1
|
The Combination of Immune Checkpoint Blockade with Tumor Vessel Normalization as a Promising Therapeutic Strategy for Breast Cancer: An Overview of Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:ijms24043226. [PMID: 36834641 PMCID: PMC9964596 DOI: 10.3390/ijms24043226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have a modest clinical activity when administered as monotherapy against breast cancer (BC), the most common malignancy in women. Novel combinatorial strategies are currently being investigated to overcome resistance to ICIs and promote antitumor immune responses in a greater proportion of BC patients. Recent studies have shown that the BC abnormal vasculature is associated with immune suppression in patients, and hampers both drug delivery and immune effector cell trafficking to tumor nests. Thus, strategies directed at normalizing (i.e., at remodeling and stabilizing) the immature, abnormal tumor vessels are receiving much attention. In particular, the combination of ICIs with tumor vessel normalizing agents is thought to hold great promise for the treatment of BC patients. Indeed, a compelling body of evidence indicates that the addition of low doses of antiangiogenic drugs to ICIs substantially improves antitumor immunity. In this review, we outline the impact that the reciprocal interactions occurring between tumor angiogenesis and immune cells have on the immune evasion and clinical progression of BC. In addition, we overview preclinical and clinical studies that are presently evaluating the therapeutic effectiveness of combining ICIs with antiangiogenic drugs in BC patients.
Collapse
|
2
|
Al Kawas H, Saaid I, Jank P, Westhoff CC, Denkert C, Pross T, Weiler KBS, Karsten MM. How VEGF-A and its splice variants affect breast cancer development - clinical implications. Cell Oncol (Dordr) 2022; 45:227-239. [PMID: 35303290 PMCID: PMC9050780 DOI: 10.1007/s13402-022-00665-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Altered expression levels and structural variations in the vascular endothelial growth factor (VEGF) have been found to play important roles in cancer development and to be associated with the overall survival and therapy response of cancer patients. Particularly VEGF-A and its splice variants have been found to affect physiological and pathological angiogenic processes, including tumor angiogenesis, correlating with tumor progression, mostly caused by overexpression. This review focuses on the expression and impact of VEGF-A splice variants under physiologic conditions and in tumors and, in particular, the distribution and role of isoform VEGF165b in breast cancer. CONCLUSIONS AND PERSPECTIVES Many publications already highlighted the importance of VEGF-A and its splice variants in tumor therapy, especially in breast cancer, which are summarized in this review. Furthermore, we were able to demonstrate that cytoplasmatic VEGFA/165b expression is higher in invasive breast cancer tumor cells than in normal tissues or stroma. These examples show that the detection of VEGF splice variants can be performed also on the protein level in formalin fixed tissues. Although no quantitative conclusions can be drawn, these results may be the starting point for further studies at a quantitative level, which can be a major step towards the design of targeted antibody-based (breast) cancer therapies.
