundamental role in anti-viral immunity as our highlights of this study, thus providing outlooks on future research priorities to be important in studying CPV.
Collapse
Affiliation(s)
- Soulasack Vannamahaxay
- Department of Veterinary Medicine, Faculty of Agriculture, National University of Laos, Vientiane, Lao Democratic People's Republic
| | - Benjaporn Sornpet
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Prapas Patchanee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Integrative Research Center for Veterinary Preventive Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
11
|
SOX9 negatively regulates the RLR antiviral signaling by targeting MAVS. Virus Genes 2022; 58:122-132. [PMID: 35103914 DOI: 10.1007/s11262-022-01886-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Mitochondrial virus-induced signal adaptor (MAVS), also known as VISA, IPS-1, and Cardif, is a crucial adaptor protein in the RIG-I-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes viral dsRNA and further transfers it to mitochondria, where it binds to MAVS through its CARD domain, generating a series of signal cascades. Transduction through this signaling cascade leads to phosphorylation and nuclear translocation of interferon regulatory factor 3/7 (IRF3/IRF7) and activation of NF-κB, which ultimately produces type I interferon (IFN) and proinflammatory cytokines. Here, our experiments demonstrated that overexpression of SRY-related high-mobility group protein 9 (SOX9) significantly inhibited Sendai virus (SeV)-induced and MAVS-mediated activation of the IFN-β promoter and ISRE. However, knocking out the expression of SOX9 in cells promoted SeV-induced IFN-β promoter and ISRE activation. Further studies have shown that SOX9 interacts with MAVS and targets MAVS to inhibit the association of MAVS-TRAF2, thereby inhibiting MAVS-mediated TRAF2 ubiquitination. Taken together, these results indicate that SOX9 downregulates IFN-β expression and antiviral signal transduction by targeting MAVS.
Collapse
|
12
|
Wang C, Ling T, Zhong N, Xu LG. N4BP3 Regulates RIG-I-Like Receptor Antiviral Signaling Positively by Targeting Mitochondrial Antiviral Signaling Protein. Front Microbiol 2021; 12:770600. [PMID: 34880843 PMCID: PMC8646042 DOI: 10.3389/fmicb.2021.770600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS), an adaptor protein, is activated by RIG-I, which is critical for an effective innate immune response to infection by various RNA viruses. Viral infection causes the RIG-I-like receptor (RLR) to recognize pathogen-derived dsRNA and then becomes activated to promote prion-like aggregation and activation of MAVS. Subsequently, through the recruitment of TRAF proteins, MAVS activates two signaling pathways mediated by TBK1-IRF3 and IKK- NF-κb, respectively, and turns on type I interferon and proinflammatory cytokines. This study discovered that NEDD4 binding protein 3 (N4BP3) is a positive regulator of the RLR signaling pathway by targeting MAVS. Overexpression of N4BP3 promoted virus-induced activation of the interferon-β (IFN-β) promoter and interferon-stimulated response element (ISRE). Further experiments showed that knockdown or knockout N4BP3 impaired RIG-I-like receptor (RLR)-mediated innate immune response, induction of downstream antiviral genes, and cellular antiviral responses. We also detected that N4BP3 could accelerate the interaction between MAVS and TRAF2. Related experiments revealed that N4BP3 could facilitate the ubiquitination modification of MAVS. These findings suggest that N4BP3 is a critical component of the RIG-I-like receptor (RLR)-mediated innate immune response by targeting MAVS, which also provided insight into the mechanisms of innate antiviral responses.
Collapse
Affiliation(s)
- Chen Wang
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Ting Ling
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Ni Zhong
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Liang-Guo Xu
- College of Life Science, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
13
|
Yang YX, Huang JP, Li SN, Li J, Ling T, Xie T, Xu LG. HSPBP1 facilitates cellular RLR-mediated antiviral response by inhibiting the K48-linked ubiquitination of RIG-I. Mol Immunol 2021; 134:62-71. [PMID: 33713958 DOI: 10.1016/j.molimm.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I) plays a critical role in the recognition of intracytoplasmic viral RNA. Upon binding to the RNA of invading viruses, the activated RIG-I translocates to mitochondria, where it recruits adapter protein MAVS, causing a series of signaling cascades. In this study, we demonstrated that Hsp70 binding protein 1 (HSPBP1) promotes RIG-I-mediated signal transduction. The overexpression of HSPBP1 can increase the stability of RIG-I protein by inhibiting its K48-linked ubiquitination, and promote the activation of IRF3 and the production of IFN-β induced by Sendai virus. Knockdown and knockout of HSPBP1 leads to down-regulation of virus-induced RIG-I expression, inhibits IRF3 activation, and reduces the production of IFNB1. These results indicate that HSPBP1 positively regulates the antiviral signal pathway induced by inhibiting the K48-linked ubiquitination of RIG-I.
