1
|
Ge Y, Jiang L, Dong Q, Xu Y, Yam JWP, Zhong X. Exosome-mediated Crosstalk in the Tumor Immune Microenvironment: Critical Drivers of Hepatocellular Carcinoma Progression. J Clin Transl Hepatol 2025; 13:143-161. [PMID: 39917466 PMCID: PMC11797817 DOI: 10.14218/jcth.2024.00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, ranking as the sixth most prevalent malignancy and the fourth leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, mortality rates for HCC remain high. The tumor immune microenvironment (TIME) plays a vital role in HCC progression by influencing tumor cell survival and growth. Recent studies highlight the essential role of exosomes in mediating intercellular communication within the TIME, particularly in interactions among tumor cells, immune cells, and fibroblasts. These interactions drive critical aspects of tumor development, including immune escape, angiogenesis, drug resistance, and metastasis. A detailed understanding of the molecular mechanisms by which exosomes modulate the TIME is essential for developing targeted therapies. This review systematically evaluated the roles and regulatory mechanisms of exosomes within the TIME of HCC, examining the impact of both HCC-derived and non-HCC-derived exosomes on various cellular components within the TIME. It emphasized their regulatory effects on cell phenotypes and functions, as well as their roles in HCC progression. The review also explored the potential applications of exosome-based immunotherapies, offering new insights into improving therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Fagoonee S, Weiskirchen R. MicroRNAs and RNA-Binding Protein-Based Regulation of Bone Metastasis from Hepatobiliary Cancers and Potential Therapeutic Strategies. Cells 2024; 13:1935. [PMID: 39682684 PMCID: PMC11640337 DOI: 10.3390/cells13231935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatobiliary cancers, such as hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are among the deadliest malignancies worldwide, leading to a significant number of cancer-related deaths. While bone metastases from these cancers are rare, they are highly aggressive and linked to poor prognosis. This review focuses on RNA-based molecular mechanisms that contribute to bone metastasis from hepatobiliary cancers. Specifically, the role of two key factors, microRNAs (miRNAs) and RNA-binding proteins (RBPs), which have not been extensively studied in the context of HCC and CCA, is discussed. These molecules often exhibit abnormal expression in hepatobiliary tumors, influencing cancer cell spread and metastasis by disrupting bone homeostasis, thereby aiding tumor cell migration and survival in the bone microenvironment. This review also discusses potential therapeutic strategies targeting these RNA-based pathways to reduce bone metastasis and improve patient outcomes. Further research is crucial for developing effective miRNA- and RBP-based diagnostic and prognostic biomarkers and treatments to prevent bone metastases in hepatobiliary cancers.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center “Guido Tarone”, 10126 Turin, Italy
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Safaei S, Alipour S, Bahojb Mahdavi SZ, Shalmashi H, Shahgoli VK, Shanehbandi D, Baradaran B, Kazemi T. Triple-negative breast cancer-derived exosomes change the immunological features of human monocyte-derived dendritic cells and influence T-cell responses. Mol Biol Rep 2024; 51:1058. [PMID: 39417912 DOI: 10.1007/s11033-024-10007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) exhibits a lower survival rate in comparison to other BC subtypes. Utilizing dendritic cell (DC) vaccines as a form of immunotherapy is becoming a promising new approach to cancer treatment. However, inadequate immunogenicity of tumor antigens leads to unsatisfactory effectiveness of the DC vaccines. Exosomes are the basis for the latest improvements in tumor immunotherapy. This study examined whether TNBC-derived exosomes elicit immunogenicity on the maturation and function of monocyte-derived DCs and the impact of the exosome-treated monocyte-derived DCs (moDCs) on T cell differentiation. METHODS exosomes were isolated from MDA-MB-231 TNBC cancer cells and characterized. Monocytes were separated from peripheral blood mononuclear cells and differentiated into DCs. Then, monocyte-derived DCs were treated with TNBC-derived exosomes. Furthermore, the mRNA levels of the genes and cytokines involved in DC maturation and function were examined using qRT-PCR and ELISA assays. We also cocultured TNBC-derived exosome-treated moDCs with T cells and investigated the role of the treatment