1
|
Porfireva ES, Zadorozhny AD, Rudik AV, Filimonov DA, Lagunin AA. Sequence-structure based prediction of pathogenicity for amino acid substitutions in proteins associated with primary immunodeficiencies. Front Immunol 2025; 16:1492751. [PMID: 39975544 PMCID: PMC11835853 DOI: 10.3389/fimmu.2025.1492751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Primary immunodeficiencies (PIDs) are a group of rare genetic disorders characterized by dysfunction of the immune system components. Early diagnosis and treatment are essential to prevent severe or life-threatening complications. PIDs are manifested by diverse clinical symptoms, posing challenges for accurate diagnosis. A key aspect of PID diagnosis is identifying specific amino acid substitutions in the proteins related with heritable diseases. In this study, we have developed classification sequence-structure-property relationships (SSPR) models for predicting the pathogenicity of amino acid substitutions (AAS) in 25 proteins associated with the most important and genetically studied PIDs and encoded genes: IL2RG, JAK3, RAG1, RAG2, ADA, DCLRE1C, CD40LG, WAS, ATM, STAT3, KMT2D, BTK, FOXP3, AIRE, FAS, ELANE, ITGB2, CYBB, G6PD, GATA2, STAT1, IFIH1, NLRP3, MEFV, and SERPING1. Methods The data on 4825 pathogenic and benign AASs in the selected proteins were extracted from ClinVar and gnomAD. SSPR models were created for each protein using the MultiPASS software based on the Bayesian algorithm and different levels of MNA (Multilevel Neighborhoods of Atoms) descriptors for the representation of structural formulas of protein fragments including AAS. Results The accuracy of prediction was assessed through a 5-fold cross-validation and compared to other bioinformatics tools, such as SIFT4G, Polyphen2 HDIV, FATHMM, MetaSVM, PROVEAN, ClinPred, and Alpha Missense. The best SSPR models demonstrated high accuracy, with an average ROC AUC of 0.831 ± 0.037, a Balanced accuracy of (0.763 ± 0.034), MCC (0.457 ± 0.06), and F-measure (0.623 ± 0.07) across all genes, outperforming the most popular bioinformatics tools. Conclusions The best created SSPR models for the prediction of pathogenicity of amino acid substitutions related with PIDs have been implemented in a freely available web application SAV-Pred (Single Amino acid Variants Predictor, http://www.way2drug.com/SAV-Pred/), which may be a useful tool for medical geneticists and clinicians. The use of SAV-Pred for some clinical cases of PIDs are provided.
Collapse
Affiliation(s)
- Ekaterina S. Porfireva
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anton D. Zadorozhny
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasia V. Rudik
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Moscow, Russia
| | - Dmitry A. Filimonov
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexey A. Lagunin
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Davidson HR, Jamal L, Mueller R, Similuk M, Owczarzak J. Renegotiation, uncertainty, imagination: Assemblage perspectives on reproductive and family planning with an Inborn Error of immunity. Soc Sci Med 2024; 360:117303. [PMID: 39265231 PMCID: PMC11490359 DOI: 10.1016/j.socscimed.2024.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Advances within the new genetics expand our understanding of the scope and presentation of inherited conditions, particularly to include incompletely penetrant and variably expressive conditions. These features can complicate patients' reproductive and family planning processes, in part because they expand the possibilities of life with an inherited condition. Despite many inquiries into reproductive planning with an inherited condition, accounts of experiential knowledge and reproductive planning fail to adequately describe the uncertainties experienced by people living with incompletely penetrant and variably expressive conditions. To address this gap, we conducted a qualitative, cross-sectional study using assemblage theory to characterize the impacts of experiential knowledge on reproductive planning for individuals living with Inborn Errors of Immunity (IEI) that exhibit incomplete penetrance and variable expressivity. Eligible participants were between ages 18 and 48, with a diagnosis of either GATA2 deficiency, PIK3CD gain-of-function disorder, or CTLA4 deficiency. Using an abductive thematic approach, attention was paid to the people, ideas, and non-human objects embedded within participants' accounts of disease experience and reproductive planning. Organized around the objects of genetic diagnosis, the body, and hypothetical children, this analysis illustrates how disease can be conceptualized as an assemblage of human and non-human objects which provoke numerous actions and affective engagements in reproductive planning. These engagements include renegotiation, uncertainty, and imagination. By emphasizing the distribution of agency and action across systems, processes, and relationships, assemblage theory invites novel ways of understanding the role of experiential knowledge on reproductive planning.
