1
|
Zhang H, Tan B, Tang T, Tao J, Jin T, Wu S. Targeting inflammasomes as a therapeutic potential for HIV/AIDS. Cell Mol Life Sci 2025; 82:162. [PMID: 40244456 PMCID: PMC12006635 DOI: 10.1007/s00018-025-05685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025]
Abstract
Human immunodeficiency virus (HIV) infection in humans can cause a variety of symptoms. Among these, acquired immunodeficiency syndrome (AIDS) remains the most severe form. Current treatment of HIV/AIDS with antiretroviral drugs effectively inhibits HIV replication and infection and significantly extends the lifespan of HIV/AIDS patients. However, antiretroviral drugs cannot completely remove HIV from patients due to the high latency of HIV, and they possess side effects and can lead to drug resistance. HIV/AIDS remains to be an incurable disease, and new methods and drugs are still desirable. Inflammasomes were found to be activated during HIV infection and regulate AIDS progression. Previous reviews provide a simple summary of inflammasome activators and inhibitors during HIV infection without distinguishing the specific infection stage, this kind of summary does not provide any clinical target value. Here, we provide a comprehensive review of inflammasomes in HIV/AIDS according to the infection timeline and propose several inflammasome target strategies for clinical HIV/AIDS treatment. We systematacially summarized the activation and function of kinds inflammasomes during the different HIV infection stages, with the aim of providing new therapeutic targets and directions for HIV/AIDS and HIV-associated comorbidities.
Collapse
Affiliation(s)
- Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Botao Tan
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Tinbing Tang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
2
|
Zheng T, Lu F, Cai T, Chen H, Zhang R, Wang G, Li X. The interconnection between periodontitis and HIV-1 latency: Molecular mechanisms and therapeutic insights. Int Immunopharmacol 2024; 143:113402. [PMID: 39437490 DOI: 10.1016/j.intimp.2024.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Periodontitis is one of the major global public health problems associated with the occurrence and development of diverse systemic diseases, especially acquired immune deficiency syndrome (AIDS), necessitating further research and clinical attention. The persistence of HIV-1 latency poses a significant challenge to the attainment of a functional cure for AIDS, despite the introduction of highly active antiretroviral therapy (HAART). A similar mechanistic basis between periodontitis and HIV-1 latency has been revealed by many studies, suggesting possible mechanisms whereby periodontitis and HIV-1 latency may mutually influence each other. Therefore, we aimed to systematically summarize the current research on periodontitis and HIV-1 latency to investigate their potential correlations. This study revealed several common hubs for periodontitis and HIV-1 latency in the nuclear factor kappa-B (NF-κB) signaling pathway and other signaling pathways, including the Wnt/β-catenin pathway, bromodomain-containing protein 4 (BRD4), protein kinase C (PKC), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, programmed cell death protein 1 (PD-1), histone deacetylases (HDACs), and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Furthermore, we will discuss the hypothesis that periodontal pathogens may represent the unifying mechanism elucidating the intricate interconnection between periodontitis and HIV-1 latency. This article presents a detailed and comprehensive overview of the relationship underlying periodontitis and HIV-1 latency in terms of molecular mechanisms, which may provide novel theoretical insight into the pathogenesis of periodontitis and HIV-1 latency and reveal suitable therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Tengyi Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tiange Cai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaxue Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guixiang Wang
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Sanchez-Gendriz I, Carvalho DDA, Galvão-Lima LJ, Sales-Moioli AIL, Brito T, Fernandes F, Henriques J, Lima T, Guedes LA, Cruz AS, Morais AHF, Santos JPQ, Arrais E, Coutinho KD, Machado GM, Cunha-Oliveira A, Dos Reis Vale Gomes CA, Valentim RAM. Digital dual test syphilis/HIV detection based on Fourier Descriptors of Cyclic Voltammetry curves. Comput Biol Med 2024; 174:108454. [PMID: 38608326 DOI: 10.1016/j.compbiomed.2024.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/10/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Effective and timely detection is vital for mitigating the severe impacts of Sexually Transmitted Infections (STI), including syphilis and HIV. Cyclic Voltammetry (CV) sensors have shown promise as diagnostic tools for these STI, offering a pathway towards cost-effective solutions in primary health care settings. OBJECTIVE This study aims to pioneer the use of Fourier Descriptors (FDs) in analyzing CV curves as 2D closed contours, targeting the simultaneous detection of syphilis and HIV. METHODS Raw CV signals are filtered, resampled, and transformed into 2D closed contours for FD extraction. Essential shape characteristics are captured through selected coefficients. A complementary geometrical analysis further extracts features like curve areas and principal axes lengths from CV curves. A Mahalanobis Distance Classifier is employed for differentiation between patient and control groups. RESULTS The evaluation of the proposed method revealed promising results with classification performance metrics such as Accuracy and F1-Score consistently achieving values rounded to 0.95 for syphilis and 0.90 for HIV. These results underscore the potential efficacy of the proposed approach in differentiating between patient and control samples for STI detection. CONCLUSION By integrating principles from biosensors, signal processing, image processing, machine learning, and medical diagnostics, this study presents a comprehensive approach to enhance the detection of both syphilis and HIV. This setts the stage for advanced and accessible STI diagnostic solutions.
