1
|
Guo K, Yin Y, Zheng L, Wu Z, Rao X, Zhu W, Zhou B, Liu L, Liu D. Integration of microbiomics, metabolomics, and transcriptomics reveals the therapeutic mechanism underlying Fuzheng-Qushi decoction for the treatment of lipopolysaccharide-induced lung injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118584. [PMID: 39019418 DOI: 10.1016/j.jep.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng-Qushi decoction (FZQS) is a practical Chinese herbal formula for relieving cough and fever. Therefore, the action and specific molecular mechanism of FZQS in the treatment of lung injury with cough and fever as the main symptoms need to be further investigated. AIMS OF THE STUDY To elucidate the protective effects of FZQS against lung injury in mice and reveal its potential targets and key biological pathways for the treatment of lung injury based on transcriptomics, microbiomics, and untargeted metabolomics analyses. MATERIALS AND METHODS Lipopolysaccharide (LPS) was used to induce a mouse model of lung injury, followed by the administration of FZQS. ELISA was used to detect IL-1β, IL-6, IL-17A, IL-4, IL-10, and TNF-α, in mouse lung tissues. Macrophage polarization and neutrophil activation were measured by flow cytometry. RNA sequencing (RNA-seq) was applied to screen for differentially expressed genes (DEGs) in lung tissues. RT-qPCR and Western blot assays were utilized to validate key DEGs and target proteins in lung tissues. 16S rRNA sequencing was employed to characterize the gut microbiota of mice. Metabolites in the gut were analyzed using untargeted metabolomics. RESULTS FZQS treatment significantly ameliorated lung histopathological damage, decreased pro-inflammatory cytokine levels, and increased anti-inflammatory cytokine levels. M1 macrophage levels in the peripheral blood decreased, M2 macrophage levels increased, and activated neutrophils were inhibited in mice with LPS-induced lung injury. Importantly, transcriptomic analysis showed that FZQS downregulated macrophage and neutrophil activation and migration and adhesion pathways by reversing 51 DEGs, which was further confirmed by RT-qPCR and Western blot analysis. In addition, FZQS modulated the dysbiosis of the gut microbiota by reversing the abundance of Corynebacterium, Facklamia, Staphylococcus, Paenalcaligenes, Lachnoclostridium, norank_f_Muribaculaceae, and unclassified_f_Lachnospiraceae. Meanwhile, metabolomics analysis revealed that FZQS significantly regulated tryptophan metabolism by reducing the levels of 3-Indoleacetonitrile and 5-Hydroxykynurenine. CONCLUSION FZQS effectively ameliorated LPS-induced lung injury by inhibiting the activation, migration, and adhesion of macrophages and neutrophils and modulating gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Kaien Guo
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Yuting Yin
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Linxin Zheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zenan Wu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Xiaoyong Rao
- National Engineering Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine Manufacturing Technology, Nanchang, 330004, Jiangxi Province, China
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Bugao Zhou
- Department of Research, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Liangji Liu
- Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
2
|
Ji C, Hao X, Li Z, Liu J, Yan H, Ma K, Li L, Zhang L. Phillyrin prevents sepsis-induced acute lung injury through inhibiting the NLRP3/caspase-1/GSDMD-dependent pyroptosis signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 57:447-462. [PMID: 39394820 PMCID: PMC11986443 DOI: 10.3724/abbs.2024161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/03/2024] [Indexed: 10/14/2024] Open
Abstract
Acute lung injury (ALI) is a severe pulmonary disorder of sepsis with high clinical incidence and mortality. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)-cysteinyl aspartate specific proteinase 1-gasdermin D (GSDMD)-dependent pyroptosis of alveolar epithelial cells (AECs) has emerged as a crucial contributor to ALI during sepsis. Phillyrin (PHI), a natural lignan isolated from the traditional Chinese herbal medicine Forsythia suspensa, has been shown to have anti-inflammatory, antioxidant and antiviral properties. However, little is known about the protective role and potential mechanism of PHI in sepsis-induced ALI, and it is uncertain whether the protective effect of PHI in sepsis-induced ALI is connected to pyroptosis. This study aims to examine the preventive effects of PHI on sepsis-induced ALI via the inhibition of NLRP3/caspase-1/GSDMD-mediated pyroptosis in AECs. Our findings demonstrate that preadministration of PHI successfully reduces sepsis-induced pulmonary edema, systemic/pulmonary inflammation, and pulmonary histological damage in lung tissues, bronchoalveolar lavage fluid, and the serum of septic mice. Intriguingly, PHI preadministration suppresses sepsis-induced protein expressions of pyroptosis-specific markers, especially their active forms. In vitro assays show that PHI pretreatment also protects type II AECs (MLE-12) from lipopolysaccharide-induced pyroptosis by preventing the activation of the pyroptosis signaling pathway. The results from molecular docking and surface plasmon resonance reveal that PHI has a significant affinity for direct binding to the GSDMD protein, suggesting that GSDMD is a potential pharmacological target for PHI. In conclusion, PHI can prevent sepsis-triggered ALI by effectively suppressing the activation of the canonical pyroptosis signaling pathway and pyroptosis of AECs.