Collapse
Affiliation(s)
- Hannah R Davidson
- Telomere Center, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA.
| | - Leila Jamal
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; National Institutes of Health Department of Bioethics, Clinical Center, Bethesda, MD, USA
| | - Rebecca Mueller
- Medical Ethics & Health Policy, University of Pennsylvania, Philadelphia, PA, USA; Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadephia, PA, USA
| | - Morgan Similuk
- Centralized Sequencing Program, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Jill Owczarzak
- Department of Health, Behavior, and Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Yang XT, Yang WL, Lau YL. NGS data analysis for molecular diagnosis of Inborn Errors of Immunity. Semin Immunol 2024; 74-75:101901. [PMID: 39509871 DOI: 10.1016/j.smim.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Inborn errors of immunity (IEI) encompass a group of disorders with a strong genetic component. Prompt and accurate diagnosis of these disorders is essential for effective clinical management. Next-generation sequencing (NGS) has significantly enhanced the diagnostic process by offering a comprehensive and scalable approach for identifying genomic variations causal for these disorders. Nevertheless, the bioinformatics analysis of NGS data poses several challenges. In this review, we explore these challenges and share our insights on addressing them, aiming to improve the overall diagnostic yield.
Collapse
Affiliation(s)
- X T Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - W L Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Y L Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Delavari S, Rasouli SE, Fekrvand S, Chavoshzade Z, Mahdaviani SA, Shirmast P, Sharafian S, Sherkat R, Momen T, Aleyasin S, Ahanchian H, Sadeghi-Shabestari M, Esmaeilzadeh H, Barzamini S, Tarighatmonfared F, Salehi H, Esmaeili M, Marzani Z, Fathi N, Abolnezhadian F, Rad MK, Saeedi-Boroujeni A, Shirkani A, Bagheri Z, Salami F, Shad TM, Marzbali MY, Mojtahedi H, Razavi A, Tavakolinia N, Cheraghi T, Tavakol M, Shafiei A, Behniafard N, Ebrahimi SS, Sepahi N, Ghaneimoghadam A, Rezaei A, Kalantari A, Abolhassani H, Rezaei N. Clinical heterogeneity in families with multiple cases of inborn errors of immunity. Clin Immunol 2024; 259:109896. [PMID: 38184287 DOI: 10.1016/j.clim.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEI) are a diverse range of genetic immune system illnesses affecting the innate and/or adaptive immune systems. Variable expressivity and incomplete penetrance have been reported in IEI patients with similar clinical diagnoses or even the same genetic mutation. METHODS Among all recorded patients in the national IEI registry, 193 families with multiple cases have been recognized. Clinical, laboratory and genetic variability were compared between 451 patients with different IEI entities. RESULTS The diagnosis of the first children led to the earlier diagnosis, lower diagnostic delay, timely treatment and improved survival in the second children in the majority of IEI. The highest discordance in familial lymphoproliferation, autoimmunity and malignancy were respectively observed in STK4 deficiency, DNMT3B deficiency and ATM deficiency. Regarding immunological heterogeneity within a unique family with multiple cases of IEI, the highest discordance in CD3+, CD4+, CD19+, IgM and IgA levels was observed in syndromic combined immunodeficiencies (CID), while non-syndromic CID particularly severe combined immunodeficiency (SCID) manifested the highest discordance in IgG levels. Identification of the first ATM-deficient patient can lead to improved care and better survival in the next IEI children from the same family. CONCLUSION Intrafamilial heterogeneity in immunological and/or clinical features could be observed in families with multiple cases of IEI indicating the indisputable role of appropriate treatment and preventive environmental factors besides specific gene mutations in the variable observed penetrance or expressivity of the disease. This also emphasizes the importance of implementing genetic evaluation in all members of a family with a history of IEI even if there is no suspicion of an underlying IEI as other factors besides the underlying genetic defects might cause a milder phenotype or delay in presentation of clinical features. Thus, affected patients could be timely diagnosed and treated, and their quality of life and survival would improve.
