1
|
Izuka S, Komai T, Tsuchida Y, Tsuchiya H, Okamura T, Fujio K. The role of monocytes and macrophages in idiopathic inflammatory myopathies: insights into pathogenesis and potential targets. Front Immunol 2025; 16:1567833. [PMID: 40181992 PMCID: PMC11965591 DOI: 10.3389/fimmu.2025.1567833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are heterogeneous autoimmune disorders characterized by muscle inflammation, weakness, and extramuscular manifestations such as interstitial lung disease, skin rash, arthritis, dysphagia, myocarditis and other systemic organ involvement. Although T and B cells have historically been central to the understanding of IIM immunopathology, monocytes and their differentiated progenitor cells, macrophages, are increasingly being recognized as critical mediators of both tissue damage and repair. In subtypes such as dermatomyositis, immune-mediated necrotizing myopathy and antisynthetase syndrome, macrophages infiltrate skeletal muscle and other affected tissues, contributing to inflammation via production of pro-inflammatory cytokines, chemokines, and reactive oxygen species. Dysregulated interferon signaling, mitochondrial stress, and aberrant metabolic states in these cells further perpetuate tissue injury in IIMs. Conversely, certain macrophage subsets can support muscle fiber regeneration and dampen inflammation, underscoring the dual roles these cells can play. Future research into the heterogeneity of monocytes and macrophages, including single-cell transcriptomic and metabolomic approaches, will help clarify disease mechanisms, identify biomarkers of disease activity and prognosis, and guide novel therapeutic strategies targeting these innate immune cells in IIM.
Collapse
Affiliation(s)
- Shinji Izuka
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Shanmuganathan K. The complexity of Nrf2 in experimental autoimmune myositis-induced mice. J Physiol 2025. [PMID: 39854059 DOI: 10.1113/jp287977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
|
3
|
Li Z, Liu H, Xie Q, Yin G. Macrophage involvement in idiopathic inflammatory myopathy: pathogenic mechanisms and therapeutic prospects. J Inflamm (Lond) 2024; 21:48. [PMID: 39593038 PMCID: PMC11590228 DOI: 10.1186/s12950-024-00422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Idiopathic inflammatory myopathies are a group of systemic autoimmune diseases characterized by chronic muscle inflammation and diverse clinical manifestations. Macrophages, pivotal components of innate immunity, are implicated in immune responses, inflammation resolution, and tissue repair. Distinct macrophage polarization states play vital roles in disease progression and resolution. Mechanistically, activated macrophages release proinflammatory cytokines, chemokines, and reactive oxygen species, perpetuating immune responses and tissue damage. Dysregulated macrophage polarization contributes to sustained inflammation. Here, we reviewed the intricate contributions of macrophages to IIM pathogenesis and explored novel therapeutic avenues. We discussed emerging strategies targeting macrophages, including receptor-based interventions and macrophage polarization modulation, for IIM treatment. This review underscores the multifaceted involvement of macrophages in IIM pathogenesis and offers insights into potential therapeutic approaches targeting these immune cells for disease management.
Collapse
Affiliation(s)
- Ziqi Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, China.
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Yang Y, GuangXuan H, GenMeng W, MengHuan L, Bo C, XueJie Y. Idiopathic inflammatory myopathy and non-coding RNA. Front Immunol 2023; 14:1227945. [PMID: 37744337 PMCID: PMC10512060 DOI: 10.3389/fimmu.2023.1227945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are common autoimmune diseases that affect skeletal muscle quality and function. The lack of an early diagnosis and treatment can lead to irreversible muscle damage. Non-coding RNAs (ncRNAs) play an important role in inflammatory transfer, muscle regeneration, differentiation, and regulation of specific antibody levels and pain in IIMs. ncRNAs can be detected in blood and hair; therefore, ncRNAs detection has great potential for diagnosing, preventing, and treating IIMs in conjunction with other methods. However, the specific roles and mechanisms underlying the regulation of IIMs and their subtypes remain unclear. Here, we review the mechanisms by which micro RNAs and long non-coding RNA-messenger RNA networks regulate IIMs to provide a basis for ncRNAs use as diagnostic tools and therapeutic targets for IIMs.
Collapse
Affiliation(s)
- Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu GuangXuan
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Wan GenMeng
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Chang Bo
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Han D, Lu X, Yin W, Fu H, Zhang X, Cheng L, Liu F, Jin C, Tian X, Xie Y, Wu N. Activation of NRF2 blocks HIV replication and apoptosis in macrophages. Heliyon 2023; 9:e12575. [PMID: 36691556 PMCID: PMC9860420 DOI: 10.1016/j.heliyon.2022.e12575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/30/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Abnormal oxidative stress caused by human immunodeficiency virus (HIV) infection affects viral replication and causes non-acquired immune deficiency syndrome-related complications in infected individuals. The transcription factor NFE2-related factor 2 (NRF2), a key regulator of oxidative stress, responds to abnormal oxidative stress by regulating the expression of NRF2-dependent cytoprotective genes. The present study aimed to determine whether inhibition of oxidative stress could control HIV replication and improve cell survival. In this study, the NRF2 activator, methyl bardoxolone, was used to treat cells for HIV infection. The effects on HIV replication and apoptosis pathways were confirmed by NRF2 activation or knockdown. The results showed that NRF2 activation could block HIV replication in macrophages before the integration phase and inhibited the expression of apoptotic pathways in virus-exposed macrophages. The study presents an unconventional anti-viral strategy of activation antioxidant response for HIV infection blocking.