in T cell differentiation by evaluating the expression of some related genes by qRT-PCR. The concentration of the cytokines secreted from T cells cocultured with exosome-treated moDCs was quantified by the ELISA assays. RESULTS Our findings showed that TNBC-derived exosomes induce immunogenicity by enhancing moDCs' maturation and function. In addition, exosome-treated moDCs promote cocultured T-cell expansion by inducing TH1 differentiation through increasing cytokine production. CONCLUSION TNBC-derived exosomes could improve vaccine-elicited immunotherapy by inducing an immunogenic response and enhancing the effectiveness of the DC vaccines. However, this needs to be investigated further in future studies.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hooman Shalmashi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Li W, Chen G, Peng H, Zhang Q, Nie D, Guo T, Zhu Y, Zhang Y, Lin M. Research Progress on Dendritic Cells in Hepatocellular Carcinoma Immune Microenvironments. Biomolecules 2024; 14:1161. [PMID: 39334927 PMCID: PMC11430656 DOI: 10.3390/biom14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells that play a crucial role in initiating immune responses by cross-presenting relevant antigens to initial T cells. The activation of DCs is a crucial step in inducing anti-tumor immunity. Upon recognition and uptake of tumor antigens, activated DCs present these antigens to naive T cells, thereby stimulating T cell-mediated immune responses and enhancing their ability to attack tumors. It is particularly noted that DCs are able to cross-present foreign antigens to major histocompatibility complex class I (MHC-I) molecules, prompting CD8+ T cells to proliferate and differentiate into cytotoxic T cells. In the malignant progression of hepatocellular carcinoma (HCC), the inactivation of DCs plays an important role, and the activation of DCs is particularly important in anti-HCC immunotherapy. In this review, we summarize the mechanisms of DCs activation in HCC, the involved regulatory factors and strategies to activate DCs in HCC immunotherapy. It provides a basis for the study of HCC immunotherapy through DCs activation.
Collapse
Affiliation(s)
- Wenya Li
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guojie Chen
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Medical School, Nantong University, Nantong 226019, China
| | - Hailin Peng
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Qingfang Zhang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Dengyun Nie
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Guo
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinxing Zhu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Yuhan Zhang
- The First School of Clinical Medicine Southern Medical University, Guangzhou 510515, China
| | - Mei Lin
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Huang Q, Zhong X, Li J, Hu R, Yi J, Sun J, Xu Y, Zhou X. Exosomal ncRNAs: Multifunctional contributors to the immunosuppressive tumor microenvironment of hepatocellular carcinoma. Biomed Pharmacother 2024; 173:116409. [PMID: 38460375 DOI: 10.1016/j.biopha.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant liver cancer characterized by aggressive progression, unfavorable prognosis, and an increasing global health burden. Therapies that precisely target immunological checkpoints and immune cells have gained significant attention as possible therapeutics in recent years. In truth, the efficacy of immunotherapy is heavily contingent upon the tumor microenvironment (TME). Recent studies have indicated that exosomes serve as a sophisticated means of communication among biomolecules, executing an essential part in the TME of immune suppression. Exosomal non-coding RNAs (ncRNAs) can induce the activation of tumor cells and immunosuppressive immune cells that suppress the immune system, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), CD+8 T cells, regulatory T cells (Tregs), and regulatory B cells (Bregs). This cell-cell crosstalk triggered by exosomal ncRNAs promotes tumor proliferation and metastasis, angiogenesis, malignant phenotype transformation, and drug resistance. Hence, it is imperative to comprehend how exosomal ncRNAs regulate tumor cells or immune cells within the TME to devise more comprehensive and productive immunotherapy programs. This study discusses the features of exosomal ncRNAs in HCC and how the activation of the exosomes redefines the tumor's immunosuppressive microenvironment, hence facilitating the advancement of HCC. Furthermore, we also explored the potential of exosomal ncRNAs as a viable biological target or natural vehicle for HCC therapy.