Collapse
Affiliation(s)
- Chen Ji
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Xiaoyan Hao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Zhiyi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Jiaxing Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Hanyu Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseasesthe first Affiliated HospitalShihezi UniversityShihezi832008China
| | - Ling Li
- Medical Teaching Experimental CenterSchool of MedicineShihezi UniversityShihezi832003China
| | - Liang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education)School of MedicineShihezi UniversityShihezi832003China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseasesthe first Affiliated HospitalShihezi UniversityShihezi832008China
| |
Collapse
|
3
|
Zhang F, Wang Y, Song X, Wen Y, Wang H, Zhang Y. The hydroxytyrosol-typed phenylpropanoidglycosides: A phenylpropanoid glycoside family with significant biological activity. Fitoterapia 2024; 178:106155. [PMID: 39089596 DOI: 10.1016/j.fitote.2024.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hydroxytyrosol-typed phenylpropanoid glycosides (HPGs), composed of phenylethanol and various complex oligosaccharides, are widespread and abundant in different plant, and have a diverse range of biological activities. All HPGs reported previously have been isolated from natural sources, and most of them showed significant bioactivities, such as anti-inflamatory, anti-cancer, cytoprotection, neuro-protective effects, enzyme-inhibitory, anti-microbial effects, and cardiovascular activity. The goal of this review is to summarize the structures of HPGs reported over the past few decades, as well as to introduce their pharmacological effects. We also introduce the possible relationship between the structures of HPGs and their source plants, as well as the structure-activity relationships of some important activities. This review will serve as a resource for future research into this class of compounds, and demonstrate their potential value.
Collapse
Affiliation(s)
- Feixun Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yiping Wang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Xiaoping Song
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yingming Wen
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Hong Wang
- College of Bioengineering, Beijing Polytechnic, No. 9 Liangshuihe 1st Street, Beijing 100176, China.
| | - Yanxin Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China; Glycobiology and Glycotechnology Research center, College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, China; College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
4
|
Wu J, Lan Y, Wu J, Zhu K. Sepsis-Induced Acute Lung Injury Is Alleviated by Small Molecules from Dietary Plants via Pyroptosis Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12153-12166. [PMID: 37537751 DOI: 10.1021/acs.jafc.2c08926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality, and it has three major pathogeneses, namely alveolar-capillary barrier destruction, elevated gut permeability, and reduced neutrophil extracellular traps (NETS), all of which are pyroptosis-involved. Due to limitations of current agents like adverse reaction superposition, inevitable drug resistance, and relatively heavier financial burden, naturally extracted small-molecule compounds have a broad market even though chemically modified drugs have straightforward efficacy. Despite increased understanding of the molecular biology and mechanism underlying sepsis-induced ARDS, there are no specific reviews concerning how small molecules from dietary plants alleviate sepsis-induced acute lung injury (ALI) via regulating pyroptotic cell death. Herein, we traced and reviewed the molecular underpinnings of sepsis-induced ALI with a focus on small-molecule compounds from dietary plants, the top three categories of which are respectively flavonoids and flavone, terpenoids, and polyphenol and phenolic acids, and how they rescued septic ALI by restraining pyroptosis.