Collapse
Affiliation(s)
- Ignacio Sanchez-Gendriz
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil.
| | - Dionísio D A Carvalho
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Leonardo J Galvão-Lima
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Ana Isabela Lopes Sales-Moioli
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Talita Brito
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Felipe Fernandes
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Jorge Henriques
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Thaisa Lima
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil; Ministry of Health, Esplanada dos Ministérios, Brasília, Brazil
| | - Luiz Affonso Guedes
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Agnaldo S Cruz
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Antonio H F Morais
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil; Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte, Natal/RN, Brazil
| | - João Paulo Q Santos
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil; Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte, Natal/RN, Brazil
| | - Ernano Arrais
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil; Department of Biomedical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Karilany Dantas Coutinho
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil; Department of Biomedical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | | | - Aliete Cunha-Oliveira
- Health Sciences Research Unit, Nursing (UICISA: E) and Nursing School of Coimbra (ESEnfC), Coimbra, Portugal; Center for Interdisciplinary Studies - CEIS20, University of Coimbra, Coimbra, Portugal
| | | | - Ricardo A M Valentim
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil; Department of Biomedical Engineering, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| |
Collapse
|
4
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
5
|
Freeman TL, Zhao C, Schrode N, Fortune T, Shroff S, Tweel B, Beaumont KG, Swartz TH. HIV-1 activates oxidative phosphorylation in infected CD4 T cells in a human tonsil explant model. Front Immunol 2023; 14:1172938. [PMID: 37325659 PMCID: PMC10266353 DOI: 10.3389/fimmu.2023.1172938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Human immunodeficiency virus type 1 (HIV-1) causes a chronic, incurable infection leading to immune activation and chronic inflammation in people with HIV-1 (PWH), even with virologic suppression on antiretroviral therapy (ART). The role of lymphoid structures as reservoirs for viral latency and immune activation has been implicated in chronic inflammation mechanisms. Still, the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue remain unexplored. Methods In this study, we utilized human tonsil explants from healthy human donors and infected them with HIV-1 ex vivo. We performed single-cell RNA sequencing (scRNA-seq) to analyze the cell types represented in the tissue and to investigate the impact of infection on gene expression profiles and inflammatory signaling pathways. Results Our analysis revealed that infected CD4+ T cells exhibited upregulation of genes associated with oxidative phosphorylation. Furthermore, macrophages exposed to the virus but uninfected showed increased expression of genes associated with the NLRP3 inflammasome pathway. Discussion These findings provide valuable insights into the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue. The activation of oxidative phosphorylation in infected CD4+ T cells and the proinflammatory response in macrophages may contribute to the chronic inflammation observed in PWH despite ART. Understanding these mechanisms is crucial for developing targeted therapeutic strategies to eradicate HIV-1 infection in PWH.
Collapse
Affiliation(s)
- Tracey L. Freeman
- Medical Scientist Training Program, University of Pittsburgh-Carnegie Mellon University, Pittsburgh, PA, United States
| | - Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nadine Schrode
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sanjana Shroff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Tweel
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Min AK, Fortune T, Rodriguez N, Hedge E, Swartz TH. Inflammasomes as mediators of inflammation in HIV-1 infection. Transl Res 2023; 252:1-8. [PMID: 35917903 PMCID: PMC10160852 DOI: 10.1016/j.trsl.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/14/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is a chronic disease without a known cure. The advent of effective antiretroviral therapy (ART) has enabled people with HIV (PWH) to have significantly prolonged life expectancies. As a result, morbidity and mortality associated with HIV-1 infection have declined considerably. However, these individuals experience chronic systemic inflammation whose multifaceted etiology is associated with other numerous comorbidities. Inflammasomes are vital mediators that contribute to inflammatory signaling in HIV-1 infection. Here, we provide an overview of the inflammatory pathway that underlies HIV-1 infection, explicitly highlighting the role of the NLRP3 inflammasome. We also delineate the current literature on inflammasomes and the therapeutic targeting strategies aimed at the NLRP3 inflammasome to moderate HIV-1 infection-associated inflammation. Here we describe the NLRP3 inflammasome as a key pathway in developing novel therapeutic targets to block HIV-1 replication and HIV-1-associated inflammatory signaling. Controlling the inflammatory pathways is critical in alleviating the morbidities and mortality associated with chronic HIV-1 infection in PWH.
Collapse
Affiliation(s)
- Alice K Min
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Natalia Rodriguez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Esha Hedge
- University of South Carolina, Columbia, South Carolina
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|