Collapse
Affiliation(s)
- Qi Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jing Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Rui Hu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jinyu Yi
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China.
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| |
Collapse
|
6
|
Tian L, Lu J, Ng IOL. Extracellular vesicles and cancer stemness in hepatocellular carcinoma - is there a link? Front Immunol 2024; 15:1368898. [PMID: 38476233 PMCID: PMC10927723 DOI: 10.3389/fimmu.2024.1368898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, with high recurrence rates and notorious resistance to conventional chemotherapy. Cancer stemness refers to the stem-cell-like phenotype of cancer cells and has been recognized to play important roles in different aspects of hepatocarcinogenesis. Small extracellular vesicles (sEVs) are small membranous particles secreted by cells that can transfer bioactive molecules, such as nucleic acids, proteins, lipids, and metabolites, to neighboring or distant cells. Recent studies have highlighted the role of sEVs in modulating different aspects of the cancer stemness properties of HCC. Furthermore, sEVs derived from diverse cellular sources, such as cancer cells, stromal cells, and immune cells, contribute to the maintenance of the cancer stemness phenotype in HCC. Through cargo transfer, specific signaling pathways are activated within the recipient cells, thus promoting the stemness properties. Additionally, sEVs can govern the secretion of growth factors from non-cancer cells to further maintain their stemness features. Clinically, plasma sEVs may hold promise as potential biomarkers for HCC diagnosis and treatment prediction. Understanding the underlying mechanisms by which sEVs promote cancer stemness in HCC is crucial, as targeting sEV-mediated communication may offer novel strategies in treatment and improve patient outcome.
Collapse
Affiliation(s)
- Lu Tian
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingyi Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Sun Z, Liu X, Lu M, Zhang X, Sun J. Serum-derived exosomes induce proinflammatory cytokines production in Cynoglossus semilaevis via miR-133-3p. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104497. [PMID: 35921922 DOI: 10.1016/j.dci.2022.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Exosomes are small membrane-enclosed vesicles secreted by various types of cells. In mammals, a wide range of physiological and pathological functions have been confirmed and attributed to EVs carrying a variety of molecular cargoes, including miRNAs. However, studies on the biological functions and related molecular mechanisms of serum exosomes isolated from teleost fish are limited. Indeed, the molecular mechanisms underlying the effects of serum exosomes on immune responses and inflammatory processes are unknown. Chinese tongue sole (Cynoglossus semilaevis) is an economically important species used widely in industrial aquaculture. Vibrio harveyi, a common bacterial pathogen that infects C. semilaevis and some other fish, causes excessive inflammatory reactions, which are characterized by skin ulceration. Here, we isolated serum-derived exosomes from C. semilaevis and investigated their effects on inflammatory processes following V. harveyi infection. We found that compared with uninfected fish, exosome abundance in infected fish blood increased with bacterial infection time, while expression of TNF-α increased, and that of IL-10 decreased, significantly. Moreover, artificial infection studies demonstrated that injection of serum exosomes isolated from infected fish increased expression of TNF-α, IL-6, and IL-8, which is consistent with the increase in proinflammatory cytokines induced by V. harveyi infection. To further investigate the mechanisms by which exosomes increase proinflammatory cytokine production, we performed miRNA expression profiling and found that 26 differentially expressed miRNAs were associated with bacterial infection and immune responses; of these, miR-133-3p was considerably more abundant in serum exosomes from infected fish. Bioinformatics analysis suggested that miR-133-3p inhibits NF-κB signaling pathways by targeting PP2A and affecting cytokine release. We also found that miR-133-3p increased expression of TNF-α, IL-6, and IL-8 in fish blood and kidney, whereas an miR-133-3p inhibitor showed the opposite results. Thus, the data suggest that serum exosomes participate in innate immunity in teleost fish by promoting inflammatory responses to bacterial infection. Exosome-mediated transfer of miR-133-3p increases expression of proinflammatory cytokines in C. semilaevis, resulting in excessive inflammatory responses during V. harveyi infection. These data may lead to development of methods and strategies that control skin ulceration in Chinese tongue sole.