Collapse
Affiliation(s)
- Samaneh Delavari
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Erfan Rasouli
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saba Fekrvand
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Chavoshzade
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Shirmast
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Samin Sharafian
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tooba Momen
- Department of Asthma, Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute of Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheila Aleyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Sahar Barzamini
- Department of Rheumatology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Tarighatmonfared
- Pediatric Respiratory and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Marzani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Fathi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Mina Kianmanesh Rad
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Sciences, School of Medicine, Bushehr, Iran
| | - Zahra Bagheri
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Salami
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Yousefpour Marzbali
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Taher Cheraghi
- Department of Pediatrics, Guilan University of Medical Sciences, 17 Shahrivar Children's Hospital, Rasht, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Shafiei
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Behniafard
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sare Sadat Ebrahimi
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Arezou Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Nima Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Pan Y, Shang G, Li J, Zhang Y, Liu J, Ji Y, Ding J, Wang X. Case Report: A novel IRF2BP2 mutation in an IEI patient with recurrent infections and autoimmune disorders. Front Immunol 2023; 14:967345. [PMID: 37350971 PMCID: PMC10282741 DOI: 10.3389/fimmu.2023.967345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/20/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Inborn errors of immunity (IEI) are a heterogeneous group of disorders characterized by increased risk of infections, autoimmunity, autoinflammatory diseases, malignancy and allergy. Next-generation sequencing has revolutionized the identification of genetic background of these patients and assists in diagnosis and treatment. In this study, we identified a probable unique monogenic cause of IEI, and evaluated the immunological methods and pathogenic detections. Methods A family with a member with a clinical diagnosis of IEI was screened by whole genomic sequencing (WGS). Demographic data, clinical manifestations, medical history, physical examination, laboratory findings and imaging features of the patient were extracted from medical records. Comprehensive immune monitoring methods include a complete blood count with differential, serum levels of cytokines and autoantibodies, T-cell and B-cell subsets analysis and measurement of serum immunoglobulins. In addition, metagenomic sequencing (mNGS) of blood, cerebrospinal fluid and biopsy from small intestine were used to detect potential pathogens. Results The patient manifested with recurrent infections and autoimmune disorders, who was eventually diagnosed with IEI. Repetitive mNGS tests of blood, cerebrospinal fluid and biopsy from small intestine didn't detect pathogenic microorganism. Immunological tests showed a slightly decreased level of IgG than normal, elevated levels of tumor necrosis factor and interleukin-6. Lymphocyte flow cytometry showed elevated total B cells and natural killer cells, decreased total T cells and B-cell plasmablasts. WGS of the patient identified a novel heterozygous mutation in IRF2BP2 (c.439_450dup p. Thr147_Pro150dup), which was also confirmed in his father. The mutation was classified as variant of uncertain significance (VUS) according to the American College of Medical Genetics and Genomics guidelines. Conclusion We identified a novel IRF2BP2 mutation in a family with a member diagnosed with IEI. Immune monitoring and WGS as auxiliary tests are helpful in identifying genetic defects and assisting diagnosis in patients with clinically highly suspected immune abnormalities and deficiencies in inflammation regulation. In addition, mNGS techniques allow a more comprehensive assessment of the pathogenic characteristics of these patients. This report further validates the association of IRF2BP2 deficiency and IEI, and expands IEI phenotypes.
Collapse
Affiliation(s)
- Yiwen Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoguo Shang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianying Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- The State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ahimaz P, Foltz JC, Ross MJ, Florido ME, Sebastin M, Yu JE. Exploring the role of genetic counselors in immunology: A study of immunologist and allergist perspectives. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1939-1942.e2. [PMID: 36787825 DOI: 10.1016/j.jaip.2023.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Affiliation(s)
- Priyanka Ahimaz
- Genetic Counseling Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY.