Collapse
Affiliation(s)
- Ya-Xian Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Jing-Ping Huang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Sheng-Na Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Jing Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Ting Ling
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Tao Xie
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|
14
|
Vaughn LS, Chukwurah E, Patel RC. Opposite actions of two dsRNA-binding proteins PACT and TRBP on RIG-I mediated signaling. Biochem J 2021; 478:493-510. [PMID: 33459340 PMCID: PMC7919947 DOI: 10.1042/bcj20200987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
An integral aspect of innate immunity is the ability to detect foreign molecules of viral origin to initiate antiviral signaling via pattern recognition receptors (PRRs). One such receptor is the RNA helicase retinoic acid inducible gene 1 (RIG-I), which detects and is activated by 5'triphosphate uncapped double stranded RNA (dsRNA) as well as the cytoplasmic viral mimic dsRNA polyI:C. Once activated, RIG-I's CARD domains oligomerize and initiate downstream signaling via mitochondrial antiviral signaling protein (MAVS), ultimately inducing interferon (IFN) production. Another dsRNA binding protein PACT, originally identified as the cellular protein activator of dsRNA-activated protein kinase (PKR), is known to enhance RIG-I signaling in response to polyI:C treatment, in part by stimulating RIG-I's ATPase and helicase activities. TAR-RNA-binding protein (TRBP), which is ∼45% homologous to PACT, inhibits PKR signaling by binding to PKR as well as by sequestration of its' activators, dsRNA and PACT. Despite the extensive homology and similar structure of PACT and TRBP, the role of TRBP has not been explored much in RIG-I signaling. This work focuses on the effect of TRBP on RIG-I signaling and IFN production. Our results indicate that TRBP acts as an inhibitor of RIG-I signaling in a PACT- and PKR-independent manner. Surprisingly, this inhibition is independent of TRBP's post-translational modifications that are important for other signaling functions of TRBP, but TRBP's dsRNA-binding ability is essential. Our work has major implications on viral susceptibility, disease progression, and antiviral immunity as it demonstrates the regulatory interplay between PACT and TRBP IFN production.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biology, University of South Carolina, Columbia, SC 29210
| | | | - Rekha C Patel
- Department of Biology, University of South Carolina, Columbia, SC 29210
| |
Collapse
|
15
|
Zhou M, Lu W, Li B, Liu X, Li A. TARBP2 promotes tumor angiogenesis and metastasis by destabilizing antiangiogenic factor mRNAs. Cancer Sci 2021; 112:1289-1299. [PMID: 33484209 PMCID: PMC7935780 DOI: 10.1111/cas.14820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor angiogenesis is a crucial step in the further growth and metastasis of solid tumors. However, its regulatory mechanism remains unclear. Here, we showed that TARBP2, an RNA‐binding protein, played a role in promoting tumor‐induced angiogenesis both in vitro and in vivo through degrading the mRNAs of antiangiogenic factors, including thrombospondin1/2 (THBS1/2), tissue inhibitor of metalloproteinases 1 (TIMP1), and serpin family F member 1 (SERPINF1), by targeting their 3′untranslated regions (3′UTRs). Overexpression of TARBP2 promotes tumor cell–induced angiogenesis, while its knockdown inhibits tumor angiogenesis. Clinical cohort analysis revealed that high expression level of TARBP2 was associated with poor survival of lung cancer and breast cancer patients. Mechanistically, TARBP2 physically interacts with the stem‐loop structure located in the 3′UTR of antiangiogenic transcripts, leading to mRNA destabilization by the dsRNA‐binding domains 1/2 (dsRBDs1/2). Notably, the expression level of TARBP2 in human tumor tissue is negatively correlated with the expression of antiangiogenic factors, including THBS1/2, and brain‐specific angiogenesis inhibitor 1 (BAI1). Moreover, TARBP2 expression is strongly associated with tumor angiogenesis in a group of human lung cancer samples. Collectively, our results highlight that TARBP2 is a novel tumor angiogenesis regulator that could promote tumor angiogenesis by selectively downregulating antiangiogenic gene expression.