Collapse
Affiliation(s)
- Zhanpeng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China; Faculty of Education, Tianjin Normal University, Tianjin, China.
| | - Xiaozhu Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| | - Meiyi Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| | - Xiao Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
8
|
Tian BW, Han CL, Dong ZR, Tan SY, Wang DX, Li T. Role of Exosomes in Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14164036. [PMID: 36011030 PMCID: PMC9406927 DOI: 10.3390/cancers14164036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is one of the most lethal malignancies, having a significantly poor prognosis. Immunotherapy, as an emerging tumor treatment option, provides new hope for many cancer patients. However, a large proportion of patients do not benefit from immunotherapy. As a critical cell-to-cell communication mediator in the tumor immune microenvironment, exosomes may play a unique role in hepatocellular carcinoma immune response and thus affect the efficiency of immunotherapy. In this review, we discuss related research on the roles of exosomes in the current immunotherapy resistance mechanism of hepatocellular carcinoma. Furthermore, we also clarify the excellent predictive value of exosomes and the roles they play in improving immunotherapy efficacy for hepatocellular carcinoma patients. We hope that our review can help readers to gain a more comprehensive understanding of exosomes’ roles in hepatocellular carcinoma immunotherapy. Abstract Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, having a significantly poor prognosis and no sufficiently efficient treatments. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has provided new therapeutic approaches for HCC patients. Nevertheless, most patients with HCC do not benefit from immunotherapy. Exosomes are biologically active lipid bilayer nano-sized vesicles ranging in size from 30 to 150 nm and can be secreted by almost any cell. In the HCC tumor microenvironment (TME), numerous cells are involved in tumor progression, and exosomes—derived from tumor cells and immune cells—exhibit unique composition profiles and act as intercellular communicators by transporting various substances. Showing the dual characteristics of tumor promotion and suppression, exosomes exert multiple functions in shaping tumor immune responses in the crosstalk between tumor cells and surrounding immune cells, mediating immunotherapy resistance by affecting the PD-1/PD-L1 axis or the anti-tumor function of immune cells in the TME. Targeting exosomes or the application of exosomes as therapies is involved in many aspects of HCC immunotherapies (e.g., ICIs, tumor vaccines, and adoptive cell therapy) and may substantially enhance their efficacy. In this review, we discuss the impact of exosomes on the HCC TME and comprehensively summarize the role of exosomes in immunotherapy resistance and therapeutic application. We also discuss the potential of exosomes as biomarkers for predicting the efficacy of immunotherapy to help clinicians in identifying HCC patients who are amenable to immunotherapies.