| | - Jennah C Foltz
- Genetic Counseling Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Meredith J Ross
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Michelle E Florido
- Genetic Counseling Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Monisha Sebastin
- Division of Clinical Genetics, Department of Pediatrics, Montefiore Medical Center, New York, NY
| | - Joyce E Yu
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Columbia University, New York, NY
| |
Collapse
|
7
|
Sakura F, Noma K, Asano T, Tanita K, Toyofuku E, Kato K, Tsumura M, Nihira H, Izawa K, Mitsui-Sekinaka K, Konno R, Kawashima Y, Mizoguchi Y, Karakawa S, Hayakawa S, Kawaguchi H, Imai K, Nonoyama S, Yasumi T, Ohnishi H, Kanegane H, Ohara O, Okada S. A complementary approach for genetic diagnosis of inborn errors of immunity using proteogenomic analysis. PNAS NEXUS 2023; 2:pgad104. [PMID: 37077884 PMCID: PMC10109033 DOI: 10.1093/pnasnexus/pgad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Advances in next-generation sequencing technology have identified many genes responsible for inborn errors of immunity (IEI). However, there is still room for improvement in the efficiency of genetic diagnosis. Recently, RNA sequencing and proteomics using peripheral blood mononuclear cells (PBMCs) have gained attention, but only some studies have integrated these analyses in IEI. Moreover, previous proteomic studies for PBMCs have achieved limited coverage (approximately 3000 proteins). More comprehensive data are needed to gain valuable insights into the molecular mechanisms underlying IEI. Here, we propose a state-of-the-art method for diagnosing IEI using PBMCs proteomics integrated with targeted RNA sequencing (T-RNA-seq), providing unique insights into the pathogenesis of IEI. This study analyzed 70 IEI patients whose genetic etiology had not been identified by genetic analysis. In-depth proteomics identified 6498 proteins, which covered 63% of 527 genes identified in T-RNA-seq, allowing us to examine the molecular cause of IEI and immune cell defects. This integrated analysis identified the disease-causing genes in four cases undiagnosed in previous genetic studies. Three of them could be diagnosed by T-RNA-seq, while the other could only be diagnosed by proteomics. Moreover, this integrated analysis showed high protein-mRNA correlations in B- and T-cell-specific genes, and their expression profiles identified patients with immune cell dysfunction. These results indicate that integrated analysis improves the efficiency of genetic diagnosis and provides a deep understanding of the immune cell dysfunction underlying the etiology of IEI. Our novel approach demonstrates the complementary role of proteogenomic analysis in the genetic diagnosis and characterization of IEI.
Collapse
Affiliation(s)
- Fumiaki Sakura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Kay Tanita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo City, Tokyo 113-0034, Japan
| | - Etsushi Toyofuku
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo City, Tokyo 113-0034, Japan
| | - Kentaro Kato
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Kanako Mitsui-Sekinaka
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | - Ryo Konno
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu City, Chiba 292-0818, Japan
| | - Yusuke Kawashima
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu City, Chiba 292-0818, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Hiroshi Kawaguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo Ward, Kyoto City 606-8507, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu City 501-1112, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo City, Tokyo 113-0034, Japan
| | - Osamu Ohara
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu City, Chiba 292-0818, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8551, Japan
| |
Collapse
|
8
|
Shahrbabaki ZS, Chavoshzadeh Z, Abdollahimajd F, sharafian S, Jamee M, Bondarenko A, Mahdavi T. Skin manifestations in children with inborn errors of immunity in a tertiary care hospital in Iran. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2023. [DOI: 10.1002/cia2.12296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Zahra Salehi Shahrbabaki
- Immunology and Allergy Department, Mofid Children's Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fahimeh Abdollahimajd
- Skin Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
- Clinical Research Development Unit of Shohada‐e Tajrish Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Samin sharafian
- Immunology and Allergy Department, Mofid Children's Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Anastasia Bondarenko
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medic School International European Kyiv Kyiv Ukraine
| | - Tolue Mahdavi
- Department of Allergy and Clinical Immunology, Hazrat Rasoul Hospital Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Delavari S, Wang Y, Moeini shad T, Pashangzadeh S, Nazari F, Salami F, Abolhassani H. Clinical and Immunologic Characteristics of Non-Hematologic Cancers in Patients with Inborn Errors of Immunity. Cancers (Basel) 2023; 15:cancers15030764. [PMID: 36765721 PMCID: PMC9913767 DOI: 10.3390/cancers15030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of inherited disorders, and almost 500 genes associated with these disorders have been identified. Defects in IEI genes lead to diverse clinical manifestations including increased susceptibility to recurrent or prolonged infections, immune dysregulation phenotypes (such as severe atopy, allergy, autoimmunity, and uncontrolled inflammation, lymphoproliferation), as well as predisposition to malignancies. Although the majority of IEI patients present hematologic cancers, the characteristics of other types of cancers are not well described in these groups of patients. By investigating 5384 IEI patients registered in the Iranian national registry the clinical and immunologic phenotypes of patients with non-hematologic cancers were compared with other malignant and non-malignant patients. Solid tumors were reported <20% of malignant IEI patients (n = 27/144 patients) and appeared to be very heterogeneous by type and localization as well as molecular defects (mainly due to DNA repair defect resulted from ATM deficiency). The correlation between the type of malignancy and survival status was remarkable as patients with non-hematologic cancers survive higher than IEI patients with hematologic cancers. Our findings showed that different types of malignancy could be associated with specific entities of IEI. Therefore, the education of physicians about the risk of malignancies in IEI is required for personalized treatment and appropriate management of patients.
