1
|
Zhakeer G, Zeng Y, E G, Maimaitiaili N, Ju P, Yao H, Shi Y, Zhai M, Li K, Zhuang J, Cao Y, Yu Q, Peng W. T reg Cells Attenuate Pulmonary Venous Remodeling in PH-LHD via NLRC3 Signaling. Circ Res 2025; 136:e113-e128. [PMID: 40235449 DOI: 10.1161/circresaha.124.325201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Pulmonary venous remodeling is a key pathological feature of pulmonary hypertension associated with left heart disease (PH-LHD). This study aims to investigate the role of regulatory T (Treg) cells in this process. METHODS We used mouse models with transverse aortic constriction and cell depletion of Foxp3-DTR/tdTomato mice to examine Treg cells' function around pulmonary veins in PH-LHD in vivo. To confirm the effect of Nlrc3-/- Treg cells on PH-LHD, we utilized 3 mouse models: Nlrc3 knockout mice, athymic mice, and endothelial cell lineage tracing Cdh5CreERT2+/--mT/mG+/- mice. The interaction proteins and signaling pathways of Treg cells during endothelial-to-mesenchymal transition were elucidated by protein docking prediction, coimmunoprecipitation and cocultivation of Treg cells with venous endothelial cells. RESULTS Treg cells were abundant around pulmonary veins of transverse aortic constriction-induced PH-LHD and were essential for promoting inflammation resolution and inhibiting pulmonary venous remodeling. Nlrc3 expression was reduced in mice and patients with PH-LHD. NLRC3 (nucleotide-oligomerization domain-like receptor family CARD domain containing 3) deficiency inhibited Treg cell proliferation and impaired their immunosuppressive and endothelial-to-mesenchymal transition-protective effects. Mechanistically, NLRC3 interacted with TRAM (TRIF-related adaptor molecule) and regulated interferon regulatory factor 3 (IRF3)/NF-κB (nuclear factor-κB) p65 signaling in cluster differentiation 4+ (CD4+) T cells. NLRC3-deficient Treg cells promoted interleukin (IL)-18 expression through IRF3/NF-κB p65 signaling, and thus IL-18 secretion activated endothelial receptor tyrosine kinase (RTK) signaling, favoring endothelial-to-mesenchymal transition progression in pulmonary veins and PH-LHD progress. This process was reversible with IL-18 binding protein in vivo. CONCLUSIONS NLRC3 is crucial for Treg cells to prevent pulmonary venous remodeling in PH-LHD, primarily by modulating IL-18 secretion, which inhibits endothelial-to-mesenchymal transition and thereby improves disease progression and prognosis.
Collapse
MESH Headings
- Animals
- Vascular Remodeling
- Signal Transduction
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/immunology
- Humans
- Pulmonary Veins/metabolism
- Pulmonary Veins/pathology
- Pulmonary Veins/physiopathology
- Pulmonary Veins/immunology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/genetics
- Mice, Knockout
- Mice
- Disease Models, Animal
- Male
- Transcription Factor RelA/metabolism
- Female
- Mice, Inbred C57BL
- Cells, Cultured
Collapse
Affiliation(s)
- Gulinigeer Zhakeer
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Yanxi Zeng
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Guangxi E
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Nuerbiyemu Maimaitiaili
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Peinan Ju
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Hongyun Yao
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (H.Y.)
| | - Yefei Shi
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Ming Zhai
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Ke Li
- Neuroregeneration Key Laboratory of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China (K.L.)
| | - Jianhui Zhuang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
- Department of Cardiology, Shigatse People's Hospital, Tibet, China (J.Z.)
| | - Yunshan Cao
- Heart, Lung and Vessels Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu Sichuan, China (Y.C.)
| | - Qing Yu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| | - Wenhui Peng
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China (G.Z., Y.Z., G.E., N.M., P.J., Y.S., M.Z., J.Z., Q.Y., W.P.)