Collapse
Affiliation(s)
- Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuejia Lan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Jinghan Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Keli Zhu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
5
|
Liu J, Wu J, Qiao C, He Y, Xia S, Zheng Y, Lv H. Impact of chronic cold exposure on lung inflammation, pyroptosis and oxidative stress in mice. Int Immunopharmacol 2023; 115:109590. [PMID: 36577159 DOI: 10.1016/j.intimp.2022.109590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Chronic cold exposure, which is the main inducer of lung diseases in high latitudes, affects production efficiency and restricts the development of aquaculture. Although the relationship between cold exposure and susceptibility to the lungs is widely accepted, but the influence between them has not been fully explored. The aim of this study is to understand the underlying mechanism. In the present study, the mice, which are used to establish cold stress (CS)-induced lung injury model, are exposed to cold temperature (4 °C) for 3 h each day for 4 weeks. The results indicate that the expression of heat shock protein 70 (HSP70) is augmented by cold exposure. In addition, chronic cold exposure aggravate the formation of malondialdehyde (MDA) and lead to a significant decrease in the contents of micrococcus catalase (CAT) and glutathione (GSH). Moreover, chronic cold exposure significantly exacerbates the expression of inflammation- and apoptosis-related proteins. The activation of Bax and caspase-3 are significantly augmented. However, that of Bcl-2 is decreased. These results are different from those in room team. The results show that chronic cold exposure plays an important roles in the activation of multiple signaling pathways, such as pyroptosis-related, inflammation-related and oxidative stress-regulated signaling pathways. In summary, these investigations support that chronic cold exposure increase the risk of lung injury by activating inflammation, oxidative stress and pyroptosis.
Collapse
Affiliation(s)
- Jiahe Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingjing Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chunyu Qiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuxi He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shijie Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuwei Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
6
|
Wu X, Wu L, Wu Y, Chen W, Chen J, Gong L, Yu J. Heme oxygenase-1 ameliorates endotoxin-induced acute lung injury by modulating macrophage polarization via inhibiting TXNIP/NLRP3 inflammasome activation. Free Radic Biol Med 2023; 194:12-22. [PMID: 36436727 DOI: 10.1016/j.freeradbiomed.2022.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury (ALI) remains a global public health issue without specific and effective treatment options available in the clinic. Alveolar macrophage polarization is involved in the initiation, development and progression of ALI; however, the underlying mechanism remains poorly understood. Heme oxygenase-1 (HO-1) acts as an antioxidant in pulmonary inflammation and has been demonstrated to be linked with the severity and prognosis of ALI. In this study, the therapeutic effects of HO-1 were examined, along with the mechanisms involved, mainly focusing on alveolar macrophage polarization. HO-1 depletion induced higher iNOS and CD86 (M1 phenotype) expression but was significantly decreased in Arg-1 and CD206 (M2 phenotype) expression in BALF alveolar macrophages after equivalent LPS stimulation. We also found that HO-1 deletion distinctly accelerated the expression of inflammasome-associated components NLRP3, ASC and caspase-1 in vivo and in vivo and in vitro. Moreover, on the basis of LPS for MH-S cells, levels of TXNIP, NLRP3, ASC and caspase-1 were increased and HO-1 depletion exacerbated these changes, whereas double depletion of HO-1 and TXNIP partially mitigated these elevations. Also, HO-1 knockdown induced more M1 phenotype and less M2 phenotype compared with LPS alone, whereas double silence of HO-1 and TXNIP partially changed the polarization state. Taken together, we demonstrated that HO-1 could modulate macrophage polarization via TXNIP/NLRP3 signaling pathway, which could be a potential therapeutic target for ALI treatment.
Collapse
Affiliation(s)
- Xiaoyang Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Lili Wu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ya Wu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Wei Chen
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jinkun Chen
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Lirong Gong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Yang HX, Liu QP, Zhou YX, Chen YY, An P, Xing YZ, Zhang L, Jia M, Zhang H. Forsythiasides: A review of the pharmacological effects. Front Cardiovasc Med 2022; 9:971491. [PMID: 35958429 PMCID: PMC9357976 DOI: 10.3389/fcvm.2022.971491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Forsythiasides are a kind of phenylethanol glycosides existing in Forsythia suspensa (Thunb.) Vahl, which possesses extensive pharmacological activities. According to the different groups connected to the nucleus, forsythiasides can be divided into A-K. In recent years, numerous investigations have been carried out on forsythiasides A, B, C, D, E, and I, which have the effects of cardiovascular protection, anti-inflammation, anti-oxidation, neuroprotection, et al. Mechanistically, forsythiasides regulate toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappaB (NF-κB), nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and other signaling pathways, as well as the expression of related cytokines and kinases. Further exploration and development may unearth more treatment potential of forsythiasides and provide more evidence for their clinical applications. In summary, forsythiasides have high development and application value.
Collapse
Affiliation(s)
- Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Xi Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Library, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Zhuo Xing
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lei Zhang,
| | - Min Jia
- Department of Chinese Medicine Authentication, School of Pharmacy, Naval Medical University, Shanghai, China
- Min Jia,
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Hong Zhang,
| |
Collapse
|