Collapse
Affiliation(s)
- Dating Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wanpeng Yin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Haijing Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xiaodi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Fuming Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xuebin Tian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yiwen Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| |
Collapse
|
8
|
Liu S, Meng F, Zhang D, Shi D, Zhou J, Guo S, Chang X. Lonicera caerulea Berry Polyphenols Extract Alleviates Exercise Fatigue in Mice by Reducing Oxidative Stress, Inflammation, Skeletal Muscle Cell Apoptosis, and by Increasing Cell Proliferation. Front Nutr 2022; 9:853225. [PMID: 35356725 PMCID: PMC8959458 DOI: 10.3389/fnut.2022.853225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Exercise fatigue can exert deleterious effects on the body. This study evaluated the effects and mechanisms by which Lonicera caerulea berry polyphenols extract (LCBP) improved the treadmill endurance of mice. Comparison was performed between the effects at 25°C and low temperatures (-5°C). Energy storage, product metabolism, and other biochemical indices were determined using vitamin C (VC) as a positive control. Co-immunoprecipitation was performed to detect the interaction between different proteins. Dietary supplementation with LCBP significantly prolonged the exhaustion time during treadmill exercise by 20.4% (25 °C) and 27.4% (-5 °C). LCBP significantly regulated the expression of antioxidant and inflammatory proteins, Bcl-2 /Bax apoptosis proteins, and the PKCα -NOx2 / Nox4 pathway proteins, and activated the expression of AMPK-PGC1α -NRF1-TFAM proteins in skeletal muscle mitochondria. The gene and protein expression of miRNA-133a/IGF-1/PI3K/Akt/mTOR in skeletal muscle cells was also activated. Molecular docking confirmed that the main components of LCBP such as cyanidin-3-glucoside, catechin, and chlorogenic acid, have strong binding affinity toward AMPKα. LCBP alleviates exercise fatigue in mice by reducing oxidative stress, inflammation, and apoptosis of skeletal muscle cells, enhances mitochondrial biosynthesis and cell proliferation, reduces fatigue, and enhances performance. These effects are also significant in a low-temperature environment (Graphical Abstract). Consequently, these results provide novel insights into the anti- fatigue roles of LCBP in exercise fatigue.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, China
| | - Fanna Meng
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Dong Zhang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Donglin Shi
- Department of Physical Education, Hebei Sport University, Shijiazhuang, China
| | - Junyi Zhou
- Research Center of Sports Science, Hebei Institute of Sports Science, Shijiazhuang, China
| | - Shuo Guo
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xuedong Chang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, China
| |
Collapse
|
9
|
Study of the correlation between the noncanonical pathway of pyroptosis and idiopathic inflammatory myopathy. Int Immunopharmacol 2021; 98:107810. [PMID: 34116285 DOI: 10.1016/j.intimp.2021.107810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The pathogenesis of idiopathic inflammatory myopathy (IIM) is complex and unclear. The purpose of this study was to investigate whether the noncanonical pathway of pyroptosis is involved in the pathogenesis of IIM, and the intervention effect of drugs glyburide and bright blue G (BBG). METHODS After the drug intervention, we detected the expression of the caspase-4, caspase-5, caspase-11, GSDMD, pannexin-1, NLRP3 and P2X7R proteins in skeletal muscle tissues from the six groups using Western blotting. We detected the expression of the caspase-11, GSDMD, pannexin-1, NLRP3 and P2X7R mRNAs in skeletal muscle tissues from the six groups using RT-qPCR and detected the serum IL-18 and IL-1β levels in the six groups using ELISAs. RESULT Lower expression levels of the P2X7R and NLRP3 proteins were observed in the EAM + BBG group than in the EAM1 group (P < 0.05). The expression of NLRP3 in the EAM + glyburide group was lower than in the EAM2 group (P < 0.05). Lower expression levels of the P2X7R and NLRP3 mRNAs were detected in the EAM + BBG group than in the EAM1 group (P < 0.05). NLRP3 was expressed at lower levels in the EAM + glyburide group than in the EAM2 group (P < 0.05). Lower serum IL-1β levels were detected in the EAM + BBG group than in the EAM1 group (P < 0.05), and serum IL-1β and IL-18 levels in the EAM + glyburide group were lower than those in the EAM2 group (P < 0.05). CONCLUSION Our results suggest that the noncanonical pathway of pyroptosis may be involved in the pathogenesis of IIM, and glyburide and BBG exert certain intervention effects on its pathogenesis.