| |
Collapse
|
2
|
Zhang W, Zhu G, Sun H, Jiang C. NLRC3 affects the development of psoriasis by modulating the NF-κB signaling pathway mediated inflammatory response through its interaction with TRAF6. Immunol Lett 2025; 272:106949. [PMID: 39615555 DOI: 10.1016/j.imlet.2024.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The function and mechanism of NOD-like receptor family CARD-containing 3 (NLRC3) in psoriasis are not yet reported, even though it plays a crucial role in innate and adaptive immunity by inhibiting inflammation. Therefore, this research aims to investigate the role and mechanism of NLRC3 in psoriasis. METHODS HaCaT cells were induced to form a psoriasis cell model using 20 ng/mL IL-1β, 20 ng/mL IL-17A, 20 ng/mL IL-23, 50 ng/mL TNF-α, and 20 ng/mL oncostatin M. Cell Counting Kit-8 (CCK-8) assay and flow cytometry were assessed to determine the proliferation, cell cycle, and apoptosis of HaCaT cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was utilized to measure the knockdown efficiency of NLRC3 and TRAF6 interfering RNA in HaCaT cells. Western blot analysis was performed to determine the expression levels of NLRC3, TRAF6, and proteins associated with the NF-κB signaling pathway. A mouse model of psoriasis-like dermatitis was established by evenly applying miquimod cream (62.5 mg/day) to both ears. Hematoxylin-eosin staining was used to measure ear thickness and inflammatory infiltrates in mice. Histological analysis, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL were performed to detect cell proliferation and apoptosis. Interactions between NLRC3 and TRAF6 were predicted using the STRING database (https://cn.string-db.org/). Co-Immunoprecipitation was used to confirm interactions between NLRC3 and TRAF6. Ubiquitination of TRAF6 was assessed by Western blot. RESULTS Knockdown of NLRC3 expression promoted cell proliferation and inhibited cell apoptosis in HaCaT cells. In vivo, knockdown of NLRC3 expression significantly increased the infiltration of inflammatory cells and the proliferation of Ki-67 positive cells within mouse ear epidermis, while decreasing the number of apoptotic cells. NLRC3 interacted with TRAF6 and influenced its K63 ubiquitination level. Knockdown of TRAF6 expression resulted in increased cell proliferation and decreased cell apoptosis in HaCaT cells. In vivo, knockdown of TRAF6 expression led to a significant increase in inflammatory cell infiltration and Ki-67 positive cells in mouse ear epidermis, and a decrease in apoptotic cells. Inhibiting the NF-κB signaling pathway alleviated the progression of psoriasis, and interfering with TRAF6 activated the NF-κB signaling axis, contributing to the onset and advancement of psoriasis. CONCLUSION NLRC3 affects the occurrence of psoriasis by regulating TRAF6 and influencing the NF-κB signaling axis-mediated inflammatory response. This finding offers a theoretical foundation for the treatment of psoriasis.
Collapse
Affiliation(s)
- Wanlu Zhang
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, PR China
| | - Gege Zhu
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, PR China
| | - Huiya Sun
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, PR China
| | - Congjun Jiang
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, PR China.