Collapse
Affiliation(s)
- Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Cheng-Long Han
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Si-Yu Tan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250000, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan 250000, China
- Correspondence: ; Tel./Fax: +86-531-8216-6651
| |
Collapse
|
9
|
Elkhoury K, Chen M, Koçak P, Enciso-Martínez E, Bassous NJ, Lee MC, Byambaa B, Rezaei Z, Li Y, Urbina M, Gurian M, Sobahi N, Hussain MA, Sanchez-Gonzalez L, Leijten J, Hassan S, Arab-Tehrany E, Ward JE, Shin SR. Hybrid extracellular vesicles-liposome incorporated advanced bioink to deliver microRNA. Biofabrication 2022; 14:10.1088/1758-5090/ac8621. [PMID: 35917808 PMCID: PMC9594995 DOI: 10.1088/1758-5090/ac8621] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
In additive manufacturing, bioink formulations govern strategies to engineer 3D living tissues that mimic the complex architectures and functions of native tissues for successful tissue regeneration. Conventional 3D-printed tissues are limited in their ability to alter the fate of laden cells. Specifically, the efficient delivery of gene expression regulators (i.e. microRNAs (miRNAs)) to cells in bioprinted tissues has remained largely elusive. In this study, we explored the inclusion of extracellular vesicles (EVs), naturally occurring nanovesicles (NVs), into bioinks to resolve this challenge. EVs show excellent biocompatibility, rapid endocytosis, and low immunogenicity, which lead to the efficient delivery of miRNAs without measurable cytotoxicity. EVs were fused with liposomes to prolong and control their release by altering their physical interaction with the bioink. Hybrid EVs-liposome (hEL) NVs were embedded in gelatin-based hydrogels to create bioinks that could efficiently encapsulate and deliver miRNAs at the target site in a controlled and sustained manner. The regulation of cells' gene expression in a 3D bioprinted matrix was achieved using the hELs-laden bioink as a precursor for excellent shape fidelity and high cell viability constructs. Novel regulatory factors-loaded bioinks will expedite the translation of new bioprinting applications in the tissue engineering field.
Collapse
Affiliation(s)
- Kamil Elkhoury
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
- LIBio, Université de Lorraine, F-54000 Nancy, France
- These authors contributed equally to this work
| | - Mo Chen
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
- These authors contributed equally to this work
| | - Polen Koçak
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
- Department of Biomedical Engineering, Faculty of Engineering, İstinye University, 34396 Sariyer/Istanbul, Trukey
| | - Eduardo Enciso-Martínez
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
| | - Nicole Joy Bassous
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
| | - Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
| | | | - Zahra Rezaei
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
| | - Yang Li
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
| | - Mariely Urbina
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
| | - Melvin Gurian
- Department of Developmental BioEngineering, University of Twente, Enschede, Overijssel 7522 NB, The Netherlands
| | - Nebras Sobahi
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Mohammad Asif Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | | | - Jeroen Leijten
- Department of Developmental BioEngineering, University of Twente, Enschede, Overijssel 7522 NB, The Netherlands
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
- Department of Biology, Khalifa University, 127788, Abu Dhabi, UAE Division of Genetics
| | | | - Jennifer Ellis Ward
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, 02115 USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, 02139 USA
| |
Collapse
|
10
|
Evidence for a Novel Antiviral Mechanism of Teleost Fish: Serum-Derived Exosomes Inhibit Virus Replication through Incorporating Mx1 Protein. Int J Mol Sci 2021; 22:ijms221910346. [PMID: 34638687 PMCID: PMC8508709 DOI: 10.3390/ijms221910346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
Exosomes are associated with cancer progression, pregnancy, cardiovascular diseases, central nervous system-related diseases, immune responses and viral pathogenicity. However, study on the role of exosomes in the immune response of teleost fish, especially antiviral immunity, is limited. Herein, serum-derived exosomes from mandarin fish were used to investigate the antiviral effect on the exosomes of teleost fish. Exosomes isolated from mandarin fish serum by ultra-centrifugation were internalized by mandarin fish fry cells and were able to inhibit Infectious spleen and kidney necrosis virus (ISKNV) infection. To further investigate the underlying mechanisms of exosomes in inhibiting ISKNV infection, the protein composition of serum-derived exosomes was analyzed by mass spectrometry. It was found that myxovirus resistance 1 (Mx1) was incorporated by exosomes. Furthermore, the mandarin fish Mx1 protein was proven to be transferred into the recipient cells though exosomes. Our results showed that the serum-derived exosomes from mandarin fish could inhibit ISKNV replication, which suggested an underlying mechanism of the exosome antivirus in that it incorporates Mx1 protein and delivery into recipient cells. This study provided evidence for the important antiviral role of exosomes in the immune system of teleost fish.
Collapse
|