1
|
Jing H, Liu Y, Song Y, Song T, Wang T, Ding Z, Liu J, Zhao P. ZDHHC3-LYPLA1 regulates PRRSV-2 replication through reversible palmitoylation. Vet Microbiol 2025; 301:110368. [PMID: 39787744 DOI: 10.1016/j.vetmic.2025.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious swine pathogen, causing respiratory problems in piglets and reproductive failure in sows. Palmitoylation, catalyzed by zinc finger Asp-His-His-Cys (ZDHHC) domain-containing palmitoyl acyltransferases, plays intricate roles in virus infection. However, whether palmitoylation regulates PRRSV replication is incompletely understood. Here, we report that inhibition of palmitoylation by 2-bromo palmitate (2-BP) promotes PRRSV multiplication. ZDHHC3 is identified as the key palmitoyl transferase regulating PRRSV replication in PAMs infection. Mechanistically, ZDHHC3 catalyzes nucleocapsid (N) protein palmitoylation at cysteine 90. This modification prevents the Nsp9-N protein interaction and subsequent viral RNA synthesis. Furthermore, LYPLA1 de-palmitoylates N protein, thus counteracting the ZDHHC3's activity on PRRSV replication. Meanwhile, the administration of small-molecule inhibitor ML348 targeting LYPLA1 could hinder PRRSV-2 replication. In summary, our results underscore the critical role of reversible palmitoylation in PRRSV replication. These findings might provide potential new anti-PRRSV strategies.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.
| | - Ying Liu
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yvzhen Song
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Ting Wang
- College of Animal Science, Jiangxi Agricultural University, Nanchang, China
| | - Zhen Ding
- College of Animal Science, Jiangxi Agricultural University, Nanchang, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Pandeng Zhao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
2
|
Chen W, Wu Y, Yang C, Ren W, Hou L, Liang H, Wu T, Kong Y, Wu J, Rao Y, Chen C. CDK9 targeting PROTAC L055 inhibits ERα-positive breast cancer. Biomed Pharmacother 2024; 177:116972. [PMID: 38906024 DOI: 10.1016/j.biopha.2024.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Breast cancer is one of the most prevalent malignancies affecting women worldwide, underscoring the urgent need for more effective and specific treatments. Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy to develop new lead compounds by selectively targeting oncoproteins for degradation. In this study, we designed, synthesized and evaluated a CRBN-based PROTAC, L055, which targets CDK9. Our findings demonstrate that L055 effectively inhibits the proliferation, induces cell cycle arrest, and decreases the survival of ERα-positive breast cancer cells in vitro. L055 specifically binds to CDK9, facilitating its degradation via the CRBN-dependent proteasomal pathway. Additionally, L055 suppressed the growth of organoids and tumors derived from T47D and MCF7 cells in nude mice. Thus, L055 represents a potential novel therapeutic agent for ERα-positive breast cancer and potentially other malignancies.
Collapse
Affiliation(s)
- Wenmin Chen
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming 650204, China; Department of Basic Medical Sciences, Beihai Vocational College of Wellness, Beihai 536000, China
| | - Yue Wu
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Chuanyu Yang
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenlong Ren
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; School of Life Science, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Lei Hou
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Huichun Liang
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Tingyue Wu
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; School of Life Science, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Yanjie Kong
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Jiao Wu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China.
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Ceshi Chen
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China; The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China.
| |
Collapse
|
3
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|