| |
Collapse
|
3
|
Xiao Y, Zhang B, Hou S, Shen X, Wu X, Liu R, Luo Y. Acacetin Attenuates Sepsis-induced Acute Lung Injury via NLRC3-NF-κB Pathway. Inflammation 2025; 48:75-88. [PMID: 38739343 DOI: 10.1007/s10753-024-02040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Acacetin, a flavonoid derived compound has been recognized for its diverse biological activities, such as anti-oxidative and anti-inflammatory effects. Acute lung injury (ALI) is a severe condition characterized by respiratory insufficiency and tissue damage, commonly triggered by pneumonia and severe sepsis. These conditions induce an inflammatory response via Toll-like receptor 4 (TLR4) signaling activation. This study explored acacetin's therapeutic potential against lipopolysaccharide (LPS) induced ALI in mice, focusing on its ability to modulate the NF-κB pathway via regulation of the Nod-like receptor family CARD domain containing 3 (NLRC3), a signal sensor that plays an important role in the regulation of inflammation and the maintenance of homeostasis. Our findings revealed that high-dose acacetin reduced the mortality rate of ALI mice, significantly ameliorated LPS-induced lung pathological changes, reduced lung edema, and decreased the expression of inflammatory mediators in lung tissues. This protective impact of acacetin appears to stem form its capacity to enhance NLRC3 expression, which, intern, can inhibit the activation of NF-κB and subsequently inhibit the production of inflammatory mediators. NLRC3 deficiency inhibits the protective effect of acacetin on ALI mice. Molecular docking also verified that acacetin tightly bound acacetin to NLRC3. Additionally, acacetin was found to influence macrophage recruitment dynamics via NLRC3, inhibiting the overactivation of NLRC3-NF-κB related pathways. Taken together, our results indicate that acacetin inhibited LPS-induced acute lung injury and macrophage overrecruitment to the lungs in mice by upregulating NLRC3.
Collapse
Affiliation(s)
- Yingchou Xiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710000, China
| | - Bo Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710000, China
| | - Shiyuan Hou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710000, China
| | - Xing Shen
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710000, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710000, China.
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710000, China.
| | - Ying Luo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710000, China.
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
4
|
Chen Y, Luo Y, Liu Y, Luo D, Liu A. Dual efficacy of tocilizumab in managing PD-1 inhibitors-induced myocardial inflammatory injury and suppressing tumor growth with PD-1 inhibitors: a preclinical study. Cancer Immunol Immunother 2025; 74:52. [PMID: 39752010 PMCID: PMC11699076 DOI: 10.1007/s00262-024-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
The combined use of tocilizumab (TCZ) and immune checkpoint inhibitors (ICIs) in cancer treatment is gaining attention, but preclinical studies are lacking. Our study aims to investigate the synergistic anti-tumor effect of TCZ combined with ICIs and its role in treating immune-related adverse events (irAEs). The clinical significance of high interleukin-6 (IL-6) expression in tumor patients was analyzed from the Cancer Genome Atlas (TCGA) database. The expression levels of IL-6 were compared before and during the onset of ICIs-associated myocarditis patients. ICIs-related myocardial inflammatory injury and therapeutic lung cancer models were constructed in C57BL/6 J mice using murine-derived programmed death-1 (PD-1) inhibitors alone or in combination with TCZ. Possible inflammatory mechanisms were proposed and validated. The anti-tumor effects and mechanisms of both drugs in combination were assessed. Patients with high IL-6 expression had a poor prognosis, and those with ICIs-associated myocarditis exhibited elevated IL-6 from baseline. In the PD-1 inhibitors-associated myocardial inflammatory injury mouse model, the levels of IL-6 in the blood and cardiac tissues were significantly elevated. TCZ ameliorated immune myocardial inflammatory injury by inhibiting the IL-6/janus kinase 2 (JAK2)/signal transducer and activator of the transcription 3 (STAT3) pathway. The group treated with PD-1 inhibitors combined with TCZ showed significantly slower tumor growth than that treated with PD-1 inhibitors alone. TCZ resisted tumor growth by inhibiting the IL-6-JAK2-STAT3 pathway. By targeting the IL-6-JAK2-STAT3 pathway, TCZ can alleviate PD-1 inhibitors-associated myocardial inflammatory injury mediated by M1-polarized macrophages and plays a synergistic anti-tumor role by inhibiting lung cancer cell proliferation.