Collapse
|
10
|
TPGS assists the percutaneous administration of curcumin and glycyrrhetinic acid coloaded functionalized ethosomes for the synergistic treatment of psoriasis. Int J Pharm 2021; 604:120762. [PMID: 34082000 DOI: 10.1016/j.ijpharm.2021.120762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Combined therapy with anti-inflammatory drugs is preferred for the topical treatment of psoriasis, but the codelivery of drugs is restricted due to the lack of a suitable delivery system. Ethosomes with excellenttransdermal propertiesare perfect as carriers for hyperplastic skin. Therefore, glycyrrhetinic acid-D-α-tocopherol acid polyethylene glycol succinate (GA-TPGS) was synthesized, which prevented the inflammation and lipid peroxidation damage, thus effectively stabilizing the psoriasis. Then GA-TPGS was surface-modified on the curcumin (Cur) loaded ethosomes to construct curcumin-loaded GA-TPGS-modified multifunctional ethosomes (Cur@GA-TPGS-ES), exerting synergistic treatment for psoriasis. Using an interleukin-6-induced cell model, we found that Cur@GA-TPGS-ES displayed desirable suppression of inflammation response and oxidative stress damage. Compared with the ethanol solution, the percutaneous penetration rates of Cur and GA in Cur@GA-TPGS-ES were superior. In vivo microdialysis revealed similar results, suggesting an increase of transcutaneous absorption in Cur@GA-TPGS-ES. Fluorescence staining revealed that the cellular uptake and skin distribution were distinctly enhanced with the delivery by Cur@GA-TPGS-ES. After topical administration to imiquimod-induced psoriatic mice, the Cur@GA-TPGS-ES group showed powerful treatment from inflammatory infiltration inhibition of Cur, glucocorticoid-like effects of GA and anti-lipid peroxidation of TPGS. Overall, GA-TPGS mediated ethosomes possess more advantageous transdermal properties and synergistic antipsoriatic efficacy.
Collapse
|
11
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
12
|
Zhang S, Li L, Hu J, Ma P, Zhu H. Polysaccharide of Taxus chinensis var. mairei Cheng et L.K.Fu attenuates neurotoxicity and cognitive dysfunction in mice with Alzheimer's disease. PHARMACEUTICAL BIOLOGY 2020; 58:959-968. [PMID: 32970507 PMCID: PMC7534342 DOI: 10.1080/13880209.2020.1817102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 06/01/2023]
Abstract
CONTEXT Polysaccharide of Taxus chinensis var. mairei Cheng et L.K.Fu (Taxaceae) (PTM) functions in anti-apoptosis and antioxidation, but its function on Alzheimer's disease (AD) remains unclear. OBJECTIVE To investigate the effect of PTM on AD. MATERIALS AND METHODS C57BL/6J mice were randomly divided into three groups: control, d-galactose (d-gal), and d-gal + PTM. AD-like symptom was induced by d-gal for 6 weeks, followed with PTM (0.4 g/kg/d) for 14 days. PTM was added to BV2 cells stimulated with d-gal (1, 10, 20, 50, 100 and 500 μg/mL). Cell viability was evaluated by MTT assay. The expression of NRF2, SOD, cleaved caspase-3, Bax and Bcl-2 were detected with Western blot analysis. Cognitive function was evaluated by Morris water maze test. RESULTS Decreased cleaved caspase-3 (1.30 ± 0.09) and Bax/Bcl2 ratio (1.32 ± 0.11) were observed in BV2 cells induced by d-gal + PTM (50 μg/mL). Increased MDA and ROS and decreased SOD were observed in d-gal group. However, decreased MDA (175 ± 9 ng/mL) and ROS level (188 ± 38 ng/mL) were observed after treated with PTM group (p < 0.05). In addition, the expression of NRF2 decreased in d-gal group (0.75 ± 0.09) but increased after treated with PTM (p < 0.05). Furthermore, decreased Aβ1-42 was observed and the cognitive function was improved after PTM intervention (p < 0.05). CONCLUSIONS This is the first report that PTM inhibited oxidative stress and apoptosis in AD. The result will further accelerate the applications of Taxus chinensis var. mairei and the treatment for AD.
Collapse
Affiliation(s)
- Senwei Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lulu Li
- Zhejiang Provincial Hospital of TCM, Hangzhou, China
| | - Jinting Hu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Ma
- Department of Microbiology and Immunology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huimin Zhu
- Department of Geriatrics, Taizhou Central Hospital, Taizhou, China
| |
Collapse
|
13
|
Two resveratrol analogs, pinosylvin and 4,4′-dihydroxystilbene, improve oligoasthenospermia in a mouse model by attenuating oxidative stress via the Nrf2-ARE pathway. Bioorg Chem 2020; 104:104295. [DOI: 10.1016/j.bioorg.2020.104295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023]
|