Collapse
Affiliation(s)
- Meicen Zhou
- Department of Endocrinology, Beijing Jishuitan Hospital, The 4th Clinical Medical College of Peking University, Beijing, China
| | - Wenbao Lu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Weng GX, Ling T, Hou W, Li SN, Chen T, Zhang Z, Wang DD, Xu LG. Mitochondrial DUT-M potentiates RLR-mediated antiviral signaling by enhancing VISA and TRAF2 association. Mol Immunol 2021; 132:117-125. [PMID: 33582548 DOI: 10.1016/j.molimm.2021.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Upon recognition of intracytoplasmic viral RNA, activated RIG-I is recruited to the mitochondrion-located adaptor protein VISA (also known as MAVS, CARDIF, and IPS-1). VISA then acts as a central signaling platform for linking RIG-I and downstream signaling components, such as TRAF2, 5, and 6, TBK1, and IKK, leading to activation of the kinases TBK1 and IKK. These activated kinases further phosphorylate the transcription factors IRF3/7 and NF-κB, leading to the induction of downstream antiviral genes. Here, we report a mitochondrial isoform, deoxyuridine triphosphate nucleotidohydrolase (dUTPase), DUT-M, as a positive regulator in RLR-VISA-mediated antiviral signaling. DUT-M interacts with VISA and RIG-I to facilitate the assembly of the VISA-TRAF2 complex and to augment the polyubiquitination of TRAF2, leading to potentiated activation of IRF3 dimerization and phosphorylation of P65, and enhanced VISA-mediated innate immune response. RLR-VISA-mediated IRF3 dimerization and P65 phosphorylation, were inhibited in DUT-knockdown and DUT-deficient 293 cells. Thus, DUT-M is a positive regulator of the RIG-I-VISA-mediated innate immune response to RNA viruses.
Collapse
Affiliation(s)
- Guang-Xiu Weng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Ting Ling
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Wen Hou
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Sheng-Na Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Tian Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zhi Zhang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Dan-Dan Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|
17
|
Zhou Y, Lu LF, Zhang C, Chen DD, Zhou XY, Li ZC, Jiang JY, Li S, Zhang YA. Grass carp cGASL negatively regulates interferon activation through autophagic degradation of MAVS. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103876. [PMID: 32987012 DOI: 10.1016/j.dci.2020.103876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
In mammals, cyclic GMP-AMP synthase (cGAS) is a crucial cytosolic DNA sensor responsible for activating the interferon (IFN) response. A cGAS-like (cGASL) gene was previously identified from grass carp Ctenopharyngodon idellus, which is evolutionarily closest to cGAS but not a true ortholog of cGAS. Here, we found that grass carp cGASL targets mitochondrial antiviral signaling protein (MAVS) for autophagic degradation to negatively regulate fish IFN response. Firstly, the transcriptional level of cellular cgasl was upregulated by poly I:C stimulation, and overexpression of cGASL significantly decreased poly I:C- and MAVS-induced promoter activities and transcriptional levels of IFN and IFN-stimulated genes (ISGs). In addition, cGASL associated with MAVS and prompted autophagic degradation of MAVS in a dose-dependent manner. Finally, overexpression of cGASL attenuated MAVS-mediated cellular antiviral response. These results collectively indicate that cGASL negatively regulates fish IFN response by triggering autophagic degradation of MAVS.
Collapse
Affiliation(s)
- Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
18
|
Li J, Chen T, Xie T, Yang YX, He TS, Xu LG. SNX5 inhibits RLR-mediated antiviral signaling by targeting RIG-I-VISA signalosome. Biochem Biophys Res Commun 2020; 522:889-896. [PMID: 31806368 DOI: 10.1016/j.bbrc.2019.11.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Upon invading the cell, the viral RNA is recognized by the RIG-I receptor located in the cytoplasm, causing the RIG-I receptor to be activated. The activated RIG-I receptor transmits downstream antiviral signals by interacting with the adaptor protein VISA located on the mitochondria, leading to the production of type Ⅰ interferons and crude inflammatory cytokine genes. Although there have been many studies on antiviral signal transduction of RIG-I receptors in recent years, the mechanism of RIG-I-VISA-mediated antiviral regulation is still not fully understood. In this study, we identified SNX5 as a negative regulator of RLR-mediated antiviral signaling. Our results show that overexpression of SNX5 inhibits viral-induced activation of the IFN-β promoter, ISRE, NF-κB, and IRF3, whereas RNAi knockdown of SNX5 expression shows opposite results. We also found that overexpression of SNX5 enhanced RIG-I's K48 ubiquitination and attenuated its K63 ubiquitination, resulting in inhibition of virus-induced RIG-I expression. Besides, further studies show that SNX5 overexpression weakens the interaction between VISA and TRAF2/5. Our findings suggest that SNX5 negatively regulates RLR-mediated antiviral signaling by targeting the RIG-I-VISA signalosome and provide new evidence for the negative regulation of RIG-I-mediated innate immune response mechanisms.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Tian Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Tao Xie
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Ya-Xian Yang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Tian-Sheng He
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|
19
|
Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. [PMID: 31379819 PMCID: PMC6652118 DOI: 10.3389/fimmu.2019.01586] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|
20
|
TARBP2 inhibits IRF7 activation by suppressing TRAF6-mediated K63-linked ubiquitination of IRF7. Mol Immunol 2019; 109:116-125. [DOI: 10.1016/j.molimm.2019.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Accepted: 02/24/2019] [Indexed: 02/07/2023]
|