Collapse
Affiliation(s)
- Yanxin Chen
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yuxi Luo
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yunwei Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
5
|
Shen L, Li F, Xia K, Zhan L, Zhang D, Yan Z. Nuclear receptor subfamily 4 group a member 1 eases angiotensin II-arose oxidative stress in vascular smooth muscle cell by boosting nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 3 transcription. Cytojournal 2024; 21:43. [PMID: 39737121 PMCID: PMC11683370 DOI: 10.25259/cytojournal_86_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/14/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension. Material and Methods First, models of VSMC with Nur77, nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 3 (NLRC3) and tumor necrosis factor receptor-associated factor 6 (TRAF6) knockdown or overexpression were constructed using Short Hairpin RNA (Nur77) or pcDNA3.1 vector, respectively. Next, the putative-binding motifs between Nur77 and NLRC3 promoters were detected by dual luciferase assay. We conducted reverse transcription quantitative polymerase chain reaction (qPCR) and Western blot (WB) analysis to detect Nur77, NLRC3, and TRAF6 levels in VSMCs. Then, cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, wound-healing assay, enzyme-linked immunosorbent assay, and 2',7'-dichlorofluorescin diacetate were employed to examine the impact of the knockdown or overexpression of Nur77, NLRC3, and TRAF6 on VSMCs treated with Ang II. The assays measured cell viability and proliferation, cell migration, malondialdehyde levels, and reactive oxygen species levels. Results The overexpression of Nur77 repressed cell growth (P < 0.001), migration (P < 0.01), and oxidative stress (P < 0.01) induced by Ang II in VSMCs. Nur77 transcriptionally promoted the expression of NLRC3 (P < 0.001), and the upregulation of NLRC3 suppressed cell proliferation (P < 0.05) and oxidative stress (P < 0.001) mediated by Ang II. Furthermore, NLRC3 negatively regulated the TRAF6/nuclear factor-kappa B (NF-κB) axis activated by Ang II, which resulted in the repression of hyperproliferation of VSMCs (P < 0.01) and oxidative stress (P < 0.001). Conclusion Nur77 suppressed growth and oxidative stress induced by Ang II in VSMCs by promoting NLRC3 transcription, which, further, repressed the TRAF6/NF-κB axis. This understanding provides novel insights into the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Li Shen
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Cardiology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Ke Xia
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingli Zhan
- Department of Cardiology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Dan Zhang
- Department of Cardiology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Zhiqiang Yan
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Central Laboratory, Fengxian District Central Hospital, Southern Medical University, Shanghai, China
| |
Collapse
|
6
|
Yang Y, Gan M, Liu C, Xie Z, Wang M, Zhou C, Cheng W, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Wang J, Shen L, Zhu L. Analysis of genetic evolutionary differences among four Tibetan pig populations in China. Genomics 2024; 116:110950. [PMID: 39393592 DOI: 10.1016/j.ygeno.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Tibetan pigs are a locally bred domestic pig breed originating from the Tibetan Plateau in China. They can be categorized into four distinct groups based on their geographical locations: Sichuan Tibetan pigs, Tibetan pigs from Tibet, Yunnan Tibetan pigs, and Gansu Tibetan pigs. This study aimed to explore population diversity, genetic structure and selection signals among Tibetan pigs in four Chinese national nature reserves. The results show that there is different observed heterozygosity among Tibetan pig populations (0.1957-0.1978). Ratio of runs of homozygosity (Froh) calculation of four Tibetan pig populations by runs of homozygosity (ROH) revealed the presence of inbreeding within the population (0.0336-0.0378). Analysis of the genetic structure demonstrated distinct population stratification among the four Tibetan pig populations, with each showing relatively independent evolutionary directions. Furthermore, Five methods (FST, Piratio, ROD, Tajima's D, XP-CLR) were used to artificially select evolutionary trajectories. The results mainly involved processes such as DNA repair, immune regulation, muscle fat deposition and adaptation to hypoxia. In conclusion, this study enhances our understanding of the genetic characteristics of Tibetan pig populations and provides a theoretical reference for the conservation of resources across different populations of Tibetan pigs.