Collapse
Affiliation(s)
- Hivin Al Kawas
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Inas Saaid
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | | | - Carsten Denkert
- Institute of Pathology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Therese Pross
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Maria Margarete Karsten
- Department of Gynecology with Breast Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Micheli L, Parisio C, Lucarini E, Vona A, Toti A, Pacini A, Mello T, Boccella S, Ricciardi F, Maione S, Graziani G, Lacal PM, Failli P, Ghelardini C, Di Cesare Mannelli L. VEGF-A/VEGFR-1 signalling and chemotherapy-induced neuropathic pain: therapeutic potential of a novel anti-VEGFR-1 monoclonal antibody. J Exp Clin Cancer Res 2021; 40:320. [PMID: 34649573 PMCID: PMC8515680 DOI: 10.1186/s13046-021-02127-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neuropathic pain is a clinically relevant adverse effect of several anticancer drugs that markedly impairs patients' quality of life and frequently leads to dose reduction or therapy discontinuation. The poor knowledge about the mechanisms involved in neuropathy development and pain chronicization, and the lack of effective therapies, make treatment of chemotherapy-induced neuropathic pain an unmet medical need. In this context, the vascular endothelial growth factor A (VEGF-A) has emerged as a candidate neuropathy hallmark and its decrease has been related to pain relief. In the present study, we have investigated the role of VEGF-A and its receptors, VEGFR-1 and VEGFR-2, in pain signalling and in chemotherapy-induced neuropathy establishment as well as the therapeutic potential of receptor blockade in the management of pain. METHODS Behavioural and electrophysiological analyses were performed in an in vivo murine model, by using selective receptor agonists, blocking monoclonal antibodies or siRNA-mediated silencing of VEGF-A and VEGFRs. Expression of VEGF-A and VEGFR-1 in astrocytes and neurons was detected by immunofluorescence staining and confocal microscopy analysis. RESULTS In mice, the intrathecal infusion of VEGF-A (VEGF165 isoforms) induced a dose-dependent noxious hypersensitivity and this effect was mediated by VEGFR-1. Consistently, electrophysiological studies indicated that VEGF-A strongly stimulated the spinal nociceptive neurons activity through VEGFR-1. In the dorsal horn of the spinal cord of animals affected by oxaliplatin-induced neuropathy, VEGF-A expression was increased in astrocytes while VEGFR-1 was mainly detected in neurons, suggesting a VEGF-A/VEGFR-1-mediated astrocyte-neuron cross-talk in neuropathic pain pathophysiology. Accordingly, the selective knockdown of astrocytic VEGF-A by intraspinal injection of shRNAmir blocked the development of oxaliplatin-induced neuropathic hyperalgesia and allodynia. Interestingly, both intrathecal and systemic administration of the novel anti-VEGFR-1 monoclonal antibody D16F7, endowed with anti-angiogenic and antitumor properties, reverted oxaliplatin-induced neuropathic pain. Besides, D16F7 effectively relieved hypersensitivity induced by other neurotoxic chemotherapeutic agents, such as paclitaxel and vincristine. CONCLUSIONS These data strongly support the role of the VEGF-A/VEGFR-1 system in mediating chemotherapy-induced neuropathic pain at the central nervous system level. Thus, treatment with the anti-VEGFR-1 mAb D16F7, besides exerting antitumor activity, might result in the additional advantage of attenuating neuropathic pain when combined with neurotoxic anticancer agents.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Alessia Vona
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine - DMSC - Anatomy and Histology Section, University of Florence, L.go Brambilla 3, 50134, Florence, Italy
| | - Tommaso Mello
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
- I.R.C.S.S., Neuromed, 86077, Pozzilli, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
- IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy.
| | | | - Paola Failli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
4
|
VEGF165b augments NK92 cytolytic activity against human K562 leukemia cells by upregulating the levels of perforin and granzyme B via the VEGR1-PLC pathway. Mol Immunol 2020; 128:41-46. [PMID: 33068832 DOI: 10.1016/j.molimm.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022]
Abstract
Pro-angiogenic Vascular endothelial growth factors (VEGFs) exert immunosuppressive functions on some immune cells by interacting with VEGF receptors. Blocking the VEGF/VEGFR pathway could reverse the tumor immunosuppressive microenvironment to some degree. We recently demonstrated that the anti-angiogenic VEGF isoform VEGF165b, similar to other anti-angiogenic agents, inhibit the accumulation immunosuppressive cells such as Tregs and MDSCs. However, whether VEGF165b affects the functions of immune effector cells remain unclear. Here, NK92 cell line was utilized as an immune effector cell model. Our results verified that NK92 cells endogenously express VEGF165 and VEGFR1. Further investigation showed that NK92 treatment with VEGF165b augments its killing ability against human K562 leukemia cells by upregulating perforin and granzyme B through the VEGFR1-PLC pathway, whereas VEGF165b had no impact on the proliferation of NK92 cells in vitro. The results of this study improve our understanding of the immunomodulatory function of VEGF165b, which may help in enhancing the efficacy of NK92-based cancer immunotherapy.
Collapse
|