Collapse
Affiliation(s)
- Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, 14183 Stockholm, Sweden
| | - Tannaz Moeini shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Salar Pashangzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Farzad Nazari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, 1419733151 Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, 14183 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
10
|
Mauracher AA, Henrickson SE. Leveraging Systems Immunology to Optimize Diagnosis and Treatment of Inborn Errors of Immunity. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:910243. [PMID: 37670772 PMCID: PMC10477056 DOI: 10.3389/fsysb.2022.910243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Inborn errors of immunity (IEI) are monogenic disorders that can cause diverse symptoms, including recurrent infections, autoimmunity and malignancy. While many factors have contributed, the increased availability of next-generation sequencing has been central in the remarkable increase in identification of novel monogenic IEI over the past years. Throughout this phase of disease discovery, it has also become evident that a given gene variant does not always yield a consistent phenotype, while variants in seemingly disparate genes can lead to similar clinical presentations. Thus, it is increasingly clear that the clinical phenotype of an IEI patient is not defined by genetics alone, but is also impacted by a myriad of factors. Accordingly, we need methods to amplify our current diagnostic algorithms to better understand mechanisms underlying the variability in our patients and to optimize treatment. In this review, we will explore how systems immunology can contribute to optimizing both diagnosis and treatment of IEI patients by focusing on identifying and quantifying key dysregulated pathways. To improve mechanistic understanding in IEI we must deeply evaluate our rare IEI patients using multimodal strategies, allowing both the quantification of altered immune cell subsets and their functional evaluation. By studying representative controls and patients, we can identify causative pathways underlying immune cell dysfunction and move towards functional diagnosis. Attaining this deeper understanding of IEI will require a stepwise strategy. First, we need to broadly apply these methods to IEI patients to identify patterns of dysfunction. Next, using multimodal data analysis, we can identify key dysregulated pathways. Then, we must develop a core group of simple, effective functional tests that target those pathways to increase efficiency of initial diagnostic investigations, provide evidence for therapeutic selection and contribute to the mechanistic evaluation of genetic results. This core group of simple, effective functional tests, targeting key pathways, can then be equitably provided to our rare patients. Systems biology is thus poised to reframe IEI diagnosis and therapy, fostering research today that will provide streamlined diagnosis and treatment choices for our rare and complex patients in the future, as well as providing a better understanding of basic immunology.
Collapse
Affiliation(s)
- Andrea A. Mauracher
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah E. Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Moeini Shad T, Yazdani R, Amirifar P, Delavari S, Heidarzadeh Arani M, Mahdaviani SA, Sadeghi-Shabestari M, Aghamohammadi A, Rezaei N, Abolhassani H. Atypical Ataxia Presentation in Variant Ataxia Telangiectasia: Iranian Case-Series and Review of the Literature. Front Immunol 2022; 12:779502. [PMID: 35095854 PMCID: PMC8795590 DOI: 10.3389/fimmu.2021.779502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (AT) is a rare autosomal recessive neurodegenerative multisystem disorder. A minority of AT patients can present late-onset atypical presentations due to unknown mechanisms. The demographic, clinical, immunological and genetic data were collected by direct interview and examining the Iranian AT patients with late-onset manifestations. We also conducted a systematic literature review for reported atypical AT patients. We identified three Iranian AT patients (3/249, 1.2% of total registry) with later age at ataxia onset and slower neurologic progression despite elevated alpha-fetoprotein levels, history of respiratory infections, and immunological features of the syndrome. Of note, all patients developed autoimmunity in which a decrease of naïve T cells and regulatory T cells were observed. The literature searches also summarized data from 73 variant AT patients with atypical presentation indicating biallelic mild mutations mainly lead to an atypical phenotype with an increased risk of cancer. Variant AT patients present with milder phenotype or atypical form of classical symptoms causing under- or mis- diagnosis. Although missense mutations are more frequent, an atypical presentation can be associated with deleterious mutations due to unknown modifying factors.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|