Collapse
Affiliation(s)
- Yiting Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengpeng Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Cheng
- National Animal Husbandry Service, Beijing 100125, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
7
|
Lu Y, Zhao M, Chen L, Wang Y, Liu T, Liu H. cGAS: action in the nucleus. Front Immunol 2024; 15:1380517. [PMID: 38515746 PMCID: PMC10954897 DOI: 10.3389/fimmu.2024.1380517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
As a canonical cytoplasmic DNA sensor, cyclic GMP-AMP synthase (cGAS) plays a key role in innate immunity. In recent years, a growing number of studies have shown that cGAS can also be located in the nucleus and plays new functions such as regulating DNA damage repair, nuclear membrane repair, chromosome fusion, DNA replication, angiogenesis and other non-canonical functions. Meanwhile, the mechanisms underlying the nucleo-cytoplasmic transport and the regulation of cGAS activation have been revealed in recent years. Based on the current understanding of the structure, subcellular localization and canonical functions of cGAS, this review focuses on summarizing the mechanisms underlying nucleo-cytoplasmic transport, activity regulation and non-canonical functions of cGAS in the nucleus. We aim to provide insights into exploring the new functions of cGAS in the nucleus and advance its clinical translation.
Collapse
Affiliation(s)
- Yikai Lu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengmeng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianhao Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Stafuzza NB, Freitas ACD, Mioto MB, Silva RMDO, Fragomeni BDO, Pedrosa VB, Costa RLDD, Paz CCPD. Weighted single-step genome-wide association study and functional enrichment analyses for gastrointestinal nematode resistance traits in Santa Ines sheep. Vet Parasitol 2023; 323:110047. [PMID: 37857178 DOI: 10.1016/j.vetpar.2023.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
This study aimed to identify genomic regions, pathways, and putative candidate genes associated with resistance to gastrointestinal nematode in Santa Ines sheep. The phenotypic information comprised 5529 records from 1703 naturally infected animals. After genomic data quality control, 37,511 SNPs from 589 animals were available. The weighted single-step approach for genome-wide association study was performed to estimate the SNP effects and variances accounted by 10-SNP sliding windows. Confirming the polygenic nature of the studied traits, 20, 22, 21, and 19 genomic windows that explained more than 0.5% of the additive genetic variance were identified for fecal egg counts (FEC), Famacha© (FAM), packed cell volume (PCV), and total plasma protein (TPP), respectively. A total of 81, 122, 106, and 101 protein-coding genes were found in windows associated with FEC, FAM, PCV, and TPP, respectively. Several protein-coding genes related to the immune system and inflammatory response functions were identified within those genomic regions, such as ADCY9, ADRB2, BRAF, CADM1, CCL20, CD70, CREBBP, FNBP1, HTR4, IL16, IL22, IL26, MAPK8, NDFIP1, NLRC3, PAK5, PLCB1, PLCB4, ROCK1, TEK, TNFRSF12A, and VAV1. Functional enrichment analysis by DAVID tool also revealed many significant (P < 0.05) pathways and Gene Ontology terms that could be related to resistance to gastrointestinal nematode in Santa Ines sheep, such as chemokine signaling pathway (oas04062), cAMP signaling pathway (oas04024), cGMP-PKG signaling pathway (Oas04022), platelet activation (Oas04611), Rap1 signaling pathway (oas04015), and oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen (GO:0016705). These results contribute to improving the knowledge of the genetic architecture of resistance to gastrointestinal nematode in Santa Ines sheep.
Collapse
Affiliation(s)
- Nedenia Bonvino Stafuzza
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil.
| | - Ana Claudia de Freitas
- São Paulo Agency of Agribusiness and Technology, Animal Science Institute, 13380-011 Nova Odessa, SP, Brazil; Agricultural Research Agency of the State of Minas Gerais, 38709-899 Patos de Minas, MG, Brazil
| | - Marina B Mioto
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil
| | | | | | - Victor Breno Pedrosa
- Department of Animal Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Ricardo Lopes Dias da Costa
- São Paulo Agency of Agribusiness and Technology, Animal Science Institute, 13380-011 Nova Odessa, SP, Brazil
| | | |
Collapse
|
9
|
Li R, Zhao Y, Zhang X, Yang L, Zou X. NLRC3 Participates in Inhibiting the Pulmonary Inflammatory Response of Sepsis-Induced Acute Lung Injury. Immunol Invest 2023:1-16. [PMID: 37139806 DOI: 10.1080/08820139.2023.2206445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Acute lung injury (ALI) progresses rapidly, is difficult to treat, and has a high fatality rate. The excessive inflammatory response is an important pathological mechanism of ALI. NLRC3 (NLR family CARD domain-containing 3), a non-inflammasome member of the NLR family, has been found that it could negatively regulates various biological pathways associated with inflammatory response, such as NF-κB (nuclear factor kappa B), PI3K (Phosphatidylinositol 3'-kinase)-Akt (protein kinase B)-mTOR (mammalian target of the rapamycin), and STING (stimulator of interferon genes) pathways, which are responsible for the progression of pulmonary inflammation and participate in regulating the pathological progression of ALI. However, the effects of NLRC3 in sepsis-induced pathological injury of lung tissue remain unclear. In this study, we aimed to investigate the potential effects of NLRC3 in the sepsis-induced ALI. To investigate whether NLRC3 participates in inhibiting the pulmonary inflammatory response of sepsis-induced ALI. Sepsis-induced ALI mice models were established by intrabronchial injection of lipopolysaccharide (LPS) or cecum ligation and puncture (CLP). The lentivirus with overexpression of NLRC3 (LV-NLRC3) and downregulation of NLRC3 (LV-NLRC3-RNAi) were transfected to LPS-induced ALI mice. The expression of NLRC3 was upregulated or downregulated in the lung tissue of sepsis-induced ALI mice. Transfection with NLRC3-overexpression lentivirus significantly decreased inflammatory response in the lung of LPS-induced ALI mice in contrast to the control group. By transfection with NLRC3-silencing lentivirus, the inflammatory response in LPS-induced ALI mice was aggravated. Our study provides evidence of the protective effect of NLRC3 in sepsis-induced ALI by inhibiting excessive inflammatory response of the lung tissue.AbbreviationsAcute lung injury: ALI; intensive care units: ICU; lipopolysaccharide: LPS; acute respiratory distress syndrome: ARDS; bronchoalveolar lavage fluid: BALF; nucleotide-binding oligomerization domain-like receptors: NLRs; NLR family CARD domain containing 3: NLRC3; nuclear factor kappa B: NF-κB; tumor necrosis factor receptor-associated factor 6: TRAF6; Phosphatidylinositol 3'-kinase: PI3K; protein kinase B: Akt; mammalian target of the rapamycin: mTOR; stimulator of interferon genes: STING; TANK-binding kinase 1: TBK1; type I interferon: IFN-I; toll-like receptors: TLRs; tumor necrosis factor: TNF; interleukin: IL; NOD-like receptor protein 3: NLRP3; enhanced green fluorescent protein: EGFP; lentivirus: LV; phosphate-buffered saline: PBS; intrabronchial: i.t.; cecum ligation and puncture: CLP; wet/dry: W/D; Real time polymerase chain reaction: RT-PCR; enzyme-linked immunosorbent assay: ELISA; hematoxylin and eosin: H&E; radio immunoprecipitation assay: RIPA; sodium dodecyl sulfate polyacrylamide gel electrophoresis: SDS-PAGE; polyvinylidene fluoride: PVDF; glyceraldehyde 3-phosphate dehydrogenase: GAPDH; bovine serum albumin: BSA; Tris buffered saline containing Tween 20: TBST; standard deviation: SD; one-way analysis of variance: ANOVA; janus kinase 2: JAK2; activators of transcription 3: STAT3; pathogen associated molecular patterns: PAMPs; danger associated molecular patterns: DAMPs.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yue Zhao
- Department of Critical Care Medicine, Jin Yin-tan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, P.R. China
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Xue Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Le Yang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|